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Abstract 
A theoretical model is adopted in order to examine optimal fare and optimal 
quality of supply schemes for a transport operator. The analysis shows how 
fares and quality of supply are related to travel distance and to the transport 
operator’s weight on profit versus consumer surplus. Under reasonable 
assumptions imposed on the actual functions, it is found that the more 
weight the operator gives to profits, the higher the fare level and the higher 
the generalised travel costs. How the operator’s objectives influence the 
quality of transport and how travelling distance affects fares, quality of 
transport and generalised travel costs are ambiguous, and depend on the 
initial restrictions placed on the actual functions. The paper then investigates 
how different additional restrictions imposed upon the functions influence 
the results. The paper also examines the special case in which the quality of 
transport is exogenous to the transport operator. One important result then is 
that higher demands towards the transport operator regarding the quality of 
the transport supply do not necessarily reduce the transport users’ 
generalised travel costs. 
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THE INFLUENCE OF TRAVEL DISTANCE AND TRANSPORT OPERATORS’ OBJECTIVES 

ON FARES, TRANSPORT QUALITY AND GENERALISED TRANSPORT COSTS 

 

1. Introduction 

Several economists have been engaged in searching for optimal fares and optimal supply 

within different areas of public transport. Two of the pioneering works within this field are 

Mohring (1972) and Turvey and Mohring (1975) who, by taking an example for urban bus 

transportation, are considering both direct costs from bus operations and the passengers’ time 

costs in discussing optimal strategies in fare and supply management in transport route 

operations. In the spirit of Mohring’s work several similar analyses have been carried out 

since, see for instance Jansson (1979), Larsen (1983) and Jansson (1993). 

 

All the works mentioned above are searching for first best optimal policies regarding fares 

and services. Inspired by the seminal work of Baumol and Bradford (1970) on the theory of 

the second best, many authors have, however, been searching for optimal fare and supply in a 

context where financial constraints are to be fulfilled by the transport operator, see for 

instance Glaister and Lewis (1978), Hervik (1983), Jørgensen and Solvoll (1999) and Kolstad 

and Solvoll (2000). Additionally, Nash (1978), Glaister and Collings (1978) and Bøs (1978) 

are analysing optimal fare, supply schemes and financial results for the operators when they 

pursue other goals than social welfare maximisation; for example they aim to maximise profit, 

bus mileage or passenger mileage subject to a budget constrain. In order to reach the above 

objectives in practice, the operators offer more and more sophistic pricing and product 

differentiation schemes such that the capacity utilisation of the scheduled services will be as 

high as possible. Such yield management procedures are, in particular, well developed in 

scheduled flight services, see Button (1993) and Botimer (1996). 
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One specific problem that the operator faces when optimal management in transport route 

operations comes into practise is how should the fares and qualities of supply vary with the 

passengers’ travel distance. Often transport companies design fare and supply schemes for all 

their operations, where the fares and sometimes also the quality of supply vary with the travel 

distance rather than choosing fare and supplies on single distances or routes. It is also seen 

that in cases where public authorities have the opportunity to regulate transport operations, 

they claim that such fare and supply schemes should be developed and encompassed for all 

routes operated by the company. Also if a transport company is operating under free market 

conditions, it may find it advantageously to design fare and supply schemes that are related to 

travel distance in a uniform way.  

 

In Norway, some empirical works have analysed the actual relationships between fares and 

travelling distance for different modes of passenger transport; Ertkjern and Tausvik (1996) for 

bus transport, rail transport, regional air transport and fast–craft transport, Jørgensen and 

Solvoll (1999) for ferry transport and Kolstad and Solvoll (2000) for bus transport in different 

counties. Depending on mode of transport and range of travelling distance, all these works 

showed, as expected, that the relationships between fares and travelling distance were 

stepwise increasing or none convex continuously increasing. Broadly speaking, the analyses 

also showed, that travelling distance influenced fares more on fast modes (air transport) than 

on slow modes (bus transport). The same characteristics with the fare schemes are probably 

present for the majority of countries. Except for ferry transport where the Norwegian 

authorities control the fare schemes directly and where the fare level is the same all over the 

country, the authorities only regulate the operators’ fare level indirectly, by claiming that the 

practised fares must be sanctioned in advanced. 
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Neither of these works show, however, how the quality of the transport service and thereby 

individual resources spent on travelling, measured be generalised travel costs, vary with 

travelling distance; is, for example, the quality of the buses, ferries and planes better on long 

routes than on short routes? Common sense tells us that this would be the case, but no 

empirical works have, as far as we know, been undertaken in any country analysing this issue 

thoroughly. 

 

Although the travelling distance varies considerably among passengers on the same mode of 

transport and although the actual fares are highly related to the travelling distance, issues 

dealing with how fare and quality of transport services should be related to travelling distance 

are scarcely dealt with in both theoretical and empirical works. The bases for the latter 

assertion are the following: Firstly, no matter whether the operators aim to maximise profit, 

social welfare or pursue other objectives where cost effectiveness is important, finding such 

optimal relationships demands knowledge about the relationships between marginal costs and 

travelling distance for different levels of transport quality. Such relationships are, however, 

seldom estimated (Jørgensen and Preston, 2000); estimates on marginal costs are often 

average figures for all passengers and, thus, without the travel distance and quality 

dimensions. Secondly, when the operators have financial targets, designing optimal 

relationships between fare and transport quality on one hand and travelling distance on the 

other hand, also demands knowledge about how travelling distance influences the fare 

elasticity and transport quality elasticity with respect to demand. Very few studies have dealt 

with this problem too: see for example Button (1993) and Ippolito (1981) who concluded that 

the fare elasticity is likely to increase, in absolute terms, with the length of the journey. 

