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1 Introduction

This paper considers estimation and inference in dynamic binary choice panel data models

with unobserved heterogeneity that is allowed to be arbitrarily correlated with the covariates.

This type of unobserved heterogeneity is usually referred to as the fixed effect. These models

are of particular interest in many applications because they can be used to distinguish between

the presence of state dependence and the effect of unobserved heterogeneity, as discussed in

Heckman (1981a and 1981b). These models are usually specified in terms of the distribution of

the dependent variable conditional on the lagged dependent variable, a set of (possibly time-

varying) covariates, and an individual specific term that represents unobserved heterogeneity.

As is well known, for dynamic panel data models with unobserved effects, an important

issue is the treatment of the initial observations. While in some cases the initial observation

can be viewed as a fixed constant if the actual start of the dynamic process coincides with

the first time period in the data, in general, if the dynamic model under consideration has

been in effect before the first period of the sample under consideration, there is an intrinsic

and complex relationship between the unobserved heterogeneity and the initial observations.

Therefore, in general, it is important to allow for the dependence of the initial observations

on the fixed effects.

For linear models with an additive unobserved effect, appropriate transformations such

as differencing have been used to eliminate the unobserved effect, and GMM type estimators

have been proposed to estimate the transformed model. For example, see Anderson and Hsiao

(1982), Arellano and Bover (1995), Arellano and Carrasco (2003), Ahn and Schmidt (1995),

Blundell and Bond (1998), Hahn (1999), and Hsiao, Pesaran, and Tahmiscioglu (2002), and

among others surveyed in Arellano and Honoré (2001) and Hsiao (2003). However, for non-

linear panel data models in general and binary choice models in particular the treatment

becomes more complicated. When the unobserved effect is assumed to be a random effect

in that it is not correlated with the strictly exogenous variables, Heckman (1981b) suggests

to approximate the conditional distribution of the initial values given the exogenous vari-

ables and the unobserved individual effects so as to use the maximum likelihood estimation
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to estimate the model parameters. Alternatively, Wooldridge (2005) proposes to specify

an auxiliary distribution of the unobserved individual effect conditional on the initial value

and the exogenous variables leading to a simple conditional maximum likelihood estimation.

Both methods, while useful in addressing the initial value problem, can be best viewed as

approximations of the true (conditional) distributions of the initial value, and the unobserved

heterogeneity, respectively. As discussed in Honoré (2002), because of the complicated re-

lationship between the initial value and the unobserved heterogeneity and the exogenous

variables, it is almost unavoidable that modeling these two conditional distributions are in-

consistent with the original model. Furthermore, as pointed out in Honoré (2002), there

could be some potential incoherent problems with an ad hoc treatment of the initial values

in the case of unbalanced panel data models.

Dealing with dynamic nonlinear panel data models with fixed effects, on the other hand,

is further complicated by the so-called incidental parameters problem, in addition to the

initial value problem. The incidental parameters problem arises because the number of

parameters (unobserved effect terms) increases with the number of the individuals. As a

result, the maximum likelihood estimator of the structural parameters, while consistent with

both N (the number of individuals) and T (the number of time periods) going to infinity,

is inconsistent with large N and fixed T . One strand of the literature has been trying to

propose modified maximum likelihood estimators to obtain bias reduction for a fixed T . See,

e.g. Arellano (2003) for static binary choice panel data models, and Carro (2007) as well as

Bartolucci, Bellio, Salvan, and Sartori (2012) for dynamic binary choice panel data models.

This approach usually requires a relatively large T to attain significant bias reduction, as

demonstrated in the Monte Carlo studies in Carro (2007) and Bartolucci, Bellio, Salvan, and

Sartori (2012), even in the simplest case where the initial values are fixed constants. Another

approach in the literature is to eliminate the fixed effects as in the linear models. This

approach, if successful, is very appealing as it solves both the incidental parameters problem

and the initial values problem. So far, however, there are only a few papers following this

approach. Honoré and Kyriazidou (2000) consider the dynamic logit model and derive a set
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of conditions under which the parameters of the model are identified. They also propose

consistent estimators of the model based on the identification results, albeit the rate of

convergence of the estimators is slower than the usual
√
N rate. In a more recent paper,

Bartolucci and Nigro (2010) consider a version of the quadratic exponential model that closely

mimics the dynamic logit model and propose a conditional maximum likelihood estimator

conditioning on sufficient statistics for the individual specific terms. However, with this

specification the strict exogeneity assumption usually made on the covariates in the standard

dynamic panel data models is not met.1 Also there could be some potential incoherent

problems arising from the separate model specification for the last period from the other

periods if one conducts sequential estimation, or if one deals with an unbalanced panel.

Arellano and Bonhomme (2011) provide a review of recent developments in the econometric

analysis of nonlinear panel data models.

In this paper we introduce a new binary choice panel data model where the idiosyncratic

error term follows an exponential distribution. With this specification we derive moment

conditions that enable us to eliminate the fixed effect term and at the same time to identify

the parameters of the model. We drive appropriate moment conditions that identify the state

dependent parameter as well as the coefficients of the exogenous covariates. We then propose

GMM estimators that are consistent and asymptotically normally distributed at the
√
N

rate. Compared with the existing approaches, our method identifies all the parameters of the

model and yields simple-to-implement estimators that have standard asymptotic properties.

