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Abstract

Updating behavior in cascade experiments is usually investigated on the
basis of urn prediction. But urn predictions alone can only provide a very
rough information on individual updating behavior. Therefore, we imple-
ment a BDM mechanism. Subjects have to submit maximum prices that
they are willing to pay to participate in the prediction game. This enables us
to study subjects’ probabilty formation less crudely. The results show that
in many situations herding occurs in accordance with the standard BHW
model but cannot be explained neither by rational Bayesian updating nor
by heuristics identi…ed in former cascade experiments.
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1. Introduction

Information Cascades are often used to explain economic decision behavior in se-

quential decision structures when individuals ignore their private signal due to the

aggregation of public information. Bikhchandani, Hirshleifer andWelch (1992) de-

rived an economic model which explains the occurrence of information cascades

just by rational Bayesian updating. We refer to their model as the standard BHW

model. Experiments have been carried out in order to test individual updating

behavior as assumed by this model. In the standard experimental design subjects

have to predict sequentially which urn out of two was randomly drawn. The urns

contain a certain number of white and black balls. As private information a ball is

randomly drawn from the chosen urn and the colour is announced to the subject.

Additionally, participants are informed about the predictions of their predeces-

sors. Conclusions from these experiments are usually drawn from subjects’ urn

predictions. Since urn predictions alone can only provide a very rough information

on individual updating behavior our idea is to implement the BDM mechanism.

Thus, we asked subjects to submit maximum prices they are willing to pay for

participating in the prediction game. Interpreting submitted maximum prices as

indicators of subjects’ probability beliefs we can gain more insight in individual

updating behavior.

Just on the basis of urn predictions Anderson and Holt (1997) observed a

high proportion of individual decisions in line with Bayes’ rule. These …ndings

led them to the conclusion that “Individuals generally used information e¢ciently

and followed the decisions of others when it was rational” (Anderson and Holt ,

1997, p. 859). Other experimenters try to gain more insight by replicating cascade

experiments as by Anderson and Holt with di¤erent information structures, for in-

stance by varying the strength of the private signal (e.g. Kremer and Nöth, 2000;



Nöth and Weber, 1999; Willinger and Ziegelmeyer, 1998). Their results generally

indicate a strong bias for overcon…dence.1 Moreover, they identify simple heuris-

tics that are able to generate high e¢ciency rates. Nöth and Kremer (2000) refer

to the heuristic, mostly used by participants as ”Anchoring and Adjustment”. In

recent experiments it has been tried to gain more insight by implementing costly

information (e.g. Kraemer, Nöth and Weber, 2000; Kuebler and Weizsaecker,

2000). Even though, the results of these experiments provide more insight in in-

dividual updating behavior than Anderson and Holt, they are still restricted to

urn predictions and buying decisions, respectively. In order to study individual

updating behavior less crudely we need to observe perceived probabilities of sub-

jects when deciding within a cascade. Nöth and Kremer already asked subjects to

submit probabilities, but did not provide any incentive to participants to answer

seriously. Moreover individuals vary in the interpretation of “probabilities”, as

pointed out by Davis and Holt (1993).

By implementing the BDM mechanism we study subjects’ probability for-

mation based on prices rather than on probabilities. We …nd that even subjects

whose urn predictions were always in line with the standard BHW model did not

update information according to it. Instead, they increased prices even within cas-

cades when theoretically no information aggregation occurs. Also other heuristics,

identi…ed in former experiments, are not able to explain the observed price setting

pattern. Our conclusion is that in many situations herding occurs in accordance

with the standard BHW model but the observed updating behavior cannot be

explained by the standard BHW model or heuristics identi…ed in former cascade

experiments.

The remainder of this paper is organized as follows: In section 2 we describe

our experimental design. In section 3 the procedure is explained. In section

4 we discuss theoretically which decision and price setting behavior one should

expect according to Bayes’ rule. We also explain the conditions for using prices as

indicators of probability perceptions. At the end of the section we formulate some

hypotheses about individual behavior. In section 5 our …ndings are presented and

discussed. Finally, in section 6 some conclusions are drawn from our …ndings.
1Overcon…dence was also found in another cascade experiment by Kraemer, Nöth and Weber

(2000) who implemented …xed cost for private signals.