 



 

 

4 

Our main concern in this paper will be to deduce optimal fare and supply schemes for the 

operators where special focus will be placed on how fares and quality of supply should vary 

with the distance travelled by the passengers. These analyses will be carried out under 

different assumptions concerning the transport operators’ objectives. The above discussions 

give also rise to analyse how generalised travel costs will vary with the travel distance when 

transport fares and qualities are designed optimally. Since the latter issue will be seen in the 

light of the operators’ objectives or preference function, our work should be important when 

discussing welfare consequences for people living in different geographical areas. If, for 

example, privation of transport operators influences the preference function, the actual 

transport policy and thereby the relationship between generalised travel costs and travelling 

distance for their customers, the change in ownership structure will influence long distance 

travellers and short distance travellers differently.1 The above discussion should, thus, be an 

interesting aspect when evaluating possible disadvantages under different regulatory regimes 

of the public transport sector for people living in rural areas versus urban areas of a region. 

 

The rest of the paper is structured as follows: In section 2 we outline a model describing 

reasonable cost and demand conditions for transport operators. Furthermore, we deduce the 

first order conditions for optimal fares and quality of the transport services under different 

assumptions concerning the operators’ objectives. Section 3 analyses the travel distance 

influence on fare, the quality of the transport service and generalised travel costs when the 

operators pursue different goals. In order to simplify the comparative analysis, section 4 

analyses the travelling distance influence on fare in particular when the quality of the 

transport service is regarded as uncontrollable or exogenous for the transport operators. As far 

                                                 

1 How the ownership structure of a transport company influences its objectives is, for 
example, discussed in Jørgensen and Pedersen (1990). 
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as the Norwegian transport operators’ are concerned, this is a reasonable assumption; at least 

in the short run. Finally, in section 5 we draw some conclusions and suggest how to go further 

with the issues. 

 

 

2. A Model of a Transport Operator’s Behaviour 

2.1 The Cost Structure 

The costs of operating a system of transport routes within a specific area, C, are assumed to 

be given by: 

 ( , , )C C X q A= . (1) 

X is the number of passengers served, q is a variable denoting the quality of transport supply, 

supposed to influence on the subjective time costs passengers experience by travelling and, 

finally, A measures the mean distance travelled by the passengers in the system of routes 

supplied. With regard to the operator’s cost function, we suppose that: 

 0, 0, 0, 0, 0, 0, 0, 0, 0X q A XX qq AA XA qA XqC C C C C C C C C> > > ≥ ≥ ≥ > > > .2 

This means that costs are supposed to be strongly increasing and convex in the number of 

passengers served, the quality of services and the average distance travelled. Additionally, it 

is assumed that marginal costs in serving passengers and marginal costs in supplying higher 

quality are strongly increasing when the travel distance becomes longer. Finally, it is 

supposed that marginal costs in serving passengers are strongly increasing in the quality 

supplied. 

 

                                                 

2 Here and throughout the paper the notation ZY  means the partial derivative of Y with regard 
to Z. 
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2.2 Generalised Travel Costs and Demand Structure 

In order to simplify, let us suppose that the consumers are identical and that their generalised 

travel costs, R, are given by the sum of the fare, p, and the value of the time spent on the 

journey, T. The time value is supposed to be dependent on the quality of service and the 

distance travelled: 

 ( , ) ( , , )R p T q A R p q A= + = . (2) 

Moreover, the T and R functions are assumed to satisfy the following conditions: 

 1, 0 , 0, 0, 0, 0p q q A A qq qq qA qA AA AAR R T R T R T R T R T= = < = > = > = < = ≥ . 

Firstly, this means that generalised costs increase equal to the fare level, they decrease when 

quality is improved and are higher for longer than for shorter travel distances. Secondly, it is 

supposed that the reductions in the time costs from improved quality of supply become less as 

the quality is increased and the reductions in generalised costs from improved quality of 

supply become stronger as the travel distance increases. Finally, we find it reasonable to 

assume that the marginal increase in time cost as the travel distance becomes longer does not 

decrease as the distance travelled increases. 

 

Furthermore, the numbers of travellers are supposed to be conditional of the generalised costs, 

defined by an ordinary demand function: 

 ( )X X R= . (3) 

We make the common assumptions concerning the demand function; i.e. strongly decreasing 

and convex, 0, 0R RRX X< ≥ , telling us that increased generalised costs reduce the number of 

travellers at a decreasing rate. Additionally, it should be noticed from (3) that the travel 

distance has no direct effect on the demand but influences it indirectly through the generalised 

costs. From the restrictions placed on the R function follow that a partial increase in travelling 
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distance decreases the travel activity. This means, all other things being constant, that the 

longer the distance between two places, the lower will be the number of travellers. 

 

2.3 The Transport Operator’s Objectives 

By using the demand function in (3), we define the consumer surplus coming from the 

transport activity, V, by: 

 
( , , )

( ) ( , , )
R p q A

V X r dr V p q A
∞

= =∫ . (4) 

Additionally, we make two reasonable assumptions concerning the V function. Firstly, it is 

assumed that as the travel distance increases, the consumers’ utility coming from a marginal 

increase in quality of the transport services will not be reduced, i.e. 0qAV ≥ . Secondly, it is 

reasonable to believe that the consumers’ welfare of higher quality will not increase as the 

quality of the transport services improves, i.e. 0qqV ≤ . 