In addition to the GMM estimators, since the conditional maximum likelihood approach

has been adopted in the literature in the case of the logistic distribution or the quadratic

exponential distribution in order to eliminate the fixed effects, we also study the conditional

likelihood approach, which can only identify the effect of state dependence in our case. Since

our GMM estimators are general and simple to implement, we study their finite sample

performance through a comprehensive simulation study and the results indicate that our

1On the strict exogeneity assumption and the other approaches in the literature, see Wooldridge (2002)

for a survey.
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estimators perform quite well in relatively small size samples.

Given that we are the first to propose the use of an exponential model in a binary

choice setting, it is important that this choice is motivated and further discussed. The

first point to bear in mind is that in the case of fixed effects binary choice models, the

choice of the distribution is in fact secondary - namely fixed effects (which are totally free of

any restrictions) can be used to match probability outcomes based on exponential and any

other specification, including the logistic ones used in the literature. In the case of models

without any covariates (xit’s), the match can be performed perfectly for all distributional

specifications. When the models contains covariates, the match between the exponential and

other distributions, including the logistic, can be done for specific values of xit, (at some t)

or at the mean of xit, namely at xi, as we demonstrate later in Section 4.3. Therefore, at

least in a bivariate choice setting the choice of the distribution is more a matter of analytical

and estimation convenience. Moreover, since in analyzing a nonlinear model such as a binary

choice model, a key quantity of interest is the average partial effect (APE), we will investigate

through Monte Carlo simulations how well the APEs are estimated with the exponential

model if the true model is the logistic. Our results show that the exponential model yields

sensible estimates for the APEs even with a misspecified distribution.

The paper is organized as follows. Section 2 lays out the model of interest. Section

3 considers the case with only the lagged dependent variable but without covariates, and

Section 4 generalizes and extends Section 3 to allow for (possibly time-varying) covariates.

Section 5 presents Monte Carlo results that demonstrate the usefulness and feasibility of our

approach. Section 6 concludes. All technical proofs are included in Section 7 that serves as

an appendix.

2 The General Form of the Model

Suppose that yit takes the values of zero and unity, for i = 1, 2, ..., N , and t = 1, 2, ..., T ,

and xit is a k× 1 vector of strictly exogenous, time-varying regressors; common time-varying
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regressors, such as a time dummy, can also be included in xit. The standard dynamic binary

panel data model with fixed effects assumes that

yit = 1[y∗it ≥ 0], (1)

y∗it = ρyi,t−1 + β′xit + ci + uit.

where y∗it is a latent variable that is not observed by the econometrician, uit is the random

error term assumed to be i.i.d with mean zero, and ci represents the individual unobserved

effect that can be arbitrarily correlated with xit and uit. We suppose that T is fixed and

N sufficiently large. We are interested in the parameters of the covariates β and the state

dependence parameter ρ, both of which together are usually called structural parameters,

while ci are referred to as incidental parameters.

Denote the distribution of uit by F (·). Then we have

Pr(yit = 1 |y1,t−1, y2,t−1, ..., yN,t−1; c1, c2, ..., cN ; x1t,x2t, ...,xNt )

= Pr(yit = 1 |yi,t−1, ci,xit ) = F (ρyi,t−1 + β′xit + ci), (2)

where the first equation follows from the strict exogeneity assumption on xit. The commonly

used probit or logit models correspond to F (·) being either the standard normal distribution

or the logistic distribution, respectively. The model can also be thought of as an inhomoge-

neous Markov chain with transition probabilities

yi,t−1 =

yit = 0 1

0 1− F (β′xit + ci) F (β′xit + ci)

1 1− F (ρ+ β′xit + ci) F (ρ+ β′xit + ci)
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3 The Case of β = 0

3.1 The Likelihood Function

In the case where β = 0, the Markov chain has a time-invariant initial distribution which is

given by (for all t)

Pr (yit = 1 |ci ) =
F (ci)

1− F (ci + ρ) + F (ci)
= π∗i , (3)

Pr (yit = 0 |ci ) =
1− F (ci + ρ)

1− F (ci + ρ) + F (ci)
= 1− π∗i . (4)

The joint probability distribution of ci, yi1, yi2, ..., yiT can now be derived using the familiar

decomposition

Pr (ci, yi1, yi2, ..., yiT ) = Pr(ci) Pr(yi1 |ci ) Pr(yi2 |yi1, ci )....Pr(yiT |yi,T−1, ci ).

Consider now the observations yit for t = 1, 2, ..., T, and note that the likelihood function for

the ith unit at time t = 1 is given by

Pr(yi1 |ci, ρ) = (π∗i )
yi1 (1− π∗i )1−yi1 , (5)

and for time t = 2, 3, .., T, by

Pr(yit |yi,t−1, ci, ρ) (6)

= [F (ci + ρ)]yityi,t−1 [1− F (ci + ρ)](1−yit)yi,t−1 [F (ci)]
yit(1−yi,t−1) [1− F (ci)]

(1−yit)(1−yi,t−1) .

The log likelihood function for the panel (assuming independence across i) is then given
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by (Y = (yit, i = 1, ..., N ; t = 1, 2, ..., T ))

l(ρ |Y, c) =
N∑
i=1

[yi1 ln(π∗i ) + (1− yi1) ln(1− π∗i )] +

N∑
i=1

T∑
t=2

yityi,t−1 ln [F (ci + ρ)] +

N∑
i=1

T∑
t=2

(1− yit)yi,t−1 ln [1− F (ci + ρ)] +

N∑
i=1

T∑
t=2

yit(1− yi,t−1) ln [F (ci)] +

N∑
i=1

T∑
t=2

(1− yit)(1− yi,t−1) ln [1− F (ci)] .