2



(0.5) (0.5)

black blackwhite white

(0.6) (0.6)(0.4) (0.4)

urnAurnA urnB

Figure 2.1: Experimental Setup

2. Experimental Design

One session consists of 20 to 25 rounds. In the same way as Anderson and Holt,

we use urns and balls in order to implement the basic structure as assumed in

underlying information cascades models. Two urns are used, containing 5 balls

each; urn A with 2 white and 3 black balls and urn B with 3 white and 2 black

balls (see also …gure 2.1).

At the beginning of each round one urn is randomly chosen and the sequence

of subjects within a group randomly determined. One group consists of 6 persons

who have to predict in sequence which urn is actually chosen. Additionally, they

have to decide what maximum price they are willing to pay to participate in the

prediction game.

At a participant’s turn she is asked to submit her decisions. We provide

each participant with a private signal by telling her the color of the ball that has

randomly been drawn for her from the chosen urn and afterwards been replaced

into the urn. In addition, predecessors’ predictions are announced. After the

last subject has made her decisions the payment mode for this round is randomly

determined. There are two possible payment modes:

With a probability of 0.5 participants’ payo¤s are only based on their urn

prediction. Subjects are paid an amount of 100 ECU (Experimental Currency

Unit) just for predicting the correct urn and 0 otherwise. We refer to this mode

3



correct prediction wrong prediction
mode 1 100 0

mode 2 Pmax ¸ PR 100¡ PR 0¡ PR
Pmax < PR 0 0

Table 2.1: Payo¤ calculation according to mode 1 and 2.

as mode 1 or prediction game as used above. In the other mode – we refer

to it as mode 2 – payo¤s additionally depend on the maximum price participants

submitted in order to participate in the prediction game. The payment mechanism

works as follows:

A uniformly distributed random price between 0 and 100 ECU is drawn. A

subject participates in the payo¤ procedure when her maximum price Pmax equals

or exceeds the random price PR. In this case she receives the payo¤ as in mode

1 (100 ECU for a correct prediction and 0 otherwise) and has to pay the random

price. In the case that the random price exceeds the maximum price the subject

does not participate and, therefore, earns 0 ECU. The random price mechanism

is known as the BDM - mechanism (Becker, DeGroot and Marschak; 1964). The

mechanism and its chances for the task at hand will be explained in more detail

in section 4. In table 2.1 all possible outcomes are summarized.

At the end of a round each subject is told the chosen urn, the applied payment

mode and her resulting income. At the end of the whole session each subject is

told her total income.

3. Procedure

In contrast to Anderson and Holt we run our experiment in the computer labo-

ratory which enables us to gain more data and to assure that participants make

their decisions anonymously. The experiment was run at Humboldt University of

Berlin in July 2000. 48 persons, mainly students of the Faculty of Economics were

recruited. We conducted 6 sessions, each with 2 groups of 6 persons. Each session

lasted on average one and a half hours and two sessions were always conducted at

the same time, which made it impossible for subjects to identify the other group

members. 50 ECU correspond to 1 DM. A 10 DM participation fee was added

to the subjects’ …nal income which averaged about 17.81 DM. At the end of each

session participants were asked to …ll in a …nal questionnaire which should help us

gain more insight in their decision making process. In order to discuss parameter

settings we …rst have to explain our assumptions necessary for the analysis of price

setting behavior. This will be done in section 4.
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decision at position I
A B

color of ball black 9
13
( 4
13
) 1

2
(1
2
)

drawn at position II white 1
2

³
1
2

´
4
13

³
9
13

´
Table 4.1: Posterior probabilities that urn A (B) is actually chosen at position II.