 

Based on (1), (2) and (3), the transport operator’s profit, π, from serving the passengers in the 

routes is defined by: 

 [ ( , , )] { [ ( , , )], , } ( , , )pX R p q A C X R p q A q A p q Aπ = − = π . (5) 

The profit function is supposed to be strictly concave in p and q. In order to be able to discuss 

optimal fare and quality schemes for different kinds of objectives, however, we introduce the 

following utility function hold by the transport operator: 

 [ ] ( ){ }
( , , )

(1 ) ( , , ) ( , , )

(1 ) ( ) ( , , ) ( , , ), ,

( , ; , ).
R p q A

U V p q A p q A

X r dr pX R p q A C X R p q A q A

U p q A

∞

= − α + απ

= − α + α −   

= α

∫  (6) 

The first term in the operator’s utility function is the consumer surplus coming from the 

public transport activity multiplied by (1 )− α , while the second term is the operator’s profit 
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multiplied by α . This means that we can interpret α  and (1 )− α  as the operator’s weights 

placed on profits and consumer surplus, respectively. In our analyses we restrict ourselves to 

discuss cases where 1
2 1≤ α ≤ .3 In the special case where 1

2α = , the transport operator 

weights consumer surplus and producer surplus equally. If the relationship between λ  and α  

in footnote 3 holds, the efficiency loss of rising public funds in this case is zero ( 0λ = ) and 

maximising (6) is equivalent to maximising the sum of profit and consumer surplus; that is 

the social surplus related to the transport activity. Furthermore, it is seen that when 1α = , the 

operator is only concerned about profit. Providing that the relationship between λ  and α  

holds such that λ  is infinite, maximising U is still equivalent to maximising social surplus. In 

intermediate cases where 1
2 1< α < , the operator evaluates profit higher than consumer 

surplus. 

 

2.4 The Operator’s Choice of Fare and Quality 

Maximising the utility function in (6) with regard to the fare level, p, and the quality of 

service, q, gives the following first order conditions for optimality: 

 (2 1) ( ) [( ) ] 0p X RU X p C X= α − ⋅ + α − = , (7) 

 (1 ) ( ) [( ) ] 0q q X R q qU X R p C X R C= − − α ⋅ + α − − = .4 (8) 

                                                 

3 It can be shown that if there is an estimation of an exogenous shadow price of rising public 
funds (λ ) through inefficiencies caused by ordinary taxation, this value will implicitly define 

α  by the following fraction: 2 1
1
α −λ =
− α

, see for instance Lewis and Sappington (1988) and 

the discussion made in Pedersen (1995). Here λ  must be interpreted as the extra costs which 
come when one is going to rise one unit of money for public spending given that one taxes in 
a way which causes the lowest efficiency loss in the economy. When the above relationship 
between λ  and α  holds, maximising U in (6) is, thus, equivalent to maximising social 
surplus when 1

2 1≤ α ≤ . 
4 Given the assumptions made above, it can be shown that the second order conditions are 
satisfied. 
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In order to interpret the optimal fare and quality of supply scheme, the conditions in (7) and 

(8) may be rewritten as: 

 (2 1) 2 1 1X

R p

p C X
p X p E

− α − α −= − = ⋅
α α

, (9) 

 q qXR C− = . (10) 

It is easily seen that the first order conditions obtained give the well-known monopoly 

solution when 1α = . From (9) it follows that in this case the relative fare difference from 

marginal costs of serving passengers is equal to the absolute value of the inverse fare 

elasticity ( pE ). Moreover, it is also seen from (9) that we obtain the ordinary first-best 

welfare solution when 1
2α = , i.e. the fare paid by travellers, p, should be equal to the costs 

experienced by the operator of serving a marginal passenger, XC . In all intermediate cases 

where 1
2 1< α < , the relative difference between fare and marginal costs will be positive and 

lower than in the monopoly case, and as the value of α  increases, ceteris paribus, the relative 

fare difference from marginal costs becomes higher. 

 

Additionally it is seen from (10) that the optimum of fare and quality is characterised by 

equality between the income stemming from the final quality unit supplied, qXR− , and the 

costs experienced by supplying this unit, qC . It should be noticed that this holds for all values 

of α . This is because our model, based on homogenous consumers, implies that the marginal 

income of improved quality is equal to the marginal increase in the consumers’ surplus, see 

Spence (1975). The value of α  has, thus, no direct effect upon the choice of optimal quality. 
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3. Comparative Statics Concerning Optimal Schemes 

In order to characterise the optimal fare and supply scheme further we are now searching for 

what happens to fare, quality of transport, generalised travel costs and travel activity when the 

travelling distance (A) and the transport operator’s weight on profit ( α ) change. 

 

3.1 Travelling Distance Influence on Optimal Fare and Quality 

By differentiation of (7) and (10) with respect to A, we obtain the following expressions for 

changed optimal values of p and q, respectively *p  and *q : 

 
*

pA pqYU ZUp
A E

− −∂ =
∂

, (11) 

 
*

pp pAZU WUq
A E

+∂ =
∂

, (12) 

where: 

 2(3 1) ( ) ( ) 0pp R XX R X RRU X C X p C X= α − − α + α − < , 

 2( ) 0R q qq Xq R q qq qq Xq R q qqY X R XR C X R C V C X R C= − − − − = − − < , 

 2(2 1) ( ) ( ) ( )0pq q R XX R q Xq R X RR qU R X C X R C X p C X R= α − − α − α + α − ≥ <  

if 2(2 1) ( ) ( ) ( )q R XX R q Xq R X RR qR X C X R C X p C X Rα − − α − α ≥ < − α − , 

 2(2 1) ( ) ( ) ( )0pA R A XX R A XA R X RR AU X R C X R C X p C X R= α − − α − α + α − ≥ <  
if 2[( ) ] ( ) ( ) (2 1)X RR A XA R XX R A R Ap C X R C X C X R X Rα − − ≥ < α − α − , 

