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Abstract

A bootstrap methodology for the periodogram of a stationary process is proposed which
is based on a combination of a time domain parametric and a frequency domain non-
parametric bootstrap. The parametric fit is used to generate periodogram ordinates that
imitate the essential features of the data and the weak dependence structure of the pe-
riodogram while a nonparametric (kernel based) correction is applied in order to catch
features not represented by the parametric fit. The asymptotic theory developed shows
validity of the proposed bootstrap procedure for a large class of periodogram statistics. For
important classes of stochastic processes, validity of the new procedure is established also
for periodogram statistics not captured by existing frequency domain bootstrap methods
based on independent periodogram replicates.

AMS 1990 subject classifications: Primary 62G09; secondary 62M10

Key words: Bootstrap, periodogram, nonparametric estimators, ratio statistics, spec-
tral means.



1. Introduction

Consider a strictly stationary univariate process X = (X; : t € Z = {0,£1,£2,...}) and
assume that X; has the representation

Xy =0) e, , tel (1.1)
v=0

where {a,}, ap = 1, is an absolute summable sequence, {¢;} is a sequence of indepen-
dent, identically distributed random variables with mean zero and unit variance and o a
positive constant. Assume that we have observations X7, Xs, ..., X;, of the process X at
hand. Statistical inference in the frequency domain is commonly based on the so-called
periodogram I,()\),

Z X e—z)\t

which is known to be an asymptotically unbiased but not consistent estimator of the
spectral density f of the process X .

; A€ [0, 7] (1.2)

27rn

Because of (1.1) and assumption (A1) below f has the representation

2

f\) = “—; 1+ f: ae A Ae0,7] . (1.3)

In the sequel we require in some cases invertibility of {X;} which narrows the class (1.1)
a little bit. Invertibility ensures that the process {X;} can be represented as a one-sided
infinite order autoregressive process

Xt = Zath_y+U‘€t, te”Z (14)
v=1

where {a,} is an absolute summable sequence.

Methods of bootstrapping the periodogram I,,()\) have attracted considerable attention
in recent years. Compared to time domain bootstrap methods, the appeal of frequency
domain methods lie on the fact that for a huge class of stochastic processes, the observed
series X1, Xo,...,X,, can be transformed into a set of N = [n/2] nearly independent
statistics, the periodogram ordinates at the so-called Fourier frequencies \; = 27j/n, j =
0,1,2,...,N. Since for A\; € (0, 7) the mean and the variance of I,,();) are approximately
equal to f (A;) and f*( j) respectively, bootstrap methods designed for a nonparametric
regression setup with independent errors can be potentially applied to bootstrap the
periodogram.

For Gaussian processes, frequency domain bootstrap methods have been considered among
others by Nordgaard (1992) and Theiler et al. (1994). Using the property that the relation
between periodogram and spectral density can be approximately described by means of
a multiplicative regression model, Franke and Héardle (1992) proposed a nonparametric
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bootstrap method based on an initial (nonparametric) estimate of the spectral density f
and i.i.d. resampling of (appropriately defined) frequency domain residuals. Franke and
Hérdle established asymptotic validity of their method for nonparametric (kernel) estima-
tors of the spectral density while Dahlhaus and Janas (1996) extended the validity of this
bootstrap procedure to the class of the so-called ratio statistics and to Whittle estimators.
An alternative idea to bootstrap the periodogram has been proposed by Paparoditis and
Politis (1999). Their method uses smoothness properties of the spectral density f and
the periodogram replicates are obtained by locally resampling from adjacent periodogram
ordinates.

The independence of the bootstrap periodogram ordinates is an essential feature of the
bootstrap procedures mentioned above that restricts the classes of statistics to which
the existing methods can be successfully applied. Loosely speaking, validity of the above
nonparametric bootstrap procedures can be established only for periodogram statistics
for which the weak and asymptotically vanishing dependence of the periodogram ordi-
nates does not affect their large-sample distribution. Nonparametric estimators and ra-
tio statistics have this property; cf. Franke and Hérdle (1992) and Dahlhaus and Janas
(1996). However, there are other interesting classes of periodogram statistics for which
the dependencies of the periodogram ordinates sum up to a non vanishing contribution.
For instance, Dahlhaus (1985) investigated the following class of integrated periodogram
estimators

AN (1.5)

for some appropriate defined functions ¢ on [0, 7]. The following are some special cases
covered by (1.5).
Example:

(i) ¢(A) = 2cos(Ah) , h € N, , leads to the empirical autocovariance 4,(h), since

T n—h
[ 2cos(Mh) 1, () = % S X Xoon = 4n(h)
0

t=1

which is a consistent and /n—consistent estimate of the true underlying autocovariance
’Y(h) = EXtXt—I—h .

ii) () = 1194(A) , € [0, 7] leads to the integrated periodogram
[0,2]

which consistently estimates the spectral distribution function F(x) = [5 f(A\)dA .

Again from Dahlhaus (1985) it is known, that under suitable assumptions the asymptotic
distribution of

Va ([T enmar = [T (1.6)



is Gaussian with mean zero and variance given by

27r/: 2 () F2(\)dA + ks (/7r ap(/\)f(/\)d)\)Q (1.7)

where £, is the fourth cumulant of €;. Note that instead of (1.5) a discretized version may
also be used. Discretization of the integral is usually done along the Fourier-frequencies
Aj =2mj/n,j =0,1,...,N. This leads to the following discrete version of (1.6)

= i PO 0) — )} (1.9

Under some smoothness assumptions on ¢ the difference of (1.6) and (1.8) is asymptoti-
cally negligible.

A modification of the Franke/Hardle frequency domain bootstrap has been proposed
by Janas and Dahlhaus (1994) in order to deal with the periodogram estimators (1.5).
However, their method is based on a direct estimation of the fourth order cumulant of
the error process which requires nonparametric estimation of functionals of the spectral
density of {X;} and of the squared process {X?}.

In this paper we introduce a new bootstrap procedure for the periodogram which is based
on a combination of a parametric time domain and a nonparametric frequency domain
bootstrap. The essential feature of the new bootstrap proposal is the following: For peri-
odogram statistics for which the dependence of the periodogram ordinates does not affect
their asymptotic distribution, the bootstrap procedure proposed ‘works’ under the same
set of process assumptions as those required for the aforementioned fully nonparamet-
ric methods. Furthermore, for stochastic processes possessing representation (1.4), our
procedure leads also to asymptotically valid approximations for more general classes of
periodogram statistics including those given by (1.5).

It is mentioned above, that in case we are interested in ratio statistics, i.e.