4. Theoretical Expectations

4.1. Predictions and Probabilities

In this section it is shown how rational Bayesian updating is applied in information

cascade models. Based on this we formulate some expectations about prediction

behavior in our experiment. Assuming rational behavior a subject should always

predict the urn that is more probable. The probability that an urn is actually

chosen is calculated by Bayes’ rule. In our experiment we implement a symmetric

setup; e.g. the probability for observing a black (white) ball when actually urn A

(B) is chosen is always 0.6.

The only information a subject observes at position I is the color of the ball

which is privately drawn for her. The posterior probability that urn A (B) is

actually chosen given an observed black (white) ball is calculated as follows:

Pr(A=black) = Pr (B=white) =
1
2
3
5

1
2
3
5
+ 1

2
2
5

= 0:6 . (4.1)

Therefore, applying Bayes’ rule it is rational to predict urn A (B) if a black (white)

ball is observed.

At position II a subject observes both, the color of a ball which is privately

drawn for her and her predecessor’s prediction. Table 4.1 summarizes all posterior

probabilities for urn A (B) given the predecessor’s predictions at position I and

the color of the privately drawn ball at position II.

Given a posterior probability of 0.5 the urn prediction depends on the tie-

breaking rule used by a subject. In the model of Bikhchandani, Hirshleifer and

Welch (1992) it is assumed that individuals randomize with equal probability

between urn A and B whereas Anderson and Holt (1997) suppose that subjects

always follow their private signal.2 At position III given two equal predictions at
2Assuming a small fraction of prediction errors at position I it is rational to follow the private

signal.
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position I and II it is always rational to ignore one’s private signal and to predict

the same urn as the predecessors regardless of the tie-breaking rule presented

above. The posterior probabilities at position III following the Anderson/Holt

approach are calculated as follows:

Pr(A=black; AA) =
1
2

³
3
5

´3
1
2

³
3
5

´3
+ 1

2

³
2
5

´3 = 0:77 (4.2)

Pr(A=white; AA) =

1
2

³
3
5

´2
2
5

1
2

³
3
5

´2
2
5
+ 1

2

³
2
5

´2
3
5

= 0:6 (4.3)

The respective probabilities following the Bikhchandani, Hirshleifer andWelch

approach are Pr (A=black; AA) = 0:72 and Pr(A=white; AA) = 0:53. Therefore,

in both cases it is rational to ignore one’s private signal and to follow the predic-

tions of one’s predecessors. Since the subject at position III ignores her private

signal, subsequent deciders cannot infer any further information from her predic-

tion, i.e., no further aggregation occurs. Consequently, the probabilities for urn

A (B) at all subsequent positions are the same as at position III.

Given two di¤erent predictions at position I and II the situation at position

III is the same as at position I, i.e., the a priori probability for urn A (B) is 0.5.

Thus, in our experiment a cascade can start theoretically either at position III or

V. In the remainder of the study we refer to these positions where cascades start

always as cascade position 3 and the subsequent positions as cascade positions 4,

5 and 6, respectively. We refer to the two positions before the cascade starts as

cascade position 1 and 2. Figure 4.1 shows the probabilities at di¤erent cascade

positions for each signal assuming the Anderson/Holt tie-breaking rule.3

We refer to private signals that are contrary to public information as contra

signals and the others as pro signals.

Recently, Koessler and Ziegelmayer (2000) have shown that relaxing the as-

sumption about the used tie-breaking rule allows for other equilibria in which

information cascades are not necessarily observable. Therefore, they recommend

to implement an asymmetric design in cascade experiments. By doing this, sit-

uations with posterior probabilities of 0.5 can be avoided and cascade behavior
3The pattern that probabilities do not change from cascade position 3 to 6 given the same

private signal is the same assuming the Bikhchandani/Hirshleifer/Welch tie-breaking rule.
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Figure 4.1: Posterior probabilities at di¤erent cascade positions given di¤erent
private signals assuming the Anderson/Holt tie-breaking rule.

clearly identi…ed. However, in all equilibria worked out by Koessler and Ziegel-

mayer no information aggregation takes place from cascade position 3 to 6. In

this case we also have to expect constant prices. Therefore, our analysis does

not depend on assumptions about a certain tie breaking rule. Implementing an

asymmetric design would not contribute to our questions but rather complicate

our experimental setup.