 ( ) ( )0R q XqW X R C= − + ≥ <  
if ( )Xq qC R≥ < − , 

 ( )0qX R A qA R A q qAZ C X R C X R R XR= + + + ≤ >  
if ( )qA R A q qA qA qX R AV X R R XR C C X R= − − ≥ < + , 

and 0pp pqE U Y U W= − > . 
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The effects on optimal fare and optimal quality might be seen as a sum of a direct and an 

indirect effect. Taking a look at (11), the direct effect on p is /pAYU E− , telling us what 

happens to the optimal fare for a predetermined value of q. The indirect effect is /pqZU E− , 

measuring what happens to the optimal fare as a consequence of possible changed value of 

optimal q. Analogously, as seen in (12), /ppZU E  and /PAWU E are the direct and the indirect 

effects on q, respectively. According to presumptions made and ensuring that the second 

order conditions are satisfied, we know that 0ppU < , 0Y <  and 0E > . Based on these 

assumptions only, the signs of the direct and indirect effects are, however, uncertain both in 

(11) and (12). This makes it, of course, impossible to draw unambiguous conclusions 

regarding the sums. With reasonable restrictions placed upon the actual functions it is, thus, 

impossible to draw unambiguously conclusions how travel distance influences fare and 

transport quality, no matter how the transport operator weights profit contra consumer 

surplus. 

 

In order to come a bit further in our analysis, let us sort out situations where the signs of the 

changes in p and q are unambiguous. This will be the case when the direct and indirect effects 

have the same signs. From (11) and (12) we can identify the following cases: 

If (a) 0, 0pA pqU U≥ ≥  and 0Z ≤  or (b) 0, 0pA pqU U≥ ≤  and 0Z ≥  then 
*

0p
A

∂ ≥
∂

. (13) 

If (a) 0, 0pAZ U≤ ≥  and 0W ≥  or (b) 0, 0pAZ U≤ ≤ and 0W ≤  then 
*

0q
A

∂ ≥
∂

. (14) 

If (a) 0, 0pA pqU U≤ ≤  and 0Z ≤  or (b) 0, 0pA pqU U≤ ≥  and 0Z ≥  then 
*

0p
A

∂ ≤
∂

. (15) 

If (a) 0, 0pAZ U≥ ≥  and 0W ≤  or (b) 0, 0pAZ U≥ ≤  and 0W ≥  then 
*

0q
A

∂ ≤
∂

. (16) 
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In (13) we have found two sets of sufficient conditions giving us two cases where the optimal 

fare will be non-decreasing in the travel distance. In (13a) the direct effects on fare and 

quality are both non-negative ( 0pAU ≥  and 0Z ≤  respectively) and higher quality imposes 

the operator to choose at least as high fare as originally ( 0pqU ≥ ). In (13b) the direct effect on 

fare is non-negative, 0pAU ≥ , and the direct effect on quality is non-positive, implying 

0Z ≥ . Additionally, (13b) is characterised by a situation where lower quality induces the 

operator to choose a fare at least as high as originally ( 0pqU ≤ ). Analogously, from (14), we 

find two sets of conditions giving us two cases where the optimal quality is non-decreasing in 

the travel distance. 

 

As mentioned previously, one would expect that fare and the quality of the transport services 

increase with travelling distance, no matter what weight the transport operator gives to profit 

( α ). Let us, therefore, have a closer look at (13) and (14) and infer what restrictions upon the 

actual functions these inequalities in combination lead to. By combining the information in 

(13) and (14) we find the sufficient conditions for excluding any other possibilities than 

* / 0p A∂ ∂ >  and * / 0q A∂ ∂ >  are: 

 0, 0, 0, 0pA pqU Z U W> < > > . (17) 

When pAU  is positive and Z  is negative, we know for sure that the direct effects on fare and 

quality respectively, caused by longer travel distance, are positive. Furthermore, if pqU  and W 

are positive, it is secured that also the indirect effects on fare and quality respectively are 
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positive meaning that higher quality imposes increase in fare and higher fare imposes higher 

quality.5 Therefore, let us take a closer look at the situation in (17). 

 

The first inequality in (17) means that the marginal utility gain for the transport operator by 

increasing fare must be higher when the distance becomes longer, i.e. 0pAU > . From the 

expression defining pAU  above, generally having an ambiguous sign, we see that this will 

surely hold in the welfare maximising case ( 1
2α = ) given that marginal costs of serving 

passengers are independent of the number of travellers, i.e. 0XXC = . The second inequality in 

(17), restricting the sign of Z, concerns the effect on marginal utility of quality when the travel 

distance changes. Looking at the different terms defining Z, it should be noticed that qAV  

measures the increase in the marginal consumer surplus with regard to quality when distance 

becomes longer, while qA Xq R AC C X R+  measures the change in the marginal costs in 

supplying higher quality when the travel distance increases. The first term in these marginal 

costs, qAC , is the direct marginal cost increase, while the second term, Xq R AC X R , measures 

the marginal cost reductions following from fewer travellers using the route system when the 

general costs increases as a consequence of longer distance. If the marginal growth in the 

consumers’ welfare of quality dominates the net effects on the marginal costs of quality, Z 

will be negative. The third inequality in (17) states that fare and quality must be complements 

in the operator’s utility function, i.e. 0pqU > . This means that the operator’s utility of 

increasing the fare marginally becomes higher as the quality is improved. From the expression 

                                                 

5 It should be noticed that pqU  and W are different because we have chosen to use one of the 
first order conditions (equation (7)) and a combination of (7) and (8) (equation (10)) when 
doing the comparative statics. This means that W must be interpreted in the light of what 
happens to optimal q as a consequence of marginal changes in p given that p is optimally 
chosen, i.e. that equation (7) holds. 
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defining pqU  above, it is seen that this will always hold in the case of a welfare maximising 

operator because then fare is equal to marginal costs, i.e. Xp C= . It is also seen that this 

holds if the demand function is linear, i.e. 0RRX = , without regard to the value of α . The 

fourth condition in (17) concerns the sign of W. It is seen that if Xq qC R> − , i.e. that the 

marginal costs in serving passengers increase more than the generalised costs decrease when 

quality of services increases, W is positive. If this holds, the operator will find it 

advantageously improving the quality, as the optimal fare becomes higher. The above 

discussion gives, thus, rise to the following conclusions: 

 

Result 1: The following sufficient conditions are identified securing that optimal fare and 

optimal quality will be higher as the travel distance becomes longer: 

(a) The operator�s marginal utility of fare must be increasing in the travel distance. This 

surely holds when the transport operator gives equal weight to profit and consumer 

surplus and when marginal costs of serving another passenger are independent on the 

number of travellers. 