Jo e In(A)dA
JF LYy

(1.9)

only, the usual frequency domain bootstrap of Franke and Hardle works asymptotically.
The reason is that the asymptotic distribution of a ratio statistics, which is again a
normal distribution, does not depend on the fourth order cumulant of oe;. In this case
the asymptotic variance for ratio statistics is equal to

27r/07r W2 f? d/\/(/ FAN* (1.10)

where 1 = ¢ [ f — [@f (cf. Dahlhaus and Janas (1996), p.1939). Nevertheless we think
that the autoregressive aided frequency domain bootstrap presented in this paper also may
outperform the finite sample behaviour of the standard frequency domain bootstrap for
ratio statistics because the dependence structure of the periodogram ordinates is mimicked
to a certain extend in our bootstrap proposal. The standard frequency domain bootstrap



of Franke and Hardle treats the periodogram ordinates as independent random variables,
which they are only asymptotically.

To describe the basic idea behind our procedure recall first that under certain assumptions
on the moment structure of the error process and the rate of decrease of the coefficients
{a,} in (1.1) (see assumptions (A1) and (A2) in Section 6), we have

E(I(A;)) = f(X) + O(n™1) (1.11)
and
f2(0) +0(n™) for j =

Cov(I(\), Tn(M)) = (1.12)

T FONFOR (= =8) +o(n™)  for j#k;

cf. Brillinger (1981).
Consider next the autoregressive process X = {X, : t € Z} defined by

P
Xt = Z U/V(P)Xt,,/ —+ U(P) gt (113)

v=1
where a(P) = (a1(P), ax(P),...,ap(P)) =T(P)'yp, T(P) = (Y(i — 7))ije12..p, Yp =
(v(1),7(2),...,7(P))" and & is an i.i.d. sequence with mean zero and unit variance. Let

o?(P) = y(0)—a(P) T~!(P)a(P) and assume that F(£}) < co. Note that T'(P)~! exists for
every P € IN provided v(0) > 0 and y(h) — 0 as h — oo; cf. Brockwell and Davis (1991),
Prop. 5.1.1. Furthermore, a(P) is the vector of coefficients of the best autoregressive fit
in Lo-distance, i.e., the coefficients (a1(P), as(P),...,ap(P)) are defined uniquely as the
argmin of the norm E(X; — ¥ X, )2

Let far(A) = 0%(P)|¥ar(e~™)[% be the spectral density of X, where W p(z) = 1/(1 —
>0 1a,(P)z”) =@ 1/Ap(z), and consider random variables Y,(};), 7 = 0,1,2,..., N,
defined by

Ya(Aj) = a(A\)1n(A) (1.14)
where
_f
q(A) = Fan Y (1.15)

and fn()\)v:L%m)_iZ?:l )A(;Exp{—i)\t}ﬁ ie., I,(\) is the periodogram based on obser-
vations X, Xy, ..., X, from X. Since the periodogram I,,(\) satisfies (1.11) and (1.12)
with f replaced by far and E(e})/c* replaced E(&1)*/o*(P) we get using (1.15) that

E(Ya(N)) = f(N) +O(n71) (1.16)
and
f2(0q) +0(n™) for j=

COV(Yn()‘J)’Yn(Ak)) = (1'17)
n NSO (Sigpy —3) ol ™) for Gk




Furthermore, and as for the ordinary periodogram ordinates, for a set of frequencies 0 <
AL < A < --- < Ay < 7 therandom vector (Y, (A1), Ya(A2), ..., Yn(/\m))' is asymptotically
distributed as a vector of independent and exponentially distributed variables, the sth
component of which has mean f()\,) and variance f2(\;).

Since the random variables Y;,();) resample closely the random behavior of the peri-
odogram ordinates I,();) the above results suggest the following: If the (asymptotic)
distribution of a statistic based on I,();) is not affected by the dependence of the pe-
riodogram, then this distribution can be well approximated by the distribution of the
corresponding statistic based on the random variables Y;,(}\;). Furthermore, if E&t/o*(P)
is close to Fe}/o* such an approximation will be also valid for periodogram statistics for
which the dependence of the periodogram ordinates affects the asymptotic distribution
of interest. We expect this to be true since in this case, and as equation (1.17) shows,
the covariance of the random variables Y;,();) mimics correctly also the covariance of the
corresponding periodogram ordinates I,,(A;). An important case where this is true is the
case where the underlying process X belongs to the infinite order autoregressive class
(1.4) and the order P of the autoregressive approximation increases (at an appropriate
rate) as the sample size n increases.

An implementation of the above idea for bootstrapping the periodogram is presented in
the next section. We mention here, however, that the basic idea underlying the bootstrap
procedure proposed in this paper, which combines a parametric autoregressive approx-
imation of the process X with a nonparametric ‘correction’ function ¢ to resample the
stochastic behavior of the periodogram I,,()), can be also applied using parametric classes
of processes other than the autoregressive one. For instance, we could also had considered
a finite order moving average approximation of the process X and define, in a similar
way as in (1.15), an appropriate correction function g. This will make a restriction to the
process class (1.4) for statistics like those given in (1.5) superfluous. However, we rely in
the following on the autoregressive approximation because it is a computationally easier
and faster technique which is successful in many situations; cf. Berk (1974).

The paper is organized as follows. Section 2 describes in detail the proposed bootstrap pro-
cedure. Section 3 deals with applications of this procedure in approximating the sampling
behavior of the so-called ratio statistics and of spectral means while Section 4 deals with
nonparametric estimators in the frequency domain. In Section 5 some practical issues are
discussed and a small simulation example is presented. The technical assumptions needed
are stated in Section 6 while the proofs of the main theorems as well as of some technical
lemmas are deferred to Section 7.

2. The Bootstrap Procedure

Based on the motivation given in the introduction, the bootstrap procedure, which is
investigated in this paper can be described along the following five steps

I: Given the observations Xj, ..., X,, we fit an autoregressive process of order P, where
P may depend on the sample.



I1:

II11:

IV:

V:

This leads to estimated parameters a;(P),...,ap(P) and &(P), which are usually
obtained from the common Yule-Walker equations; cf. Brockwell and Davis (1991).
Consider the estimated residuals

P
ét:Xt_Z&U(P)Xt_V’ t=P+1,,n

v=1

and denote by F,f the empirical distribution of the standardized quantities ép 1, ..., €x,
i.e. F)Y has mean zero and unit variance.

Generate bootstrap observations X", X5, ..., X, according to the following au-
toregressive model of order P

P
X = a(P)X;", +6(P)-¢f ,
v=1

where (&) constitutes a sequence of i.i.d. random variables with cumulative distri-
bution function F¢ (conditionally on the given observations Xi, ..., X,).
The bootstrap process X = (X;" : t € Z) possesses the following spectral density

-2

P
> a,(P)e ™ , xel0,n].
v=1

52(P

far(A) =

Note, that if we make use of the Yule-Walker parameter estimate in Step 1 then it
is always ensured that fag is well-defined, i.e. the polynomial 1 — > a,(P)2” has
no complex roots with magnitude less than or equal to one. Moreover, in the case of
Yule Walker-estimates, the bootstrap autocovariances v*(h) = EYX{" X}, , h =
0,1,..., P coincide with the empirical autocovariances 4, (h) of the underlying ob-
servations.