4.2. Prices as Indicators for Probabilities

Former cascade experiments provide evidence that many subjects seem to use

rather simple decision rules instead of Bayes’ rule and show a signi…cant bias

toward overcon…dence.4 Overcon…dent subjects put too much weight on their pri-

vate signal relative to the public information. Most of these …ndings are based on

the observation of subjects’ urn predictions, for instance di¤erent decision rules

are usually inferred from predictions which are not in line with Bayes’ rule. Since

predictions provide only rough information about subjects’ beliefs, our idea is to

use prices as an indicator for the subjects’ probability perceptions. Therefore,
4See for example Nöth and Weber (1999) and Kremer and Nöth (2000).
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we applied the BDM mechanism in order to extract maximum prices that reveal

subjects’ willingness to pay for participating in the prediction game. Assuming

risk neutral subjects the revealed maximum prices would perfectly re‡ect sub-

jects’ probability beliefs. But even if one only assumes that maximum prices

monotonously increase in subjects’ probability beliefs we are still able to com-

pare subjects’ beliefs at di¤erent cascade positions. Actually, for our purpose it

is su¢cient if a higher maximum price re‡ects a higher probability belief and vice

versa.

Regarding the analysis of the observed price setting behavior we will focus

on individuals who always predict in line with the standard BHW model. By

implementing the BDM mechanism we are now able to study whether these sub-

jects actually update information according the theoretical model. Following, we

will discuss some price patterns, that we can expect in the case that individuals

either update information according to the standard BHW model or according to

heuristics identi…ed in former cascade experiments.

² The standard BHW model

Since we restrict our analysis of the price setting behavior on subjects who

always predict in line with the standard BHWmodel we can also expect that these

subjects update information according to it. One important assumption of this

model is that subjects recognize that no information is aggregated once a cascade

has started. If the standard BHW model actually describes updating behavior in

the laboratory, according to …gure 4.1, assuming monotonously increasing prices

in probability beliefs and given a certain private signal, subjects should submit

the same price at cascade positions 3 to 6.

² The error BHW model

Former cascade experiments show that individuals err sometimes by not pre-

dicting in accordance with the standard BHW model. Incorporating these errors

into the standard BHW model would change the expected price pattern. In this

case we had to expect increasing prices throughout the cascade given a certain

signal. Since predictions after cascade position 3 now contain additional infor-

mation, perceived probabilities would increase with the length of the cascade.

Additionally, we had to expect lower prices at cascade position 3 given a contra

signal than at cascade position I 5. In the further study we refer to this model to

the error BHW model.
5See Anderson (2000).
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² Anchoring and Adjustment

Nöth and Weber (1999) identify an anchoring and adjustment heuristic that

is able to explain a high proportion of deviations from the cascade pattern. Sub-

jects use their private signal as an anchor and their predecessors’ predictions for

adjustments. It is reasonable to assume that this heuristic is also used by partici-

pants who always predict in line with the standard BHW model. Since we choose

a symmetric design an anchoring and adjustment heuristic can lead to prediction

behavior in accordance with the standard BHW model. In this case we also have

to expect increasing prices throughout a cascade.

² Counting

Another heuristic called counting would lead to a similar price pattern. The

greater the majority of inferred and observed pro signals compared to observed

and inferred contra signals the higher is the probability of the predicted urn.

Doing this, individuals ignore that their predecessors might just have followed

their predecessors.6 Otherwise, one might argue that just the existence of the

majority of pro signals is of importance. We refer to this heuristic as simple

counting. In this case we have to expect constant prices from cascade position 3

on, regardless whether the private signals are pro or contra.

As can easily be seen, all alternative heuristics presented above lead to similar

price patterns with increasing prices towards later cascade positions. Thus, we are

able to separate Bayesian updating from alternative decision rules but we cannot

identify the heuristic that is actually used in case of increasing maximum prices.