Although the initial value problem is solved, the incidental parameter problem remains and

for a general form of F (·) cannot be resolved, without full specification of Pr(ci). But notice

that Pr(ci) can be specified independently of the initial value, yi1, or the other observations.

Remark 1 The above log-likelihood function assumes that c′is are distributed independently

across i. It is possible to set up a log-likelihood function that allows for simple patterns of cross

section dependence across i. To this end let c = (c1, c2, ..., cN)′, and yiT = (yi1, yi2, ...., yiT )′,

and assume that conditional on c any pairs of yiT and yjT for i 6= j are independently

distributed, namely

Pr (yiT |yjT , c) = Pr (yiT |c), for all i and j 6= i. (7)

This is weaker than the usual assumption in small T panels where it is assumed that yiT

and yjT are unconditionally independently distributed (for all i 6= j). Under (7) we have the

following decomposition of the joint probability distribution of c,y1T ,y2T , ...yNT ,

Pr(c,y1T ,y2T , ...yNT ) = Pr(c) Pr (y1T |c) Pr (y2T |c).....Pr (yNT |c).

But under (2) Pr (yiT |c) = Pr (yiT |ci ), and we have

Pr(c,y1T ,y2T , ...yNT |ρ) = Pr(c)
N∏
i=1

Pr (yiT |ci, ρ), (8)
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where

Pr (yiT |ci, ρ) = Pr(yi1 |ci, ρ)
T∏
t=2

Pr(yit |yi,t−1, ci, ρ), (9)

Pr(yi1 |ci, ρ) and Pr(yit |yi,t−1, ci, ρ) are defined by (5) and (6). This set up allows us to

consider, for example, a spatial pattern in c′is. For example, we could consider

ci = αc + ρc(ci−1 + ci+1) + ζ i,

where ζ i ∼ N(0, σ2
ζ).

3.2 Exponential Distribution for F (·)

The literature on estimation of binary choice panel data models with fixed effects has focussed

on a logit specification for F (·). In this paper we consider an alternative specification. To

fix the ideas, we first consider the case where β = 0, and focus on consistent estimation

of ρ. Pesaran and Timmermann (2009) show that a Markov chain can be written as a

vector autoregressive (VAR) model in the indicator variables. In our context it can be easily

established that

εit = yit − F (ci)− [F (ci + ρ)− F (ci)] yi,t−1

is a martingale difference process with respect to yi,t−1, yi,t−2, .... This suggests the following

linear binary AR(1) regression with reduced form parameters that are non-linear functions

of the parameters of the underlying model:

yit = F (ci) + [F (ci + ρ)− F (ci)] yi,t−1 + εit. (10)

It is possible to eliminate ci from the above regression when F (c + ρ) − F (c) = G(ρ)H(c).

The only non–constant, differentiable, distribution function that satisfies this condition is

the exponential distribution F (z) = 1− exp(−z).2 In this case we have

F (ci + ρ)− F (ci) = exp(−ci) [1− exp(−ρ)] . (11)

2See Appendix 7.1 for a proof where it is shown that the general solution to the problem is given by

F (z) = 1 − C exp(−Dz), for C, and D > 0. Since these two parameters are not identifiable, we set them

both equal to 1. Similar rescaling and normalization is also used for the standard logit and probit models.
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Consistent estimation of ρ can now be achieved using the conditional maximum likelihood

or the GMM methods.

3.3 Conditional Maximum Likelihood Estimation

Building on an early work by Cox (1958), Chamberlain (1985) shows that it is possible to

estimate ρ consistently using a conditional maximum likelihood estimator (CMLE) approach

if F (·) is logistic, β = 0 and T ≥ 4.3 Honoré and Kyriazidou (2000) extend this analysis

to the case where β 6= 0, under certain restrictions on the distribution of the covariates, xit,

over time. In this sub-section we show similar results hold if F (·) is exponential, β = 0 and

T ≥ 3.

Using (5) and (6) the likelihood function (conditional on ci) for the ith unit can be written

as

[1− F (ci + ρ) + F (ci)] Pr (yiT |ci, ρ) = [F (ci + ρ)]
∑T
t=2 yityi,t−1 [1− F (ci + ρ)]1−yi1+

∑T
t=2(1−yit)yi,t−1

× [F (ci)]
yi1+

∑T
t=2 yit(1−yi,t−1) [1− F (ci)]

∑T
t=2(1−yit)(1−yi,t−1) .

Let siT =
∑T

t=1 yit and piT =
∑T

t=2 yityi,t−1 write the above likelihood function as

Pr (yiT |ci, ρ) = Pr (siT , piT , yi1, yiT |ci, ρ)

=

[F (ci + ρ)]piT [1− F (ci + ρ)]1−yi1−yiT+siT−piT

[F (ci)]
siT−piT [1− F (ci)]

(T−1)+yi1+yiT−2siT+piT

[1− F (ci + ρ) + F (ci)]

It is clear that siT , piT , yi1, and yiT are minimal sufficient statistics for ci and ρ. Following

Andersen (1970), we consider the likelihood function of ρ conditional on given values of

siT = s0 and piT = p0 for all i. Let BiT (s0, p0) be the set of all sequences yi1, yi2, ..., yiT that

satisfy
∑T

t=1 yit = s0 and
∑T

t=2 yityi,t−1 = p0, for s0 = 1, ..., T − 1 and p0 = 0, 1, .., T − 1

3See Chamberlain (2010) for identification in a two-period case and Magnac (2004) for more general

identification results with the conditional likelihood approach, and also Magnac (2001) for an empirical

application.
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(s0 > p0) There is no point considering the values of s0 = 0 and T , since for these values it

is easily seen that the conditional likelihood function does not depend on ρ.