Compute the periodogram of the bootstrap observations, i.e.

, A€ 0,7 .

Z X+ —z)\t

27m

Define the following nonparametric estimator ¢

5 — i > A=A In()‘j)
qA) = —~ j__NK( - ) FaOh) Ae 0, .

Here, and above, the \;’s denote the Fourier frequencies, K : [—m, 7] — [0, 00)
denotes a probability density (kernel), and h > 0 is the so-called bandwidth.

Finally, the bootstrap periodogram I} is defined as follows:

IO) = gNIF (V) , e lo,] .



Some remarks are now in order. Although the theory developed in the next sections allows
for a data-dependent order P to be as flexible as possible a nonparametric correction in the
final step is introduced in order to catch data-features, which can or are not represented
by the autoregressive fit. This nonparametric correction is done via the function ¢ and
there are several reasons justifying its use. First of all the nonparametric correction in
steps 4 and 5 makes the proposed bootstrap procedure applicable to a more general class
of stochastic processes than the purely autoregressive bootstrap. As will be seen in the
next sections, this is in particular true for periodogram statistics based on realizations of
the process (1.1) which can not be captured by the purely autoregressive bootstrap, i.e.,
by the corresponding statistics based on the pseudo-periodogram values I,/ (A). On the
other hand, the parametric approximation makes the new procedure more general than the
nonparametric Franke/Hardle bootstrap procedure. This is true since the new procedure
leads to asymptotically valid approximations for a larger class of periodogram statistics
than the Franke/Hérdle procedure if the underlying process belongs to the important
infinite order autoregressive class (1.4). Finally, and as in the spirit of the so-called pre-
whitening idea in nonparametric spectral density estimation (cf. Press and Tukey (1956)),
we expect an improved behavior of the spectral density estimator ¢+ far (implicitly) used
by our bootstrap procedure. If, for example, the true underlying spectral density has some
dominant peaks, then pre-whitening leads to a considerable improvement of the estimator.
The reason is that an autoregressive fit is really able to catch the peaks of the spectral
density rather well and the curve I,,(\)/far(}) is much smoother than I,()), thus much
easier to estimate nonparametrically.

To elaborate on the differences between the nonparametric bootstrap procedure of Franke
and Hérdle (1992) and the autoregressive aided periodogram bootstrap proposed in this
paper, recall first that under the assumptions of the paper and the definition of ¢, we have

L () = 2mq(Aj) far(Nj) Tne(Ag) + Rn(Ny) (2.1)

where I, .(A) denotes the periodogram of the i.i.d. series €1, €9, ...,&, and the remainder
R,(\;) satisfies max; E(R,(\;))? = O(n!); cf. Brockwell and Davis (1991), Prop. 10.3.1.
Furthermore, by Lemma 7.2(ii) and the fact that I*(\) = ¢(A)L()), a similar expression
can be obtained for I:(};), i.e., we have

A~

I (A;) = 2mG(Ag) far(N) Inex (Ng) + Ry (X)), (2.2)

where I, .«(\) denotes the periodogram of the i.i.d. series €},¢5,. .., and the remain-
der R} ()\;) satisfies max; E*R2()\;) = Op(n™1); cf. lemma 7.3. Note that the I, .«();)
are not independent. Finally, recall that the bootstrap periodogram ordinates of the
Franke/Hérdle bootstrap procedure are given by I*(};) = fh()\j)U; where f,(\) =
(nh)™' SNy K((A=X;)/h)I.(X;) and U} is an i.i.d. sequence based on the rescaled resid-
uals U; = I,()\;)/f();). Thus, the Franke/Hirdle bootstrap differs from the autoregressive
aided bootstrap not only by the independence of the generated bootstrap periodogram
ordinates I*(\;) but also by the estimator of the spectral density f used. In particular,
in the autoregressive aided periodogram bootstrap the kernel estimator fh is replaced by
the (implicitly used) autoregressive aided spectral density estimator f =q- fAR. Note



that equations (7.27) and (7.28) imply that for P € N fixed this estimator is uniformly
consistent, i.e.,

sup |f(A) —f(N)| = 0

A€[0,7]
in probability.

3. Spectral Means and Ratio Statistics

The bootstrap analog of (1.6) now reads as follows

Vi ([Tenar = [T ea fam(da) - (3.1)
Alternatively, we may, as above, consider the following discretized bootstrap statistic
2r X . ) .
/i 25 #) (2 0) = 40) far(Ay)) dA (3.2)
We can now show the following theorem, which states that our bootstrap procedure works.
Theorem 3.1 (i) Assume (B1)-(B2) and (A2)-(A7). Then we have (in probability)
£ [va ([[endn = [T eao famir) [, X (33)
™ s 2
=N (0,%/ 02 F2d\ + Ky (/ <pfd)\> )
0 0
(ii) Assume (A1)-(A7). Then we have for all fited P € IN that the same assertion as in
4
(i) holds true with k4 replaced by k4(P) = E (Xp P, a,,(P)Xp_,,) Jo(P)*—3.

From Dahlhaus and Janas (1996) it is known that the standard frequency domain boot-
strap works for the so-called ratio statistics (cf. (1.9)). Thus it is worth to study the
behaviour of our autoregressive aided frequency domain bootstrap for such statistics.
From Theorem 3.1(i) it is clear that under the assumptions of this part of the theorem
our bootstrap proposal works for ratio statistics. More interesting is the question whether
the autoregressive aided frequency domain bootstrap works for ratio statistics even if we
keep the order P of the autoregressive fit fixed. To this end observe that we have as in
Dahlhaus and Janas (1996)

i (f(f PN NAA w(A)@(A>fAR(A>dA)

Jy TrdA ST () Far(A)dA
T cifARZl/Aﬁf I*d\ /ow PV NAA, (3.4)

with ¥(A) = ©(\) [ {fard) — [ @Gfard) . Since [¥¢fard\ = 0 (which implies that
also the limit [ f d\ is equal to zero and therefore from Theorem 3.1 (i) that the
asymptotic distribution does not depend on fourth order cumulants) we immediately
obtain the following corollary.



Corollary 3.1 (i) Assume (B1)-(B2) and (A2)-(A6). Then we have (in probability)
I eNL NN [7 o(A)d() farn(A)dA
el (S s ) ] &
= N (0,27 [0 0aM( [ £an)!) |

where P(A) = ©(A) [ f(u) du— [(u)f(u) du .

(ii) Assume (A1)-(A6). Then we have for all fited P € IN that the same assertion as in
(i) holds true.