(b) The increase in the marginal consumer surplus of quality for longer travel distance 

must dominate the net increase in the operator�s marginal costs of quality as the 

distance becomes longer. 

(c) Price and quality must be complements in the operator�s utility function. 

(d) The growth in the marginal costs of serving passengers as quality increases must be 

higher than the reduction in the generalised costs caused by the same increase in 

quality. 

 

Before leaving the discussion of the impact on optimal fare and optimal quality of supply 

caused by marginal increase in travel distance, it might be useful to take a short look at the 
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cases stated in (15) and (16) above. In (15) we find sufficient conditions identifying two cases 

which are contra-intuitive in the sense that the optimal scheme is characterised by fares being 

non-increasing in the travel distance. Analogously, (16) gives us sufficient conditions for two 

cases where optimal quality is non-increasing in the travel distance, which also might be seen 

as unlikely cases compared to what one should expect in practice. The situations described in 

(15) and (16) can, however, not be ruled out based on the original assumptions made in our 

theoretical model. 

 

3.2 The Operator’s Weight on Profit Influence on Optimal Fare and Quality 

In order to study how the weight on profit influence on the optimal choices, we differentiate 

equations (7) and (10) with respect to α . It then follows: 

 
* ( )pY Xp

E
− π +∂ =

∂α
, (18) 

 
* ( )pW Xq

E
π +∂ =

∂α
, (19) 

where ( )p X Rp C X Xπ = − + . If profit maximum fare is the highest possible one in our 

model, we know that for all relevant p’s, 0pπ ≥ . Then it follows directly from (18) that if the 

weight on profits becomes higher (and the weight on consumer surplus decreases), the 

optimal fare will increase. What happens with the optimal quality of services will depend on 

the sign of W. If ( )Xq qC R> ≤ −  such that W is positive (negative), the optimal quality of 

service increases (decreases) as the weight on profits becomes higher. Then the higher fares 

stimulate the transport operator to increase (decrease) quality. In summary, we can, thus, 

conclude: 
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Result 2: If the operator weights profit more heavily in the utility function, it follows that: 

(a) Optimal fare will increase. 

(b) Optimal quality increases (decreases) if marginal costs of serving passengers increase 

more (less) than generalised costs are reduced as the quality is improved. 

(c) If one of the sufficient conditions ensuring that optimal fare and optimal transport 

quality increases with travelling distance ( 0W > ), optimal quality will increase as the 

weight given to profit increases. 

 

3.3 Influence on Generalised Travel Cost and on the Number of Travellers 

Let the values of generalised costs and numbers of travellers in optimum be denoted *R  and 

*X  respectively. Using (2), (3), (11), (12), (18) and (19) it is found that changes in these two 

variables for increased distance and increased weight on profit are given by: 

 
* * * ( )qq qq pA A

q A

XR C U ZW R EdR p qR R
dA A A E

+ − α +∂ ∂= + + =
∂ ∂

, (20) 

 
* * ( )

[ ]qq qq pA
R R A

XR C U ZWdX dRX X R
dA dA E

+ − α
= = + , (21) 

 
* * * ( )( )

0qq qq p
q

XR C XdR p qR
d E

+ π +∂ ∂= + = >
α ∂α ∂α

, (22) 

 
* *

0R
dX dRX
d d

= <
α α

. (23) 

What happens to generalised costs when the travel distance becomes longer is according to 

(20) dependent on the sign and sizes of * /p A∂ ∂ , *( / )qR q A∂ ∂  and AR . If (17) holds, however, 

R will increase more than with the value of the direct effect as the travel distance becomes 

longer, i.e. ( * / ) 0AR A R∂ ∂ > > . It then follows from (21) the number of travellers will be 

reduced when the travel distance increases; that is * / 0X A∂ ∂ < . Furthermore, from (22) and 

(23) it follows that the generalised travel costs increase and the numbers of travellers decrease 
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as α  becomes higher for any travelling distances. The above discussion may, thus, be 

summarised as follows: 

 

Result 3: 

(a) When the transport operator gives higher weight to profit, generalised travel costs will 

increase and travel activity will be reduced. 

(b) Under the original restrictions placed on the actual functions, the travelling distance 

influence on generalised travel costs and travel activity is ambiguous. 

(c) When the conditions described under Result 1 hold, an increase in the travelling 

distance will increase generalised travel cost and decrease the numbers of travellers. 

 

 

4. Comparative Statics for Predetermined Quality of Transport 

Let us now suppose that the quality is predetermined (for instance by the superior public 

authorities) and, thus exogenous for the transport operator. In many countries, this is a 

reasonable assumption, at least in the short run. In order to simplify the discussion in this 

case, let us restrict ourselves to situations where the relationships between operator’s costs 

and the number of passengers and between the number of passenger and generalised travel 

costs are linear; that is 0XX RRC X= = . 