In general we have

Pr (yi1, yiT
∣∣siT = s0, piT = p0, ci, ρ) =

Pr (siT = s0, piT = p0, yi1, yiT |ci, ρ)

Pr (siT = s0, piT = p0 |ci, ρ)
,

where

Pr (siT = s0, piT = p0, yi1, yiT |ci, ρ) =
Ai(s

0, p0) [1− F (ci)]
yi1+yiT [1− F (ci + ρ)]−yi1−yiT

[1− F (ci + ρ) + F (ci)]
,

and

Pr (siT = s0, piT = p0 |ci, ρ) =
Ai(s

0, p0)
∑

yi1,yiT∈BiT (s0,p0) [1− F (ci)]
yi1+yiT [1− F (ci + ρ)]−yi1−yiT

[1− F (ci + ρ) + F (ci)]

in which

Ai(s
0, p0) = [F (ci + ρ)]p

0

[F (ci)]
1+s0−p0 [1− F (ci)]

(T−1)−2s0+p0 [1− F (ci + ρ)]1+s0−p0.

Therefore

Pr (yi1, yiT
∣∣siT = s0, piT = p0, ci, ρ) =

[1− F (ci)]
yi1+yiT [1− F (ci + ρ)]−yi1−yiT∑

yi1,yiT∈BiT (s0,p0) [1− F (ci)]
yi1+yiT [1− F (ci + ρ)]−yi1−yiT

.

It is clear that for a general specification of F (·) the conditional distribution of yi1 and yiT

still depends on the incidental parameters ci. But in the case of the exponential distribution

we have

Pr (yi1, yiT
∣∣siT = s0, piT = p0, ci, ρ) =

exp [ρ(yi1 + yiT )]∑
yi1,yiT∈BiT (s0,p0) exp [ρ(yi1 + yiT )]

,

which does not depend on c′is.

The conditional likelihood for the cross section observations i = 1, 2, .., N is now given by

Lc(ρ) =
N∏
i=1

T−2∏
p0=0

T−1∏
s0=1

exp [ρ(yi1 + yiT )]∑
yi1,yiT∈BiT (s0,p0) exp [ρ(yi1 + yiT )]

(12)

Not all the components of this conditional likelihood function will depend on ρ. For example,

in the case where T = 3, which is derived in detail in the appendix, the only component that
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depends on ρ is for values of s0 = 1 and p0 = 0. When T = 3 we exclude cases where s0 = 3

and p0 = 2. The remaining values are (s0, p0) = (2, 0) and (s0, p0) = (2, 1). Under the former

we must have yi1 = 1, yi2 = 0 and yi3 = 1 and

exp [ρ(yi1 + yi3)]∑
yi1,yi3∈Bi3(2,0) exp [ρ(yi1 + yi3)]

= 1.

Under (s0, p0) = (2, 1) the only admissible sequences are (110) and (011) and we have

exp [ρ(yi1 + yi3)]∑
yi1,yi3∈Bi3(2,1) exp [ρ(yi1 + yi3)]

=
exp (ρ)

2 exp (ρ)
=

1

2
.

The only case where the conditional likelihood depends on ρ is given by

exp [ρ(yi1 + yi3)]∑
yi1,yi3∈Bi3(1,0) exp [ρ(yi1 + yi3)]

=


exp(ρ)

2 exp(ρ)+1
, for (100)

1
2 exp(ρ)+1

, for (010)

exp(ρ)
2 exp(ρ)+1

, for (001)

Hence, the conditional log-likelihood function for the case where T = 3 can be written as

`c(ρ) = ρ
N∑
i=1

(yi1 + yi3)I(si3 = 1)I(pi3 = 0)− log [2 exp (ρ) + 1]
N∑
i=1

I(si3 = 1)I(pi3 = 0)

It is easily verified that this is the same as (23) obtained in the appendix. Following Andensen

(1970), consistency and
√
n-asymptotic normality of the resulting conditional maximum like-

lihood estimator can be established.

3.4 GMM Estimation

Under the exponential distribution, the binary AR(1) model (10) can be written as

yit = αi + (1− αi)γyi,t−1 + εit, (13)

where αi = 1 − exp(−ci), and γ = 1 − exp(−ρ). First–differencing here will not eliminate

the incidental parameters since the slope also depends on ci. But since αi is time invariant

it can be eliminated by using lagged observations. For example, noting that 1 − γyi,t−2 can

only take the values of 1 and 1− γ, and will not be zero for all bounded values of ρ

αi =
yi,t−1 − γyi,t−2

1− γyi,t−2

− εi,t−1

1− γyi,t−2

,
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then αi can be eliminated from (13) to yield the non-linear differenced equation

yit = γyi,t−1 +

(
1− γyi,t−1

1− γyi,t−2

)
(yi,t−1 − γyi,t−2) + vit, (14)

where

vit = εit −
(

1− γyi,t−1

1− γyi,t−2

)
εi,t−1.

However, vit in this specification does not have mean zero since even conditional on yi,t−2 we

have

E(vit |yi,t−2 ) = E(εit |yi,t−2 )− E(εi,t−1 |yi,t−2 )− γ (yi,t−1εi,t−1 |yi,t−2 )

1− γyi,t−2

=
γ (yi,t−1εi,t−1 |yi,t−2 )

1− γyi,t−2

.