Thus, in both cases the limiting normal distribution in the bootstrap world coincides with
the limiting distribution of ratio statistics (cf. (1.10)).

4. Nonparametric Estimators

An interesting class of spectral density estimators is given by

f)=— ¥ K(=2) L) (41)

where K (-) is the kernel and b = b(n) the bandwidth. In the following we are interested
in estimating the distribution of the statistic

Vb (F(0) = FOV). (4.2)
For this, the bootstrap statistic
Vb (f*(2) = F(V)) (4.3)

can be used, where

FO = X KSR (1.4
and B R
FA) = a(N) far(N). (4.5)

The following theorem shows that if the underlying process satisfies (1.1) then the pro-
posed bootstrap procedure works. For this and in order to metrize the distance be-
tween distributions, we use in the following theorem Mallow’s dy metric on the space
{P : P probability measure on (IR, B), [ |z|*dP < oo}. This metric is defined according
to dy(P1, Py) = inf{E|Y; —Y5|?}/2 where the infimum is taken over all real-valued random
variables (Y7, Y5) which have marginal distributions P; and P, respectively; cf. Bickel and
Freedman (1981) for more details.



Theorem 4.1 Suppose that assumptions (A1)-(A6) and (A8)-(A9) are satisfied. Then
we have for all fired P € IN that

(i) If nb® — 0 then
do{ L(Vb (F(X) = F(V))) L(Vb (f*(X) = FV))| X1, Xa, -, Xp)} =0

in probability.

(ii) If b~ n~Y%> and nh® — oo then the same result as in (i) holds true.

To elaborate on the assumption nh® — oo needed in the second part of the above theorem
note that if nb® — 1 then the bias E(f(\)) — f()) of the nonparametric estimator (4.1) is
asymptotically not negligible. It rather converges to (1/47)f" (\) [ u*K (u)du as n — oo;
cf. Priestley (1981). In order to provide a valid approximation of the distribution of
Vnb(f(X\) = f())) in this case, too, the bootstrap has to be able to estimate the bias term
correctly. The condition nh® — oo implies that h tends to zero slower than b, i.e., G(\)
should be somewhat smoother than the optimal (with respect to minimizing the mean
square error) kernel estimator of ¢q. Therefore, the above assumption can be interpreted
as an over-smoothing assumption, which is common in applications of the bootstrap to
approximate the bias in nonparametric estimation; cf. Romano (1988), Franke and Hérdle
(1992), and Paparoditis and Politis (1999).

5. Practical Aspects and Numerical Examples

In this section we study and compare the performance of the proposed autoregressive aided
periodogram bootstrap, that of the autoregressive bootstrap and of the nonparametric
periodogram bootstrap proposed by Franke and Hérdle (1992).

In order to make such a comparison we choose in the following a statistic for which
all three methods lead to asymptotically correct approximations but no one of them is
expected to have a particular advantage. To be more specific we study and compare the
performance of the three aforementioned bootstrap methods in estimating the standard
deviation &7 of the first order sample autocorrelation p, (1) = 9, (1) /9. (0) where 4, (h) =

n~! Y M(X; — X)) (Xyyn — X) is the sample autocovariance at lag h and X = n~! Y7, X;.
Realizations of length n = 50 from the model

Xt =&+ 96,5_1

with 8 = 0.95 and ¢; ~ N(0, 1) have been considered.

To estimate the exact standard deviation of p,(1), 1000 replications have been used while
the bootstrap approximations are based on B = 300 bootstrap replications. All three
methods have been applied by using nonrandom as well as data driven choices of the
bootstrap parameters. In particular, the performance of the autoregressive based and
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autoregressive aided method has been studied for three different choices of the autore-
gressive order P and a choice of P based on the AIC criterion, i.e., the order P47 which
minimizes the function AIC(P) = argminp{6?(P) - (1 + 2P/n)} over a range of values
P =1,2,..., Py, where P, = 10 - log,y(n). Similarly, the nonparametric frequency
domain bootstrap has been applied using three different choices of the smoothing param-
eter h and a choice of h based on the cross validation criterion of Beltrao and Bloomfield
(1987). Recall that in the Franke/Hzrdle bootstrap, h is the bandwidth used to obtain f,
which is a kernel estimator of f. According to this criterion we select ~ as the minimizer
of the function

v = 53 {los -0 + f”—a))} (1)
where
o= 3 K (252 Roy) 6:)

and N; ={s: —N <s <N and j—s# +jmodN}. That is, f_j is the kernel estimator
of f when the jth periodogram ordinate is deleted. This cross validation criterion has been
also applied to choose the smoothing bandwidth A used to estimate the nonparametric
correction function ¢(-) of the autoregressive aided periodogram bootstrap. In this case
the periodogram I,,()\) appearing in (5.1) and (5.2) has been replaced by I,,(A)/far(A).

The results are summarized in Table 1 where the mean value, the standard deviation
and the mean square error of the three bootstrap approximations are reported as sample
moments over 200 simulations.

Please insert Table 1 about here

As the entries of Table 1 show, the results of the autoregressive aided periodogram boot-
strap compare favorable with those of the other two methods. In particular and compared
to the nonparametric bootstrap we observe an overall decrease in the mean square error
of the new bootstrap estimator. The table shows also a decrease in the variability of the
mean square error of the autoregressive aided periodogram bootstrap compared to that of
the purely autoregressive bootstrap over the different choices of the bootstrap parameters,
i.e., the autoregressive order P. As this table confirms, this decrease is mainly due to a
reduction of the bias of the bootstrap estimator which is caused by the nonparametric
correction applied. The results based on the new bootstrap procedure seem also to be less
sensitive with respect to the choice of the corresponding bootstrap parameters, which is
probably due to the frequency domain nonparametric correction via the function ¢. The
effect of this nonparametric correction is clearly seen in comparing the results of the au-
toregressive aided periodogram bootstrap to those of the purely autoregressive bootstrap
for the case P = 1.
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6. Assumptions

(A1) {Xite Z} is a real-valued process
o
Xy=o0- Z A€t v, ap =1,
v=0

where 320 12|, | < 0o and {e;t € Z} are independent and identically distributed
random variables.

(A2) Eeg =0, Ee2 = 1 and Ee} < oo. Furthermore, o € (0,00) and k4 denotes the
fourth order cumulant of &; .

(A3) The spectral density f of {X;} is Lipschitz continuous and satisfies infcp.] f(A) >
0.

(A4) K(z)= (2m) ' [* k(u)e “du where k(u) is a nonnegative, continuous and even
function with £(0) = 1, k(u) = 0 for |u| > 1 and [ k*(x)dz < oco.

(A5) h — 0asn — oo such that nh — oo.

(A6) b— 0 as n — oo such that nb — oo.

(A7) ¢:[0,7] = IR is a bounded function having bounded variation.