 

4.1 Influence on Optimal Fare of Changes in the Exogenous Variables 

When 0XX RRC X= = , then (11) and (18) simplify to: 

 
* (2 1)

3 1
pA A XA

pp

Up R C
A U

∂ α − − α= − = −
∂ α −

, (24) 
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* 2 ( ) 0

(3 1)
X R

R

p X p C X
X

∂ + −= − >
∂α α −

. (25) 

The sign of * /p A∂ ∂  is now dependent on the sign of the direct effect only and in cases where 

0XX RRC X= = , it follows that ( )0pAU ≥ <  if 2 1 ( )A XAR Cα − ≤ >
α

. This means that the optimal 

fare will be: 

• Increasing in the travel distance if 2 1
A XAR Cα − <

α
; 

• Decreasing in the travel distance if 2 1
A XAR Cα − >

α
. 

The left hand side of these inequalities, measures the increase in the travellers’ generalised 

costs stemming from longer distance, weighted by an index defining the relative more 

influence profit has to consumer surplus in the operator’s utility function in (6). If profits and 

consumer surplus is equally valued, i.e. 1
2α = , this index is zero, while it is 1 when only 

profits count in this objective function, i.e. 1α = . The right hand side of these inequalities, 

XAC , is the increase in marginal costs of serving passengers when distance increases. This 

means that if “the weighted” generalised costs grow more slowly (faster) than the operator’s 

marginal costs in serving passengers as the travel distance increases, the optimal fare will be 

higher (lower) for longer distances than for shorter ones. If we consider the case of pure 

welfare maximum, i.e. 1
2α = , it follows directly from (24) that the growth in the fare as the 

travel distance becomes longer should equalise the growth in the marginal costs of serving 

travellers as the distance increase, i.e. 
*p

A
∂
∂ XAC= . In the profit maximising case, i.e. 1α = , 

the fare will increase (decrease) with travel distance if the generalised costs increase more 

slowly (faster) than marginal costs in serving passengers as the travel distance becomes 
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longer, i.e. ( )A XAR C≤ > . Equation (25) tells us that optimal fare will increase when the 

operator gives higher weight to profit. 

 

Equations (24) and (25) hold if q is supposed to be an exogenous variable. However, it is 

interesting to know how exogenous changes in the quality influence optimal fare. Given our 

simplifying assumptions that 0XX RRC X= = , it follows from (7) that: 

 
* (2 1)

0
3 1

q XqR Cp
q

α − − α∂ = − >
∂ α −

. (26) 

No matter transport distance and how the transport operator weights profit versus consumer 

surplus, higher demands from the authorities regarding the quality of the transport supply, 

will always impose the transport operators to increase fares. 

 

In order to elucidate more thoroughly how optimal fare is influenced by the exogenous 

variables above, let us have a closer look at (24), (25) and (26). By differentiation of (24) with 

regard to A, we obtain: 

 
2 *

2

(2 1)
3 1

AA XAAp R C
A

∂ α − − α= −
∂ α −

. (27) 

It seems reasonable to believe that 0XAAC ≤ , i.e. that the increase in marginal costs of serving 

passengers when the travel distance increases, is not increasing as the distance becomes 

longer. Having in mind that we have supposed that 0AAR ≥ , the expression in (27) will be 

non-positive. This means that the fare increase per distance unit should not to be higher as the 

travel distance becomes longer, i.e. 
2 *

2 0p
A

∂ ≤
∂

. In the case of pure welfare maximum ( 1
2α = ) 

and 0XAAC = , the relationship between travel distance and fare is linear. Furthermore, by 

differentiation of (25) with regard to α , it is seen that: 
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2 *

2 2

3 [2 ( ) ] 0
[(3 1) ]

R X R

R

p X X p C X
X

∂ + −= <
∂α α −

. (28) 

This means that the influence on giving more weight on profits on optimal fare reduces as the 

value of α  is increased. Moreover, differentiation of (26) with regard to q gives us that: 

 
2 *

2

(2 1)
3 1

qq XqqR Cp
q

α − − α∂ = −
∂ α −

. (29) 

A sufficient condition for (29) to be negative, is that 0XqqC ≤ , i.e. that the higher quality 

becomes, the lower is the growth in marginal costs of serving passengers as quality improves. 

In this case it is ensured that the optimal fare grows less with higher quality of transport as the 

quality is further improved. In the case where the transport operator aims to maximise social 

welfare and where 0XqqC = , the relationship between fare and transport quality is linear. The 

above discussion may be summarised as follows: 

 

Result 4: Given that the quality of transport supply is exogenous and that 0XX XXC R= = , we 

can conclude that: 

(a) Optimal fare will be increasing and concave in the weight given to profit in the 

transport operator utility function. 

(b) The less weight the transport operator gives to profit, the more likely it would be that 

optimal fare increases with the travelling distance. If 0XAAC ≤ , this relationship would 

be concave. In the case where the operator aims to maximise social welfare and where 

0XAAC = , optimal fare will increase linearly with the travelling distance. 

(c) Optimal fare will increase when the transport authorities demand higher quality of 

transport from the operator and it will increase concavely if 0XqqC ≤ . When the 

operator aims to maximise social welfare and 0XqqC = , the relationship is linear. 
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4.2 Interdependence between the Effects of the Exogenous Variables 

It is also interesting to know what happens with the marginal changes in optimal fare level, 

described by (24), (25) and (26), when there are changes in one of the other exogenous 

variables. Firstly, it is seen that: 

 
2 *

2 0
(3 1)

A XAp R C
A

∂ += − <
∂ ∂α α −

. (30) 

The interpretation of this is that as the transport operator gives higher weight to profit, the fare 

level will be less positively related to the travelling distance. This means, for example, that an 

operator maximising profits ( 1α = ) will deduce an optimal fare system where the growth in 

fare when travel distance increases is lower than what an operator maximising welfare 

( 1
2α = ) will calculate. Equation (30) may also be interpreted such that the longer the travel 

distance, the less influence have the operator’s objectives on optimal fare. Secondly, it is 

found that: 