Due to the contemporaneous dependence of yit−1 and εi,t−1 in general E(vit |yi,t−2 ) 6= 0.

Using further lagged values of yit will not resolve this problem. However, we can consider

the following alternative formulation

eit =

(
1− γyi,t−2

1− γyi,t−1

)
εit − εi,t−1 =

(yit − γyi,t−1) (1− γyi,t−2)

(1− γyi,t−1)
− (yi,t−1 − γyi,t−2), (15)

which is obtained by multiplying both sides of (14) by (1− γyi,t−2) / (1− γyi,t−1). It is now

easily seen that

E(eit |yi,t−1, yi,t−2 ) =

(
1− γyi,t−2

1− γyi,t−1

)
E(εit |yi,t−1, yi,t−2 )− E(εi,t−1 |yi,t−1, yi,t−2 ).

But E(εit |yi,t−1, yi,t−2 ) = 0 by the Markov property as established in Pesaran and Timmer-

mann (2009). Hence

E(eit |yi,t−1, yi,t−2 ) = −E(εi,t−1 |yi,t−1, yi,t−2 ).

Now by chain rule of conditional expectations

E [E(eit |yi,t−1, yi,t−2 ) |yi,t−2 ] = −E [E(εi,t−1 |yi,t−1, yi,t−2 ) |yi,t−2 ] ,

E(eit |yi,t−2 ) = −E(εit |yi,t−2 ) = 0,

12



as required. In fact we have, more generally,

E(eit |yi,t−s ) = 0, for s = 2, 3, ...

As a result, γ can be estimated consistently by applying the GMM to (15) using 1, yi,t−2, yi,t−3, ...

as instruments, very much as when GMM is applied to the first-differenced version in the

linear case.4

Notice that since ρ = − ln(1 − γ), to estimate ρ consistently we must have γ < 1.

Alternatively, one could consider the GMM estimation problem directly in terms of ρ, namely

by considering the moment conditions in terms of

eit(ρ) =
(∆yit + yi,t−1 exp(−ρ)) (1− yi,t−2 + yi,t−2 exp(−ρ))

(1− yi,t−1 + yi,t−1 exp(−ρ))
−(∆yi,t−1+yi,t−2 exp(−ρ)). (16)

Let yi = (yi1, yi2, ..., yiT )′, then these moment conditions may be written as

E [mk(yi, γ)] = 0, k = 1, 2, ...., (T − 1)(T − 2)/2

Note that we require T ≥ 3 in order to use these moments. When T = 3, there is only

one moment and that case is considered in detail in the appendix as it has a closed–form

solution. The moment conditions for T = 5, for example, are given by

m1(yi, γ) = yi1

[
(yi3 − γyi2) (1− γyi1)

(1− γyi2)
− (yi2 − γyi1)

]
,

m2(yi, γ) = yi1

[
(yi4 − γyi3) (1− γyi2)

(1− γyi3)
− (yi3 − γyi2)

]
,

m3(yi, γ) = yi2

[
(yi4 − γyi3) (1− γyi2)

(1− γyi3)
− (yi3 − γyi2)

]
,

m4(yi, γ) = yi1

[
(yi5 − γyi4) (1− γyi3)

(1− γyi4)
− (yi4 − γyi3)

]
,

m5(yi, γ) = yi2

[
(yi5 − γyi4) (1− γyi3)

(1− γyi4)
− (yi4 − γyi3)

]
,

m6(yi, γ) = yi3

[
(yi5 − γyi4) (1− γyi3)

(1− γyi4)
− (yi4 − γyi3)

]
,

4There is one caveat to using 1 as an instrument. It is easy to show that E(eit(γ = 1)) = E(eit(γ =

γ0)) = 0 thus the instrument 1 fails to uniquely pin down γ0. However, the other instruments do not suffer

from this anomaly. Therefore, it is not a concern when 1 is used along with other instruments such as a

lagged variable, which is usually the case in practice.
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and so on. For the T th observation we have T − 2 moment conditions given by

m(T−2)(T−3)/2+j(yi, γ) = yij

[
(yiT − γyi,T−1) (1− γyi,T−2)

(1− γyi,T−1)
− (yi,T−1 − γyi,T−2)

]
, for j = 1, 2, ..., T−2.

Let m(yi, γ) = (m1(yi, γ),m2(yi, γ), ...,mK(yi, γ))′, and write the K = (T − 1)(T − 2)/2

moment conditions as E [m(yi, γ)] = 0. In the case where T > 3 we have excess moment

conditions that can be used to test the validity of the underlying exponential specification.

Using the familiar results on GMM estimation we have

γ̂GMM = arg min
γ

[M′
N(γ)A′NANMN(γ)] ,

where

MN(γ) = N−1

N∑
i=1

m(yi, γ),

and AN is a 1×K weight vector. An optimal choice for limN→∞AN = A(γ0) is given by

A(γ0) = D′(γ0)S−1(γ0),

where γ0 is the true value of γ, and

S(γ0) = E [NMN(γ0)M′
N(γ0)]

D(γ0) = E

[
N−1

N∑
i=1

∂m(yi, γ0)

∂γ

]
= N−1

N∑
i=1

E

(
∂m(yi, γ0)

∂γ

)
.

But (denoting c = (c1, c2, ..., cN)′)

E [NMN(γ0)M′
N(γ0)] = E

[
N−1

N∑
i=1

N∑
j=1

E
[
m(yi, γ)m′(yj, γ) |c

]]
.