(A8) The spectral density f of X is three times continuous differentiable on [—, 7].

(A9) K is three times continuously differentiable on [—m,7].
(B1) {Xyte Z} is a real-valued process
X = Z ay Xi—y + O¢&y,

v=1

where >0, \/v|a,| < oo and 1 —30°, a,2” # 0 for all complex z with |z]| < 1.

(B2) P(n) € [pmin(n), Pmax(n)] where ppin(n) — 0o as n — oo and pm"(”%

bounded. Observe that this means that P(n) may be chosen data-dependent.

stays

7. Proofs and Technical Lemmas
Let us collect some properties of the process X+ under the assumptions (B1) and (B2). For

all n large enough the process X+ possesses the following moving average representation

o0

12



The coefficients (&,(P) : v € IN,) can be computed as follows (G4o(P) = 1):

-1

P 0
<1 -y &,,(P)z”) =14+ &/(P)z" forall |z| <1. (7.1)
v=1

v=1

From Lemma 8.3, Kreiss (1999), we have that uniformly in v € IN

~ P
|O{,,(P) - a/u(P)| S molg(v IOgTL/TL) ) (72)

where (a,(P) : v € IN) is exactly defined as (4, (P) : v € IN), cf. (7.1), with a,(P)
replaced by a,(P),v =1, ..., P.
Furthermore we have

o o0

> law(P) = aw| < Op(_ lay]) = op(1) - (7.3)

v=0 v=P

Finally this implies for the autocovariances of the process X™:

vH(k)=ETX X}, = i &1k (P)éy,(P)6*(P) , k € IN, , (7.4)
and
5 1) = 0n(1) 75)

This absolute summability of the autocovariances of the process X* implies (by Kro-
necker’s lemma, cf. Bauer (1974), Lemma 61.1)

=Y Kl ()] = op(1) (7.6)

In case we do not have an autoregressive representation of the underlying process X, but
only the infinite order moving average representation, i.e. (A1) and (A2) hold true, and if
we additionally assume that P is a fixed integer, then the behaviour of the bootstrap pro-
cess X is much easier. It is well-known that the autocorrelations (k) = 4(k)/4(0) ,k =
1, ..., P are y/n-consistent. This implies that the autoregressive coefficients @, (P), ..., ap(P)
are y/n-consistent for a;(P),...,ap(P). Further, it is always true that 1 — Y, 4, (P)z" as
well as 1—3, a,(P)z* have no complex roots with magnitude less than or equal to one, cf.
Brockwell and Davis (1991), p. 240. Thus in this case the bound in (7.2) is just Op(1/y/n).
Of course (7.3) does not hold true, because P is fixed, but (7.4)-(7.6) are valid as stated.

Lemma 7.1 (i) Assume (B1), (B2) and (A2), f, f~' and f' uniformly bounded on |0, ],
h — 0 and nh — oo . Then we have for all X € [0, 7]

G(A) — 1 in probability .

13



Moreover .
/ 1G(A) — 1|dA = 0 in probability .
0

(ii) Assume (A1) and (A2), f, f~* and f' uniformly bounded on [0,7], h — 0 and nh —
oo . Then we have for all P € IN (fized) and all A € [0, 7]

G(A) — ¢()) in probability

and
/ 1g(A A)| d\ — 0 in probability ,
where q(A) = f(A)/far(A), of. (1.15).

Proof: Since the arguments are rather similar to those given for the consistency of the
smoothed periodogram we only give a sketch for the more complicated part (i).

From Kreiss (1999), especially formulas (8.4) and (8.8), we obtain

Here we make use of the representation

P

1-> a, (P)e™™*

v=1

A 2T
fAIlt()‘) = g

Together with the boundedness of f’ and f ! this leads to

8= 27 3 K (252 OO+ o)

where the vanishing remainder term does not depend on .
Finally it is well-known, that under our assumptions on the spectral density f and the
bandwidth A it holds that for all A € [0, 7]

XK (A i ) 1) oo IO

in probability. Moreover, under more restrictive assumptions, a uniform convergence in A
is available, but this is not required for our purpose.

To see the second assertion of (i) it suffices to show that

/onh

A=A m

> K (25A) @) - By

14



converges to zero in probability, because EI,(\) converges under our assumptions uni-
formly to f(X), cf. Brockwell and Davis (1991), Prop. 10.3.1. The variance of this last
expression is bounded by (use Brockwell and Davis (1991), Theorem 10.3.2)

/Oth2 2 (A A)Varl()\)d)\

A e

jal:_Nal;éj

O(nh) + O(nh?) = o(1) .

1
n2h? n2h?

Lemma 7.2 (i) Assume (B1) and (B2). Then we have Y3, V'k|&x(P)| < 00

(ii) Assume (A1) and (A2) and let P € IN be fived. Let a = (&, (P),dy(P),--.,ap(P))
be a \/n-consistent estimator of a(P) which satisfies 1 — X5_, @,(P)z" # 0 for \z| < 1.
Then

Zk‘s\ak )l =0p(1)

for any 6 € (0,00).
Proof: From Kreiss (1999), Lemma 8.3, we have that
S VEIa(P) — ax(P)| < 3°VE(L+1/P)*Op(/P*/nlogn)
k=0 k=0
< Op(y/P/nlogn) = Op(1) .

Thus, it suffices to consider
S Vk|a(P) — ax| and Y Vo] .
k=0 k=0

Y% VE|ag| < oo follows from (B1) and Hannan and Kavalieris (1986). In order to see
that the first series is convergent we obtain exactly along the lines of the proof of Lemma
8.2 in Kreiss (1999) that for all n large enough, i.e. P large enough

Z \/E‘O!k(P) — O./k| S C- Z \/E|(1,k(P) — ak| .
k=0 k=0
From Baxter (1962) we finally obtain that, again for all P large enough:
3 VE|ag(P) — a| < C"- " VE|ag| = 0p(1)
k=0 k=P

15



since 2%, Vk|ax| < co. This implies (i).

To see (ii) recall that 1 — >F_, az(P)zF # 0 for z < 1. Furthermore, for P fixed, € > 0
exists such that the power series (1 — Yf_, ax(P)2*)™! = 1+ X2, ay(P)2* converges for
|z| < 1+ e This implies that ay(P)(1+ €/2)* — 0 as k — oo, i.e., there exist positive
constants C > 0 and p € (0, 1) such that |ax(P)| < Cp* for k =1,2,.... Now,

S Klas(P) < 3 Flas(P) + X K a(P) - au(P).

Using Lemma 2.2 of Kreiss and Franke (1992) to bound the difference |ay(P) — oy (P)]
we get that for some constant 1 > 0,

ikﬂak(P)\+§:k5|&k(P)—ak(P)\ < 0(1)+§k5(1+n)—k0p(n—1/2)
= 0p(1).