Having explained the assumptions necessary to analyze price setting behavior

and formed some expectations regarding the heuristics used by the participants

we are now able to discuss the private signal strength chosen in our setup. As

private signal strength we choose probabilities of 2
5
and 3

5
, respectively. Using

quite noisy signals, as we do, generates rather low posterior probabilities. Given

that subjects’ beliefs increase, even after a cascade has started, low posterior

probabilities allow us to observe this pattern more distinctly. Signal strength of
2
3
and 1

3
, respectively, as Anderson/Holt used lead to posterior probabilities very

close to one and, therefore, a possible pattern of increasing probability beliefs

might be di¢cult to observe.

6See Anderson and Holt (1997).

9



private signal expected predictions in line with BR actually observed
all 1,140 985 (86.4%)
pro 915 821 (89.7%)
contra 225 164 (72.9%)

Table 5.1: Expected and actually observed predictions in line with Bayes’ rule
dependent on the private signal.

5. Results

5.1. Prediction Behavior

Following our theoretical framework, cascade behavior can be observed if a sub-

ject’s prediction is inconsistent with her private signal but in line with the standard

BHW model. Moreover, the situation may occur that a subject deviates from the

cascade pattern, e.g., she does not follow her predecessors within a cascade. In

order to compare some of our …ndings with those of Anderson and Holt (1997)

we …rst follow their reasoning that a deviating decision reveals the private signal.

Therefore, we de…ne as cascade behavior predictions that are inconsistent with

private signals due to an imbalance of previous inferred signals. This means, that

we …rstly include all observations even when former observations deviate from the

equilibrium path as assumed by the standard BHW model.

Table 5.1 shows some general …ndings concerning prediction behavior. As

Anderson and Holt we also found a high degree of cascade behavior. When an

imbalance of previous inferred signals occurred cascade behavior was observed in

104 of 132 rounds. We also found a high degree of predictions seemingly in line

with Bayes’ rule. Of all 1,140 predictions 985 (86,4%) were in line with rational

Bayesian updating behavior, but considering only situations when it was rational

to predict against the private signal only 73% of the predictions were in line with

Bayes’ rule. Figure 5.1 summarizes the results.

Studying prediction behavior on an individual level we found that 31% of

the subjects (15) predicted always in line with the standard BHW model. 56% of

the subjects showed a very high degree of seemingly rational behavior. More than

90% of their predictions were in line with the standard BHWmodel. Compared to

the two thirds of subjects always submitting predictions in line with the standard

BHW model in the Anderson/Holt experiments the proportion of seemingly ra-

tional subjects in our experiment was signi…cantly lower. This may be due to the

10



Cascade Position Expected cascade behavior Actually observed in %
3 74 46 62,2
4 49 34 69,4
5 31 28 90,3
6 34 30 88,2

Total 188 138 73,4

Table 5.2: Expected and actual cascade behavior at di¤erent cascade positions.
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Figure 5.1: Cascade behavior at di¤erent cascade positions.

lower signal strength applied in our experiment. Moreover, we run 25 instead of

15 rounds which certainly increases the probability that prediction errors occur.7

In order to keep our analysis clear the remainder of this study is focused on

decisions made within cascades that follow our theoretical framework. Therefore,

we exclude all decisions that follow predictions deviating from the equilibrium

path. In 188 situations cascade behavior could be observed theoretically. Of

these 188 situations we actually observed 138 in which subjects predicted against

their private signal but in line with standard BHW. As table 5.2 and …gure 5.1

shows the rate of cascade behavior varies depending on the cascade position.