Note that conditional c, yi and yj are independently distributed, which establishes that

m(yi, γ) and m(yj, γ) are also conditionally independent (since range of variations of yi

does not depend on γ). Hence, recalling that E [m(yi, γ)] = 0, we have

E [NMN(γ0)M′
N(γ0)] = N−1

N∑
i=1

E [m(yi, γ)m′(yi, γ)] .
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In general, analytical expressions for E
[
∂m(yi,γ0)

∂γ

]
and E [m(yi, γ)m′(yi, γ)] will be a com-

plicated function of c. However, for a given initial consistent estimate of γ, say γ̂, AN can

be consistently estimated as

ÂN = AN(γ̂) =

[
N−1

N∑
i=1

∂m′(yi, γ̂)

∂γ

][
N−1

N∑
i=1

m(yi, γ̂)m′(yi, γ̂)

]−1

. (17)

The asymptotic variance of γ̂GMM is given by

AsyV ar
[√

N(γ̂GMM − γ0)
]

=
[
D′(γ0)S−1(γ0)D(γ0)

]−1
,

which can be consistently estimated as

V̂ ar (γ̂GMM) =
1

N

[
D̂′(γ̂GMM)Ŝ−1(γ̂GMM)(γ̂GMM)D̂(γ̂GMM)

]−1

,

where

D̂(γ̂GMM) = N−1

N∑
i=1

∂m′(yi, γ̂GMM)

∂γ
,

and

Ŝ(γ̂GMM) = N−1

N∑
i=1

m(yi, γ̂GMM)m′(yi, γ̂GMM).

The initial estimate of γ, say γ̂INI can be obtained, for example, by imposing equal

weights on the K moment conditions, namely

γ̂INI = arg min
γ

[M′
N(γ)MN(γ)] .

This initial estimate can then be used to compute

ÂN(γ̂INI) =

[
N−1

N∑
i=1

∂m′(yi, γ̂INI)

∂γ

][
N−1

N∑
i=1

m(yi, γ̂INI)m
′(yi, γ̂INI)

]−1

,

with γ̂GMM computed as

γ̂GMM = arg min
γ

[
M′

N(γ)Â′N(γ̂INI)ÂN(γ̂INI)MN(γ)
]
,

An iterated GMM estimator, where in computation of ÂN(γ̂INI), γ̂INI is replaced by γ̂GMM ,

and a new GMM estimator is computed using ÂN(γ̂GMM), and so on.
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The following theorem illustrates the issues involved in proving the asymptotic properties

of the GMM estimator when only a single instrument, namely yi,t−2, is used. The general

case where additional instruments are considered can be established along similar lines.

Theorem 1. Suppose yit = 1(ci + ρ0yit−1 + uit ≥ 0) for i = 1, . . . , N, t = 1, . . . , T and the

following conditions hold

(A1) P (ci + ρ0 ≥ 0) = P (ci ≥ 0) = 1 and P (ci <∞) > 0 for i = 1, . . . , N .

(A2) {uit : i = 1, . . . , N, t = 1, . . . , T} is an independent array of random numbers. ui1 is

uniformly distributed on [0, 1], while for t > 1, −uit is geometrically distributed with mean

1. {uit} is independent of {ci}.

(A3) yi1 = 1
(
ui1 ≤ 1−e−ci

1−e−ci (1−e−ρ0 )

)
, for i = 1, . . . , N .

(A4) For all ρ ∈ R, a compact subset of R containing ρ0 in its interior, N−1
∑N

i=1 eit(ρ)yit−2 →p

E [eit(ρ)yit−2].

(A5) For and all ρ ∈ R, N−1
∑N

i=1 eit(ρ)yit−2 →p E [eit(ρ)yit−2].

(A6) N−1/2
∑N

i=1 eit(ρ0)yit−2 →d N(0, V ), where V = limN→∞N
−1
∑N

i=1E [e2
it(ρ0)yit−2] > 0.

Then N−1/2(ρ̂GMM − ρ0)→d N
(

0, V
E[eit(ρ0)yit−2]2

)
, where ρ̂GMM is the GMM estimator using

yit−2 as an instrument.

Assumption (A1) allows us to circumvent the positivity constraint on geometrically dis-

tributed random variables. Without it, P (yit = 1|ci, yit−1) = 1− exp(−max{0, ci + ρoyit−1}),

which greatly complicates the analysis. Assumption (A2) makes a distinction between the

initial shocks and the shocks that occur for t > 1; together with (A3), it allows yit to be

stationary, conditional on ci. Assumptions (A4) – (A6) are high–level asymptotic condi-

tions that hold under a variety of weak–dependence assumptions on the fixed effects. They

hold when ci are independent but they may also allow for spatial dependence so long as the

dependence is not too strong.5

5The assumptions we lay out here demonstrate the fact that while the asymptotic properties of GMM

estimators such as consistency and asymptotic normality are established under high level regularity conditions

in Hansen (1982), whether they are satistified in a specific nonlinear model could be a delicate matter that

is often technicially more involved than one would expect. It is worth noting that in the literature where

GMM estimators are proposed, the conventional approach has been to derive moment conditions of the model
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The variance of ρ̂GMM = − ln(1− γ̂GMM) can now be obtained using the delta method as

V̂ ar (ρ̂GMM) =

(
1

1− γ̂GMM

)2

V̂ ar (γ̂GMM) .

A test of ρ = 0 (or γ = 0) can be carried out using (15), or by testing λ = 0 in the

first-differenced regression (assuming αi 6= 1)

∆yit = λ∆yi,t−1 + ∆εit,

using ∆yi,t−2, ∆yi,t−3, ... as instruments.