Note that the last equality follows using the fact that the Op(n~'/2) term is uniformly in
k. n

Proof of Theorem 3.1: We prove part (i), only. First of all we show that we can restrict
our considerations to

NG / ) = BFLE(N) G0 dA. (7.7)

To see this, observe that I(A) = I,F(A)§(\) and that for all A € [0, 7]

I (\)

Z + —1iAt

27m

1
—%{ 0)+2- Z% ) cos( /\k)}

where 4,7 (k) = 2 S XX k=0,1,2,...,n— 1.
We have Ewn (k) = (1 - 5E*X{ X)L, = (1 — Byt (k) k = 0,1,..,n — 1, far(\) =
2(P) 1= a,(P)e™* 2 and

52( -

e
*’LI/

;ﬂ{ 0)+2- Z'y ) cos Ak)}

Thus, in order to see that the difference of expression (3.1) and (7.7) is op(1) it suffices
to show (7.8) and (7.9):

Vi S 7 () [ o)) cos(Mk) dA = op(1) (7.8)
nfi (k) / " o(V)§(A) cos(Ak) dA = op(1) (7.9)
=

16



Boundedness of Y7_, vk|y* (k)| in probability, Lemma 7.1 and the absolute summability
of the Fourier-coefficients of ¢ imply (7.8) and (7.9).
(7.7) can be rewritten as

1

Zn = & (\/ﬁ(&;:(k) ~ B4 (k) 1 k=0,1,..,n— 1) (7.10)
T
!
(/ ) d), 2/ cosAk)dA:kzl,...,n—l) +op(1) .
From Kreiss (1999), Theorem 3.1, for each fixed K € IN, we have that
£ (Vaf (k) = By (k) 1k =0,.., K|X1, ..., X,) = N(0, Vi), (7.11)
where
oo K
Vi = | (Bet = 3) 7)) + 3 (v(k)y(k — i+ ) + vk + 5)v(k — Z'))]
k=—00 i,j=0

Because of Lemma 7.1 we can replace ¢(-) in (7.10) by its limit 1. Denote by Z] the
quantity which is defined as Z,, cf. (7.10), with this replacement. For K € IN decompose
Z, into the following two quantities.

1

Znw = 5 (Vr(3f (k) = E*4f (k) 1 k=0,1,..., K) - (7.12)
(/ ) dA 2/ A) cos(\k) dA:k:L...,K)'.
and
Zh— Tty = % (Vi (k) — Y45 (k) tk =K +1,..,n—1)-  (7.13)

(/OWQO(A) cos(ME) dA ik = K +1,..,m — 1)T .

In order to obtain the asymptotic normality stated in the theorem we have to show (cf.
Brockwell and Davis (1991), Prop. 6.3.9):

Zhx = NO,7%)  forall KeN (7.14)
TE — 77 as K — oo (7.15)
and
hm limsup P™{|Z, — Z, x| >e} =0  forall > 0. (7.16)
K—o0o n—oo

(7.14) is a direct consequence of (7.11). (7.16) can be seen as follows:

E\Z, - Z), k| < Z (n\/ar 1/2 ‘/ Ycos(Ak) dA| .
k=K+1
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Since nVar™ (4,7 (k)) is bounded (in probability) uniformly in k¥ we obtain limsup,, _,, E*|Z! —
Z,, k| = op(1) , as K — o0, because of the absolute summability of the Fourier-coefficients
of .

It remains to show (7.15). In a first step it is easy to see that
00 2
2 _
Am e = E (2 pryr )

r=0
o0 00

+ 47r2 oY Gps{v(B)y(k—r+5) +y(k+s)y(k—r)},

k=—o0r,5=0

where
ka=Et—3, Go= /7r o(\)dA and @, = 2/7r o(A) cos(rA)dA, 7 > 1.
0 0

This concludes the proof of Theorem 3.1, since

™

/07r ©(A) f(A)dA = /0 ©(N) 21 { )+ 2 ny cos(Ar }d/\ = % é@ﬂ(r)

and
2m [* () £ ()ax
_ %i o [ cos(r) cos(s1) 150 +2§°:7 ) cos(kA)}F(A)dA
_ ﬁi"; i"; B {y(B)y(k =7+ 5) + Y (k)y(k + 7 +5)} |
_ %i ij vk —r+s)+y(k+s)y(k—7)},

where, for the last equality, we have used the following addition formula of trigonometric
functions:

cosacosbcosc= = (cos(a+ b —c) +cos(b+ c—a) +cos(c+a—b) + cos(a+b+c)) .

A~ =

Lemma 7.3 Assume (A1) and (A2). Then the periodogram 1,7 (\;) defined in Step III of
the bootstrap algorithm satisfies

. 2
1E0y) = 62(P) 14 3 au(P)e 7| L () + RE (), (7.17)
where max,, cjo..1 B*(R,}();))* = Op(n7").

n
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Proof: Let A = \;. Following the derivation of Brockwell and Davis (1991), p. 346, we
get for the discrete Fourier transform JF(\) of {X;} that

JF(\) =a(P)(1+ Z b, (P)e" ") Jo.(N) + o(P)Y,()) (7.18)
where ;
Jec(A) =n 2 ere ™ (7.19)
Y =n Y & (P)e MU, (N (7.20)
and

Z 8* —At Z‘S* —/\t (721)
t=1—

v

Since IT(\) = (2m)7YJF(A)|? we have obtained expression (7.17) and the remainder
R ()) is given by

RI(\) = 1+Zau Je ) (VY (=)
1+Zo¢u )€Y T (=AY, F(N) + 62(P) Y. F(V)2. (7.22)

Note that for P fixed, a(P) is a y/n-consistent estimator of a(P); cf. Dahlhaus and
Wefelmeyer (1996). Since E*(e7)> = 1 we get then using Lemma 7.2 and the bound
EX|UT,I* < 2lv|E*(e7)* + 12|v|?, see Brockwell and Davis (1991), p. 347, that
> 4
B, " < 0’ (X la(P)@Iv]E ()t + 12)v/*)*)
= Op(n72). (7.23)

Using expression (7.22) the assertion that maxy,epo.« E*(R}();))> = Op(n~') follows
then by the Cauchy—Schwarz inequality and taking into account Lemma 7.2, the fact that
E*|J(\)]? = (2r) ! and the bound (7.23). ]

To prove Theorem 4.1 we use the decomposition

Vb (f*(x \f K =2)a) (1 ) = B0 ()

~

(= S KO- AIE IO — i aey)  (724)

j=—N

= LN+ B0

where Kj(-) = b 'K (-/b) and an obvious notation for L*(\) and B} ()). The following
two lemmas can then be established.
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Lemma 7.4 Assume (A1)-(A6) and let P € IN be fized. If n — oo then
dy(L(Vnb (F(0) = B(f(V)), L(L;(N)[X1, Xo, ., Xp)) =0

in probability.