More than 30% of predictions are not in line with Bayes’ rule up to cascade

position IV. This indicates that subjects put too much weight on their private
7Additionally, the di¤erent results could also be explained by di¤erences of the experimental

setup as well as of the experimental environment, e.g. computer laboratory versus classroom.
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signal. On the other hand there are about 90% of the predictions at cascade

position V and VI that show cascade behavior. It seems like it needs more than

two predecessors predicting the same urn to convince a substantial fraction of

subjects not to follow their private signal. This pattern highly corresponds to the

“Anchoring and Adjustment” heuristic found by Nöth and Weber in which one’s

own private information provides the anchor and the adjustment is based on the

available public information whereas many subjects put too much weight on their

private signal. Moreover, the high rate of cascade behavior at positions V and

VI reveals that a heuristic only based on private information cannot explain the

observed prediction behavior to a large extent. Generally, the results on prediction

behavior, presented above, show similar patterns as already worked out in former

cascade experiments. The question still remains if subjects who always predict

in line with the standard BHW model also update information as theoretically

assumed. In order to get more insight in their updating behavior we now want

to analyze the price setting behavior of these subjects. For this purpose, we

consider only price decisions of subjects who always predicted in line with the

standard BHW model. In the further study we refer to these subjects as BHW

subjects. At the end of this section we enhance our study on price decisions of

subjects not always predicting in line with the standard BHW model. Due to

our simple information structure we are not able to subdivide these subjects in

subgroups regarding their updating heuristic. Therefore, we just present some of

these …ndings without interpreting them in greater detail.

5.2. Price Setting Behavior

Analyzing price setting behavior enables us to study whether subjects update

information according to the models and heuristics presented in section 4.2. In

this section we …rst want to present some results from our postexperimental ques-

tionnaire that are crucial to prove the assumptions for using maximum prices as

indicators for probabilities. Then we give a …rst overview by presenting some de-

scriptive statistics based on average prices followed by a regression analysis. The

results will be compared with the expectations according to the presented models

and heuristics. At the end of this section we present some results of individuals

that did not always predict in line with the BHW model.

12
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Figure 5.2: Average maximum prices for pro and contra signals at di¤erent cascade
positions for BHW subjects.

One essential assumption for using maximum prices as indicators of probabil-

ity beliefs is a positive relation between submitted maximum prices and subjects’

probability beliefs. In order to test this assumption we confronted participants

with a …nal questionnaire. They were asked to state their probability beliefs as

well as maximum prices for di¤erent cascade situations. For 30 subjects (out of 48)

we were able to calculate correlations. 90% of them showed a positive correlation

between maximum prices and probabilities. For 18 subjects it was not possible to

calculate correlations because either prices or probabilities or both were held con-

stant. Of the 15 BHW subjects 13 showed a clearly positive relationship between

prices and probabilities. The other two subjects held prices constant.8 Thus, the

assumptions necessary for our further analysis seem to be satis…ed.

In order to get a …rst impression of price setting behavior of subjects whose

urn predictions were always in line with the standard BHW model we calculated

and plotted average prices at each cascade position separately for pro and contra

signals (see table 5.3 and …gure 5.2).
8Excluding these two subjects from our analysis does not change the results presented below.

Thus, we do not exclude them from our analysis.
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signal cas. pos. mean median std. dev.
1 44.7838 47.00 17.520
2 55.3103 60.00 22.44

PRO 3 59.6522 60.00 25.8397
4 79.0000 80.00 18.3521
5 76.6429 75.00 19.1255
6 67.5455 75.00 22.8926
3 47.9600 50.00 19.5245

CONTRA 4 60.5294 65.00 21.0152
5 59.0000 60.00 9.1652
6 59.4000 56.00 17.5512

Table 5.3: Average maximum prices for pro and contra signals at di¤erent cascade
positions for BHW subjects.

variable coe¢cient std. error t sign. 2-tailed
BHW POS4 15.637 4.166 3.754 0.000
adj. R2: 0.502 POS5 11.320 4.622 2.449 0.016
F-value: 5.942 POS6 12.456 5.049 2.467 0.015
sign. 0.000 CONTRA -14.570 3.213 -4.535 0.000

Table 5.4: Regression analysis for BHW subjects

Figure 5.2 shows that prices increase up to cascade position 4. Towards later

cascade positions prices are slightly decreasing but still higher than at cascade po-

sition 3. It seems that the standard BHWmodel does not explain actual updating

behavior in our experiment.