4 The Case of β 6= 0

4.1 Conditional ML Estimator

Consider the case when T = 3. Denote the set of all observations such that yi1 = 0 and

yi2 + yi3 = 1 by D and define the sets

D1 = {yi1 = 0, yi2 = 0, yi3 = 1} ,

D2 = {yi1 = 0, yi2 = 1, yi3 = 0} .

It is now easily seen that (given the Markov property and (3))

Pr(D1|ci,xi3,xi2,xi1,xi0,xi,−1, ...) = (1− πi1) [1− F (β′xi2 + ci)]F (β′xi3 + ci),

Pr(D2|ci,xit,xi,t−1, ...xi1,xi0,xi,−1, ...) = (1− πi1)F (β′xi2 + ci)[1− F (ρ+ β′xi3 + ci)].

Therefore

Pr(D|ci,xi3,xi2,xi1,xi0,xi,−1, ...)

= Pr(D1|ci,xi3,xi2,xi1,xi0,xi,−1, ...) + Pr(D2|ci,xi3,xi2,xi1,xi0,xi,−1, ...)

= (1− πi1) [1− F (β′xi2 + ci)]F (β′xi3 + ci) + (1− πi1)F (β′xi2 + ci)[1− F (ρ+ β′xi3 + ci)].

and then claim the GMM estimators based on these moment conditions are consistent and asymptotically

normally distributed implicitly assuming that the required regularity conditions are satisfied.
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It then follows that when xi2 = xi3

Pr(D1|D,ci,xit,xi,t−1, ...xi1,xi0,xi,−1, ...) =
1− F (β′xi2 + ci)

1− F (β′xi2 + ci) + 1− F (ρ+ β′xi3 + ci)

=
1

1 + exp(−ρ)
,

Pr(D2|D,ci,xit,xi,t−1, ...xi1,xi0,xi,−1, ...) =
1− F (ρ+ β′xi3 + ci)

1− F (β′xi2 + ci) + 1− F (ρ+ β′xi3 + ci)

=
exp(−ρ)

1 + exp(−ρ)
.

Hence ρ can be consistently estimated when xi2 = xi3 using the sample characterized

by D. If xi2 6= xi3, provided that xi2 − xi3 has support in a neighborhood of 0, then an

estimator similar to Honoré and Kyriazidou (2000) can be implemented by using a kernel to

give weights in the likelihood function that depend inversely on the magnitude of xi2 − xi3.

It is interesting to note that it does not seem possible to use the CMLE approach to

identify β, although it can be identified by the CMLE in a logit model as studied in Honoré

and Kyriazidou (2000). A key difference in our specification and the one in Honoré and

Kyriazidou (2000) is that ours specifies the distribution of yit taking on 1 conditional on

yit−1 and xit as well as ci as exponential that is 1 − exp(−ρyit−1 − β′xit − ci). ci cannot

be cancelled out from the numerator and the denominator from the terms involving 1 −

exp(−ρyit−1 − β′xit − ci). This means that we have to make xit = xi−1t. As a result, when

we try to use the conditional likelihood approach to eliminate ci, β
′xit are also cancelled out

from the numerator and the denominator. In contrast Honoré and Kyriazidou (2000) use

a logistic specification, which does not have the problem we encounter with the term like

1− exp(−ρyit−1−β′xit− ci). For estimation of β we therefore turn to the GMM procedure.

4.2 GMM Estimation

In the general case where β 6= 0, the dynamic non-linear autoregressive model, (10), associ-

ated to the binary choice model generalizes to

yit = F (β′xit + ci) + [F (β′xit + ci + ρ)− F (β′xit + ci)] yi,t−1 + εit,
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and we continue to have E (εit |yi,t−1, yi,t−2, ...; xit,xi,t−1, ...) = 0. In the exponential case

under consideration, the non-linear AR(1) formulation reduces to

yit − 1 = exp(−β′xit − ci) + exp(−β′xit − ci)(1− exp(−ρ))yi,t−1 + εit,

or setting γ = 1− exp(−ρ)

exp(β′xit) (yit − 1) = −(exp(−ci))(1− γyi,t−1) + exp(β′xit)εit.

Since 1− γyi,t−1 cannot be zero if |γ| < 1, we have

exp(β′xit) (1− yit)
(1− γyi,t−1)

= exp(−ci)−
exp(β′xit)εit
(1− γyi,t−1)

.

Now first differencing to eliminate ci yields

exp(β′xit) (1− yit)
(1− γyi,t−1)

− exp(β′xi,t−1) (1− yi,t−1)

(1− γyi,t−2)
= −exp(β′xit)εit

(1− γyi,t−1)
− exp(β′xi,t−1)εi,t−1

(1− γyi,t−2)
,

which after some algebra simplifies to

eit = exp(β′∆xit)

(
1− γyi,t−2

1− γyi,t−1

)
εit − εi,t−1 (18)

= (1− yi,t−1)− (1− yit)
(

1− γyi,t−2

1− γyi,t−1

)
exp(β′∆xit).

Again, 1, yi,t−2,yi,t−3,.... can be used as instruments.6 If xit is exogenous, then the regressors

xi,1,xi,2, ...,xi,T can also be used as instruments. It is also easily seen that eit given above

reduces to (15) if we set β = 0, as to be expected.