Proof: Since convergence in the dy metric is equivalent to weak convergence and conver-
gence of the first two moments (cf. Bickel and Freedman (1981), Lemma 8.3) it suffices
to show that

(L7 (\)2 = 72()) = fz()\)% [ K@) (7.25)
and
L(LX(N)| X1, Xa,...,X,) = N(0,72())) (7.26)

in probability. Recall that nbVar(f(A)) — 72(A) and vnb (f(A) — Ef())) = N(0,72(\));
cf. Anderson (1971), for a different but asymptotically equivalent estimator.

Consider first (7.25). We have

BN = 25 KO = M@0 Bl B (e () — 12 + Op(b)

n ;N
_ i / K2(\ — x) §(2) 2 (z)dz + Op (b)
- fAR /K2

in probability, by the continuity of the functions ¢ and f4r and the uniform convergences

sup |fAR()\) — far(AN)| — 0 (7.27)
A€E[0,7]
and
sup [G(A) —g(A)|[ —0 (7.28)
A€[0,7]

in probability. To see (7.27) and (7.28) recall that for P fixed, a(P) is a /n-consistent es-
timator of a(P). By a standard Taylor series argument and the continuity of the derivative
it is easily seen that

sup |far(\) — far(\)| = Op(n~'/?).

A€E[0,7]

By the above equality and because supjjo - [(far(N) ™' = Op(1) we get

Z K(A hA )fAff(A]J)) + Op(n~17?), (7.29)

where the Op(n~'/2) term is uniformly in A € [0,7]. The uniform consistency of the

first term on the right hand side of (7.29) as an estimator of ¢ follows then by standard
arguments, cf. for instance the proof of Theorem Al of Franke ad Hérdle (1992).
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We next show (7.26). For this note first that by Lemma 7.3

[ZK,,A AR (A = 0p(VD)

and, therefore,

\F Z KA = A)F(A) (Tnes (A7) = 1) + 0p(1). (7.30)

Now instead of the first term on the right hand sight of the above equality we consider in
the following the asymptotically equivalent statistic

Vb % /_ 7; Ky(A - ) f(2) (L () — 1) da, (7.31)

which appears by approximating the Riemann sum in (7.30) by the corresponding integral;
cf. Brillinger (1981), Th. 5.9.1. We then have

Vb %/_ZKb(/\—x f(x)(IE*(x) —1)dx
= \/_ / —ub)( ()\—ub)—l)du
= f( )F K (u) (L (A = ub) — 1)du + D ())

-7

where

D (A) = Vb % ™ K@) (FO = ub) — FO)) (T = ub) — 1)

Straightforward calculations yields that E*(D;f())) = 0 and E*(D;f()))* = Op(|f(A -
ub) — f(A)|?) = Op(b?), where the last assertion follows by the uniform convergence of f
and (A3).

Thus in order to establish the asymptotic distribution of L% () it suffices to consider the
distribution of the asymptotically equivalent statistic

AVnb — / (A=ub) = 1)du = FNLL,() (7.32)

with an obvious notation for L’Ln()\). Substituting in L} ,(A) the expression I-(A) =
Sl Yex(8) cos(sA), where 4.« (s) = n~t Y erer, . we get

L) = 2\/7%2 (% /_ 7; K (u) cos(s(A — ub))du) 4z (s)
% /: K(u)du

= 2\/7%712::1 (% /7; K (u) cos(sub))du) cos(sA)e+ (s) + Op(VD )

+v/nb(4.-(0) — 1)

= 2\/%712 k(sb) cos(sA)e«(s) + op(1)
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where the last equality follows by (A4). Using the definition m,, = [1/b] and substituting
for 4.« (s), the first term on the right hand side of the last equality above has the same
distribution as

n m

m—ns;k(s/mn) cos(sA)er(s) = \/—n; k(s/my,) cos(sA) 25t5:+s

1 nzl min{m,,n—t}
= Z ( > k(s/my) cos(s)\)ejsas).
s=1
Let
Wtfn = Z k(s/my) cos(sA)ejer,

Vm”s 1

and verify that

1 n—1 1 min{my,n—t} 3 1 . _
‘% tzzl (\/m—" Z k(s/mn) COS(S)\)Ets?H—S) B ﬁ tzzl Wtﬁ; = OP(\/%).

s=1

Since my,/n — 0 we can restrict or considerations to the statistic n='/2 7' Wit To
obtain the asymptotic distribution of this statistic, let I, = [/nm,|, M, = [n/l,] and
consider for j =1,2,..., M, the random variables

1
ZJT" = ﬁ (W(_;—l)ln—kl,n + W(_;—l)ln+2,n +...+ Wj_;n—mn,n) :
Note that E*(Z;,,) = 0 and E*(Z},)? = (1 —my /1) E(W},)?. Furthermore, by construc-
tion the ZJr ’s are independent since they are sums of nonoverlapplng segments of the
i.i.d. series 7,¢},...,¢5. It is easily seen that Y7 Wi, — VI, Y0 Z, = Op(M,my,,)
which implies that

1 n—1
E(— Wi — = Op(Mmpl;, Hso
(\/ﬁ ; t, Z ) P )

in probability by (A6) and the definition of l,. Now, since {Z},,,1 < j < Mp;n=1,2,...}
forms a triangular array of independent random variables and Var*(M; /2 ¥ ZF) =

Op(1), the desired asymptotic normality follows from Lyaponov’s condltlon (cf Shlryayev
(1984)) if we show that M2 >3 E*(Z},)* — 0. Note that

—Mnp ln Mn ln Mn ln Mn

B (Z{) =1, 2 Z Z > Z E* (W, W W W) (7.33)
s= r=1 q=

and using the definition of W;;Z , evaluation of (7.33) requires evaluation of the expecta-
tion E* (g1} 4, €55 4k, EvErtn Eaark,)- Evaluating this expectation using the independence
of & we get after some tedious calculations the following bounds for the different nonva-
nishing terms in (7.33):
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For the case where all indices are equal, i.e., the case t = s = r = ¢, we have

1 In—mp . ln _ mn . . Mn
l_2 Z E (Wt_,kn)4 12m2 {E (81)4 Z k4(s/mn) COS4(S/\)
n t=1 nmn s=1
Mn 9
+3(E" (1)) 7 (67)*( 20 K (s/ma) cos(s))) '}
s=1
< Op((ly — mp)l?m ) + Op((L, — ma)l2). (7.34)
There are four terms of the form
1 ln—mn lp—mn 5
l_2 Z Z E* ((Wt—f,n) Wt—;,n)
n t1=1 to=1,t1#t
1 In—mn ln—mn i Mn . 3
= 7 > Y E (Zk(sl/mn) cos(sl)\)etlet1+sl)
n'n t1=1 ta=1,t1#£t2 S1