 
2 * (2 1)

0
3 1

qA XqAR Cp
q A

α − − α∂ = − ≥
∂ ∂ α −

  if  0XqAC ≥ . (31) 

This means that if the growth in marginal costs serving passengers when quality increases 

becomes higher when the travel distance increases, it is ensured that the optimal fare increases 

more with longer travel distances as the quality is improved. Finally, it is found that: 

 
2 *

2

(4 1) (2 1)
0

(3 1)
q XqR Cp

q
α − − α −∂ = − >

∂ ∂α α −
. (32) 

This inequality tells us that the growth in the optimal fare followed by improvements in 

quality increases with the weight given to profit in the objective function. This means that as 

we move from a social planner, maximising the sum of producer surplus and consumer 

surplus towards an operator concerned about profit only, fares becomes more strongly 

positively related to quality. In summary, we can conclude: 
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Result 5: Given that quality of transport supply is exogenous, and that 0XX RRC X= =  we find 

that: 

(a) When the transport operator gives higher weight to profit, optimal fare will be less 

positively related to the travelling distance. 

(b) The marginal impact on optimal fare from increased quality demands becomes higher 

as the travel distance and the weight put on profits in the operator�s utility function 

increase. 

 

4.3 Influence on Generalised Travel Costs and on the Number of Travellers 

Also when the quality of transport supply is exogenous for the transport operator, it might be 

interesting to show what happens to the total individual resources spent on transport ( *R ) and 

on the number of travellers ( *X ) when A, α  and q change. Using the expressions in (3), (24), 

(25) and (26) above give us that: 

 
* * ( ) 0

3 1
A XA

A
dR p R CR
dA A

∂ α += + = >
∂ α −

, (33) 

 
* *

0dR p
d

∂= >
α ∂α

, (34) 

 
* * ( )

( )0
3 1

Xq q
q

C RdR p R
dq q

α +∂= + = ≥ <
∂ α −

  if  ( )Xq qC R≥ < − . (35) 

The generalised costs are, thus, increasing both in travel distance and in the weight given to 

profit in the transport operator’s utility function. However, it is generally uncertain what 

happens with R when the transport quality is changed, see (35). The direct effect is of course 

that generalised costs are reduced when quality is improved, but the fare is shown to increase 

implying higher individual travelling costs. It is seen that this indirect effect through higher 

fare level dominates the direct effect if the marginal costs in serving passengers grow faster 

than the generalised costs are reduced as quality is improved. In summary, it is not sure that 
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higher quality demands on transport supply from the authorities, will reduce generalised 

travel costs. 

 

Using (3) it is easily seen that the number of passengers will be reduced when the travelling 

distance and the transport operator’s weight on profit increase, while the quality of transport 

demands impacts on the number of passengers is ambiguously. Furthermore, using equations 

(2), (27), (28), (29) we obtain: 

 
2 * 2 *

2 2

( ) ( )0
3 1
AA XAA

AA
d R p R CR
dA A

∂ α += + = ≥ <
∂ α −

  if  ( )AA XAAR C≥ < − , (36) 

 
2 * 2 *

2 2 0d R p
d

∂= <
α ∂α

, (37) 

 
2 * 2 *

2 2

( )
( )0

3 1
qq Xqq

qq

R Cd R p R
dq q

α +∂= + = ≥ <
∂ α −

  if  ( )qq XqqR C≥ < − , (38) 

 
2 * 2 *

0d R p
dAd A

∂= <
α ∂ ∂α

, (39) 

 
2 * 2 * ( )

( )0
3 1
qA XqA

qA

R Cd R p R
dqdA A q

α +∂= + = ≤ >
∂ ∂ α −

  if  ( )XqA qAC R≤ > − , (40) 

 
2 * 2 *

0d R p
d dq dq

∂= >
α ∂α

. (41) 

It is seen from (36) and (38) that R can be both concave and convex in A and q, dependent on 

the size of AAR  compared to XAAC  and qqR compared to XqqC , respectively. Equation (37) 

implies that generalised travel costs increase and are concave in α, meaning that as the weight 

on profit is increased, the slower grow the generalised costs. It is also found from (39) that 

*dR
dA

 is decreasing in α , implying that the marginal growth in individual resources spent on 

travelling with regard to distance becomes lower as the operator weights profits more heavily 
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in his utility function. From (41) it is seen that 
*dR

dα
 is increasing in q. This means that the 

marginal growth in generalised costs with regard to α  becomes higher as the quality 

improves. Finally, equation (40) implies that the marginal impact on generalised costs from 

higher A can be both higher and lower as quality improves conditional on the size of qAR  

compared to XqAC . The above discussion can be summarised as follows: 

 

Result 6: Given that quality of transport supply is exogenous, and that 0XX RRC X= =  we 

have: 

(a) Generalised travel costs are strictly increasing in the travelling distance and in the 

transport operator�s weight on profit. 

(b) The influence on generalised cost of increased transport quality demands from the 

regulators is ambiguous; they will increase (decrease) if ( )Xq qC R≥ < − . 

(c) The marginal impact on R from changed A becomes lower the higher weight the 

transport operator places on profits and lower (higher) as quality is improved if 

( )XqA qAC R≤ > − . 

(d) The marginal impact on R from changed weight the transport operator gives to profit 

becomes higher the higher the demands from the authorities regarding the quality of the 

transport supply. 

 

 

5. Concluding Remarks 

In this work we have developed a model aiming to discuss how travelling distance and the 

transport operator’s weight on profit versus consumer surplus influence the fare levels, the 

quality of transport supply and generalised travel costs, measured as the sum of pecuniary 
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costs and time costs for the traveller. As a starting point we assume that both fares and quality 

of transport supply are regarded as controllable variables for the transport operator. In order to 

simplify the analysis, we also, however, discuss thoroughly the specific case where the quality 

of transport supply is exogenous for the transport operator and controlled by the transport 

authorities. As emphasised previously, this may be a realistic case in many circumstances. 