In order to present a statistically veri…able analysis we run a regression analy-

sis with price as dependent and dummies for each cascade position (using cascade

position 3 as reference point) and one dummy for contra signals9 as independent

variables. Since we cannot assume that all individuals have the same willingness

to pay given a certain probability, we additionally implement a dummy for each

subject.10 We control also for time in‡uences but do not …nd any signi…cant in-

‡uence (F-test sign. 0.952). The result of the regression analysis is shown in table

5.4.
9One might argue that the in‡uence of a contra signal varies at di¤erent cascade positions.

Therefore, we run also a regression analysis with additional dummies for contra signals at each
cascade position. These dummies are not signi…cantly di¤erent from zero.
10In the presented regression analysis we assumed the same price pattern for all subjects. In

order to test whether this assumption can be justi…ed we run an additional regression analysis
with dummy variables for each subject at each cascade position and tested whether this led
to a signi…cant improvement. The incremantal F-test did not show a signi…cant improvement
compared to the presented regression analysis (sign. 0.987).
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variable coe¢cient std. error t sign. 2-tailed
BHW POS1 -21.391 4.602 -4.648 0.000
PRO SIGNAL POS2 -14.111 4.849 -2.910 0.004
adj. R2: 0.563 POS4 16.076 5.324 3.019 0.003
F-value: 9.750 POS5 14.692 5.619 2.615 0.010
sign. 0.000 POS6 7.120 6.397 1.113 0.268

Table 5.5: Regression analysis for BHW subjects and pro signals incorporating
also cascade position 1 and 2.

It can be seen that our …rst impression is con…rmed. BHW subjects set a

signi…cantly higher price at cascade position 4, 5 and 6 than at cascade position

3. After position 4 prices remain rather stable and, as expected, a contra signal

has a signi…cant negative e¤ect on the price.

Price setting behavior for contra signals can only be observed from cascade

position 3. In order to study price setting behavior also at cascade positions 1

and 2 we run an additional regression analysis only for pro signals incorporating

cascade position 1 and 2. The result is shown in table 5.5.

There is a signi…cant price increase throughout the …rst three cascade posi-

tions. Interestingly, we observe an even stronger (although not signi…cant) price

decrease after cascade position 4. At cascade position 6, given a pro signal, prices

are not signi…cantly higher than at cascade position 3. Obviously, subjects who

always predict in line with the standard BHW model do not update information

according to it. In contrast to the standard BHW model subjects increase prices

even after cascade position 3.

The question arises if an error BHW model is able to explain the observed

price setting pattern of BHW subjects? As reported in the previous section par-

ticipants erred sometimes by not predicting in line with the standard BHWmodel.

Subjects could have incorporated these errors of their predecessors and for this

reason aggregated information even at later cascade positions. In our opinion an

error BHW model is not able to explain the observed price setting pattern. First,

if subjects incorporated their predecessors’ error rates they should have increased

their prices also beyond cascade position 4. We observed, however, rather decreas-

ing prices after cascade position 4. Secondly, subjects should submit higher prices

at cascade position 1 than at cascade position 3 after observing a contra signal.11

11See Anderson (2000).
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Actually, in our experiment only two out of 9 subjects submit on average a higher

price at cascade position 1 than at cascade position 3 after observing a contra

signal. The others submit either the same (2 subjects) or a higher maximum price

(5 subjects).

As reported in section 4.2 in former cascades experiments certain heuristics

have been identi…ed that are able to explain a high proportion of observed pre-

diction behavior. Can the observed price setting behavior of BHW subjects in our

experiment be explained by these heuristics? If subjects employed an anchoring

and adjustment or a counting heuristic given a private signal prices should in-

crease from cascade position 3 to 6. But we observe only increasing prices from

cascade position 1 to 4 and rather decreasing prices afterwards. If subjects applied

a simple counting heuristic prices would increase up to position 3 and would be

constant afterwards. Also this heuristic is not con…rmed by the observed price

setting pattern.