X (3 k(s2/m) cos(s2)\)e7, e, 44 )

52

(B (e E (672 O (U= i)l = 1n = 1)y

<
- mpl?
. (ly = mp)(ly —my, — 1)
= Op( —r )- (7.35)
Furthermore, there are three terms of the form
1 ln—mn  ln—mn ) )
ey ()P wL)?)
n t1=1 to=1t1#t2
1 In o n * < 2 2 %2 %2
= 55 2 2 E(X K (s1/ma) cos’(s:0)ef el ss,)
n'n t1=1 ta=1,t1A4t S1
X ( >k (s2/ma) COS2(SQ)\)6:228:22+52)
$2
A (ln —mn)(ln — my — 1)
= (B of : )
= Op(1). (7.36)
Finally, there are six terms of the form
1 ln—mn ln—mn ln—mnp

l_2 Z Z Z E* ((Wt_f,n)QWt_;,nWt_:,n) (737)

n =1 ta=1 t3=1t1 £l ta#ls,t1 73

O((ln - mn)(lnl%— My — 1)mn)0P(m;1)

= Op(1), (7.38)

where the equality before the last one follows because there are (I, — m,)(l, — m, —1)m,
nonvanishing cases in evaluating (7.37) and

‘E*((Wt-i— )2W+ W+

1,7 to,n" " t3,n

)| < myt (B (e0)?) o).
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Now, (7.34), (7.35), (7.36)) and (7.38) imply that

which concludes the proof of the lemma. [ ]

Lemma 7.5 Assume (A1)-(A6), (A8)-(A9) and let P € IN be fized. If b ~ n'/> and
nh® — 0o as m — oo, then

]_ 1
BN~ =1 / WK (u)du
™
in probability.

Proof: Using Lemma 7.3 and the fact that [n~" 37_, K3(A—X;) = 1| = O(n~'b"") we get

B,(A) = \/g ; Ky(X = X)) (4N far() = 4N far(Y)
+O0p(n™?b7'/%) + Op(V0 )
. — A .
= fAR()‘)\/; _Z_ Ky(A = )\j)(CI(/\j) - Q()‘))
‘F\/E ; Ky(A = X) (%) = dN) (Far(Ny) = far(V)
\F Z Ky(A— \; )(fAR(A,-) —fAR()\)) + O0p(n~ 2712 + 0p(V)

= B;,(\)+B;,(\) + B;,(\) + Op(n /273 + Op(Vb ) (7.39)

with an obvious notation for B}, ()), i = 1,2,3. To establish the desired convergence it
suffices to show that

B = - fanNd' ) [ K (), (7.40)

B () — o= fieWd () [ oK (w)du (7.41)
and 1 i

Biu(N) = 1=FieWa) [ w’K(wdu, (7.42)

in probability since f'(A) = far(A\)g (A) + 2f1r(N)g (A) + f1r(A)g()). We proceed by
showing that (7.40) to (7.42) are true.
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To prove (7.40) note that by (A8) and a Taylor series expansion we get
b N

=D ACEPIVEHEYEY)

— )\ Aj — A A=y | Ta(Xs)

= n3/2b1/2h Z Z K( )lK( h )_K( h )] fAR()\s)
— Ay )‘j_)‘ ! /\_)\s In(/\s)
e 5, 2 KOG O

h
1 S A=A\ A = A\2 A= Ay L(X)
+_2n3/2b1/2hj:ZNs:ZNK( 2 7)( Jh )K< h )fAR()\s)

+0p(n'2677?). (7.43)

Now,

1 NN A=A\ A=A A= A5y In(Xs)
n3/261/2hj—ZNs—ZNK( b ) h K( h )fAR()‘)

N A — A=Ay L(A)
o [ KT 3 K (SR £ )
— op(1), (7.44)

using [uK (u)du = 0 and the fact that the second multiplicative term on the right hand
side of the equality before the last one is Op(1) because it converges to ¢ (\). Similarly,

A=A\ (A= A2 o A=Ay Tu(A)
n3/2b1/2h Z Z_ ( )( h )K( h )fAR()\s)

N Ay 1 & A=A L)
:Z_ R e D VR G wow

WK (u)du g (N), (7.45)

ﬂ\

§|H N | =
3

_)

3

in probability. Note that the last assertion follows using b ~ n~'/5 and because for nh? —
oo we have n ™ h=3 N K" (A — X)) /R) I (As)/ far(Xs) — ¢ (X) in probability.

Now, by (7.43), (7.44) and (7.45) and because far()\) = far()) + Op(n~/2) uniformly in
A, we obtain (7.40).

Since (7.41) and (7.42) follows using similar arguments we stress only the essentials.

For B, (\) we have using the differentiability of far(X) with respect to A and similar
arguments as in obtaining (7.43) that

—_
2
>/

B;.(A) = fir(d NS K( D) (A = V@A) — g() + op(1)
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SN—
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3
|
3

in probability. To show (7.42) we use a Taylor series expansion of fag();) around far(\)
and obtain

il A=A

Bial) = i) & K ()0 )
#R IR g 3 K50 0 o)

— q(A)fiiR(A)i :Tu K (u)du.

Proof of Theorem 4.1: Consider part (ii) of the theorem. By Lemma 8.8 of Bickel and
Freedman (1981), we can split the squared Mallows metric into a variance part V,?()\) and
a squared bias part b2()), where

V2 = d(L(Vb(F(\) — BF(N), LVnb(f* () = B f* ()| X1, X, -, X))

and
BL(A) =nb|(EF(\) = fF(N) = (B f*(N) = FO))[ -

By Lemma 7.4 and 7.5 we then have that V?(A\) — 0 and b2(A\) — 0 in probability. Part
(i) of the theorem follows by the same arguments but by ignoring the bias term. [
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Mean(57) SD(57%) MSE(67)x 103
Est. Exact 0.103
AR-Boot P=1 0.132 0.00748 0.8969
P=3 0.099 0.01466 0.2309
P=5 0.105 0.01525 0.2367
Parc 0.107 0.01640 0.2849
NP-Boot h=0.1 0.078 0.01635 0.8923
h=0.2 0.093 0.01897 0.4598
h=0.3 0.103 0.01807 0.3265
hev 0.099 0.01764 0.3314
ARAP-Boot P=1 0.104 0.01331 0.1781
P=3 0.101 0.01504 0.2302
P=5 0.105 0.01657 0.2785
Parc 0.106 0.01616 0.2701
Table 1:

Autoregressive Bootstrap (AR-Boot), Nonparametric Periodogram Bootstrap (NP-Boot)
and Autoregressive-Aided Periodogram Bootstrap (ARAP-Boot) estimates of the
standard deviation of the first order sample autocorrelation.
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