Besides analysing how travelling distance and the operator’s objectives influence fare and 

generalised travel costs in this particular case, we also discuss how changes in the transport 

authorities’ demands regarding the quality of the transport supply, influence these variables. 

 

In almost all practical examples within transportation, we believe, one will find that the fare 

levels and probably also the quality of supply are increasing as the travel distance for the 

passengers becomes longer. Common sense indicates too that travellers’ generalised cost 

increase with the distance travelled; the eventual positive effects of increased transport quality 

are outweighed by longer travel distance and higher fares. Consequently, the number of 

travellers becomes less the longer the distance between two places. This is in line with the 

conclusions in the most common gravity models of trip distribution; see for example 

McDonald (1997). Our model, built on what seems to be reasonable assumptions regarding 

the transport operators’ objectives and their costs and demand conditions, however, generally 

gives ambiguous answers to how fare, quality of supply and generalised travel costs vary with 

the distance travelled by the consumers. We have, therefore, inferred how different additional 

restrictions imposed on the actual functions influence the results. 

 

Firstly, if fare and quality are complements in the operator’s objective function and the 

operator’s marginal utility with regard to fare and quality of supply is increasing in the travel 

distance, it is secured that both optimal fare and quality will be increasing in the travel 
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distance. Under the above conditions will an increase in the travelling distance also increase 

generalised travel costs and reduce the number of travellers; the increase in fares as the 

distance becomes loner outweighs the effects of increased quality of transport supply. It is, 

however, worth noting that without imposing rather strict restrictions upon the transport 

operator’s cost and demand conditions, it is ambiguous how travelling distance influence 

fares, quality of transport and generalised travel costs. 

 

Secondly, if the transport operator weights profit more heavily in the utility function, optimal 

fare will increase. Furthermore, if an increase in quality of transport influences marginal costs 

of serving passengers more (less) than generalised costs are reduced, an increase in the 

operator’s weight on profit will increase (decrease) optimal quality of supply. When having a 

closer look at the restrictions ensuring that fare and quality of transport increase with the 

travelling distance, it is seen that these conditions also ensure that quality of supply will 

increase with the operator’s weight given to profit. Finally, generalised travel costs will 

always increase the more weight the transport operator gives to profit. If one accept the 

common hypothesis that privately owned companies give more weight to profit versus 

consumer surplus than the public ones, one should expect that transport users would prefer 

publicly owned transport companies. 

 

Thirdly, in the version of the model where the quality of supply is predetermined, it is found, 

that the optimal fare is increasing and concave in the weight the transport operator gives to 

profit versus consumer surplus. In this case to, the travelling distance influence on optimal 

fare is according to the original restrictions on the actual functions ambiguous. The less 

weight the transport operator gives to profit versus consumer surplus and the less generalised 

travel costs are influenced by the travelling distance (i.e. the lower the travellers’ time costs 
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are and the higher the speed of the mode), the more likely it is that fare is increasing and 

concave in the travelling distance. Such relationship between fare and travel distance is not 

unusual; in Norway, concave positive relationships between fares and travelling distance are, 

for example, estimated for trains and plains, see Ertkjern and Tausvik (1996). Furthermore, 

when the regulators demand higher quality of supply from the operators, optimal fares will 

increase. When the quality of transport supply is exogenous for the transport operators, 

generalised travel costs will increase when the travel distance becomes longer and when the 

operator gives higher weight to profit. The effect on generalised costs of increased demands 

for the quality of transport supply is, however, ambiguous; these cost increase (decrease) if 

the marginal costs increase more (less) than the generalised costs are reduced as the quality 

increases. It is, thus, not sure that the travellers will benefit from increased quality demand of 

the transport supply. As far as the interdependence between the effects of the exogenous 

variables is concerned, it is seen that the optimal fare and generalised travel costs are less 

related to travel distance as the weight on profits versus consumer surplus in the objective 

function is increased. It also seems most likely that optimal fare and generalised travel costs 

are stronger positively related to travel distance as the quality is improved. Higher quality 

demands and more weight on consumer surplus, make, thus, generalised travel cost more 

sensitive to the travel distance. 

 

The most important conclusions of the analysis above are that it is not as clear as one should 

expect how travel distance influences fare, quality of transport supply and generalised travel 

costs.  Nevertheless, our model analysis has made us aware of some important mechanisms 

influencing on the optimal fare and quality of supply schemes which one should have in mind 

before turning over to empirical studies of the fare system and of the quality schemes for 

different modes of transport. In order to operationalise the model further and in that way 
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develop econometric models for estimating the actual relationships and testing relevant 

hypotheses, it may be sensible to impose special functional forms as far as the cost structure 

and the demand conditions are concerned. 

 

The data needed for such econometric analyses are probably attainable in many countries. 

Firstly, it is probably easy to obtain information about how fares vary with the travelling 

distance for all modes of transport and for different transport operators. Secondly, different 

aspects of the ownership structure of a transport company may give a good indication on how 

the company weights profit versus consumer surplus, (see, for example, Jørgensen and 

Pedersen, 1990 and Jørgensen et al, 1995, for a discussion on this issue) and such information 

is also attainable; at least in Norway. Thirdly, it is possible to give indicators of the quality of 

the transport supply for routes with different average travelling distance; for example by 

finding the average age of the modes serving the routes. Finally, even though the travel 

distance dimension is scarcely dealt with in empirical studies analysing the demand and the 

costs conditions for different modes of transport, a vast amount of data are available for such 

analyses. By taking our theoretical model as a basis, it should, therefore, be possible to come 

up with fruitful empirical analyses. 
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