In summary, neither the considered models (with or without incorporating

error rates) nor heuristics that have been identi…ed in former experiments are able

to explain the observed price setting pattern of subjects who always predicted in

line with the standard BHWmodel. Before turning to the discussion of alternative

explanations in section 6 we want to present some …ndings of subjects not always

predicting in line with the BHW model.

Again, we restrict our analysis to predictions in line with the standard BHW

model. First we run a similar regression analysis as for BHW subjects. The

only di¤erence is that we introduce an additional contra dummy for each cascade

position since the price pattern for pro and contra signals di¤ers signi…cantly (see

table 5.6).

In the case of pro signals prices do not increase after cascade position 3 but

rather decrease, whereas in the case of contra signals we observe signi…cantly

higher prices at cascade position 5 and 6 compared to cascade position 3 but no

increase from cascade position 3 to 4. As expected a contra signal has a signi…cant

negative in‡uence on the submitted price.

We additionally run a regression analysis for pro signals including cascade

position 1 and 2. Prices increase signi…cantly from cascade position 1 to 2 and

from 2 to 3 and are constant afterwards. For pro signals it seems that subjects
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variable coe¢cient std. error t sign. 2-tailed
Subjects not POS4 -1.027 3.777 -0.272 0.786
always predicting POS5 -6.772 4.198 -1.613 0.109
in line with BHW POS6 -1.662 4.973 -0.334 0.739

CONTRA -13.273 4.129 -3.215 0.002
adj. R2: 0.677 CONTRA4 2.902 5.944 0.488 0.626
F-value: 8.991 CONTRA5 23.044 6.482 3.555 0.000
sign. 0.000 CONTRA6 14.879 6.947 2.142 0.034

Table 5.6: Regression analysis for subjects not always predicting in line with the
standard BHW model.

whose predictions were not always in line with the standard BHWmodel updated

information in accordance with the standard BHW model. When observing a

contra signal it seems to make a signi…cant di¤erence whether three or four prede-

cessors predict the same urn. However, to investigate updating behavior of these

subjects in more detail we would have to form subgroups of subjects who employ

a similar updating heuristic. Unfortunately, this is not possible due to our simple

information structure .

6. Discussion

By implementing a BDM mechanism we succeeded to study subjects’ probability

formation less crudely than it was done in former cascade experiments, where

conclusions were just derived from the observation of urn predictions. We are now

able to investigate cascade behavior in more detail of subjects who always predict

in line with the standard BHW model. We show that even if their prediction

behavior seems to con…rm updating behavior as assumed by the BHW model,

BHW subjects do not update information in accordance to it. Furthermore, the

observed price patterns cannot be explained by the incorporation of prediction

errors in the standard BHW model nor by heuristics identi…ed in former cascade

experiments.

It is not possible to identify one certain updating rule from our data since

there are at least two possible explanations for the observed price patterns. From

our data we …nd, that BHW subjects increase price limits up to position 4. It is in-

teresting, that towards later cascade positions prices seem to decrease. Obviously,

when deciding at cascade position 1 to 4 subjects trust the additional information
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revealed by the predictions of their predecessors. They do not recognize that no

information aggregation takes place from cascade position 3 on. When deciding

at later cascade positions BHW subjects start to distrust the additional infor-

mation provided by the predictions of their predecessors. From our data we get

some hints that at very late cascade positions subjects seem to realize the way of

information aggregation as assumed by the standard BHW model and lower their

prices accordingly. However, this is just one possible explanation of our data.

One could also assume that subjects doubt their predecessors’ decisions at early

cascade positions and, therefore, need the public signals of at least three predeces-

sors to be totally convinced. Further experiments that allow for the observation

of longer cascades have to be run in order to prove which explanation turns out

to be right.

The data we provided for subjects not always predicting in line with BHW

can give some hints for further analyses but cannot be used to study applied

updating rules since we cannot identify them. In order to study also the updating

behavior of those subjects, it is necessary to implement a subtler information

structure. This allows to subdivide subjects in homogenous groups on basis of

the observed prediction behavior. Therefore, the implementation of a subtler

information structure by keeping the design simple and clear will be the challenge

of future experiments.
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