In empirical applications of the GMM approach the choice of instruments can play an

important role on the small sample properties of the estimators. The problem becomes

particularly serious in panel data models where the number of instruments can rise quite

rapidly with T . The pitfalls in using too many instruments in the case of linear dynamic

panel data models is investigated in Roodman (2009). In the case of non-linear specifications,

6The same caveat as that mentioned in footnote 4 continues to hold. E(eit |γ = 1,β = 0 ) =

E(eit |γ = γ0,β = β0 ) = 0. Therefore, the instrument 1 should never be used without at least one other

lagged variable included as an instrument.
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the use of additional instruments that involve powers of yi,t−s,for s ≥ 2, or powers of lagged

exogenous variables, such as yit−2yit−3, x2
i,t−s, and yi,t−2xi,t−s, can also be justified which

could lead to even a larger set of instruments to be used in GMM estimation. A number of

procedures have been proposed to deal with this problem. Carrasco (2012) proposes using

regularization techniques to invert the covariance matrix of the instruments. Mehrhoff (2009)

proposes factorizing the instrument set whereby the full set of instruments is replaced by a

few principal components of the instrument set. Both approaches rely on related choice

parameters such as the extent of regularization/shrinkage in the case of Carrasco’s approach

and the number of principle components to be used as instruments. The application of

these basically linear techniques to the non-linear specification that we consider could also

be problematic as they need not be optimal in non-linear settings. In view of these difficulties

we do not recommend the use of GMM approach developed in this paper for applications

where T is relatively large, say more than 6. In case of non-linear panels with moderate T

samples the ML approach combined with bias correction (as proposed by Carro, 2007) might

be more appropriate.

4.3 Discussion on Robustness of the Exponential Specification

As discussed in Section 1, various specifications of dynamic binary choice panel data models

have been used in the literature depending on their convenience or/and whether they enable

the researcher to resolve the issues of initial condition or/and fixed effects. In the same vein,

we propose to use the exponential specification because with it we are able to solve both

problems and construct GMM estimators that are consistent and asymptotically normally

distributed. As for any specification in the parametric approach, a natural question is how

robust it is with regard to misspecification. The results given below show that for a distri-

bution F (·) in (2) that satisfies a certain condition, there is an exponential distribution that

gives the same probabilities for Pr(yit = 1 |yi,t−1, ci,xi ).

Proposition 1. Suppose that the true model is given by (2) with a distribution F (·) which

satisfies | log[(1−F (β′xi + ci))/(1−F (ρ+β′xi + ci)]| < 1. Suppose also that an exponential
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distribution is specified so that

Pr(yit = 1 |yi,t−1, ci,e,xi;Me ) = 1− exp(−ρeyi,t−1 − β′exit − ci,e).

Then we can find the values of ci,e and ρe such that Pr(yit = 1 |yi,t−1, ci,e,xi;Me ) = Pr(yit =

1 |yi,t−1, ci,xi ) = F (ρyi,t−1 + β′xi + ci).

The condition | log[(1−F (β′xi+ ci))/(1−F (ρ+β′xi+ ci)]| < 1 is used to ensure that the

resulting ρe is between −1 and 1. Note that this condition can be written alternatively as

e−1 < Pr(yit = 0 |yi,t−1 = 0, ci,xi )/Pr(yit = 0 |yi,t−1 = 1, ci,xi ) < e, meaning that the slope

of F (·) cannot be too steep. It is worth noting that this condition is satisfied by the logistic

distribution. Therefore, for any logistic distribution, there exists an exponential distribution

that matches the logistic distribution at xi.

5 Simulation Studies

In order to investigate the performance of the GMM and CMLE estimators we conduct a

series of Monte Carlo studies, which we summarize here. We have endeavored where possible

to match the Monte Carlo design employed by Honoré and Kyriazidou (2000).7

5.1 The GMM Estimator

To study the GMM estimator, we generate data from the exponential dynamic binary choice

model, with ρ = 0.5, and include a single exogenous regressor in the model. We draw

ci ∼ |N(0, σ2
c)| and xit ∼ |N(0, 1)|, independently. We then set σc = β so that the fixed

effects and exogenous regressors each contribute an equal amount of variation. The two

parameters are solved numerically for a proportion of 1s in the population of π̄ = 50%, this

gives us σc = β = 0.318815. The distribution of yi1 is set to the stationary distribution

conditional on the fixed effect and xi1. We generate data sets of sizes T = 3, 4, 6, 8 and

N = 250, 500, 1000, 2500, 5000, 10000 and look at the mean, variance, bias, RMSE, of the

7The full set of Monte Carlo results is available from the authors on request.
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estimates for ρ and β in 2000 replications for each experiment. The estimates are obtained

using the moment conditions

E(eit) = 0, t = 3, . . . , T,

E(xiseit) = 0, t = 3, . . . , T, s = 1, . . . , T,

E(yiseit) = 0, t = 3, . . . , T, s = 1, . . . , t− 2,

and using an estimate for the optimal choice of GMM weight matrix. There are a total of

1
2
(3T + 1)(T − 2) moment conditions. We also consider the size of the tests H0 : ρ = 0 and

power for Ha : ρ = 0.6 and Hb : ρ = 0.4 as well as the size of the tests H0 : β = 0 and power

for Ha : β = 0.418815 and Hb : β = 0.218815, all at 5% significance. Henceforth, this setting

will be referred to as the benchmark specification.

We find that the percentage of γs falling outside the admissible range, can be substantial

for small N . For N = 250 and T = 3, 12.3% of all estimates are inadmissible; with T = 8,

the percentage rises to 18.2%. However, the likelihood of obtaining an inadmissible estimate

decreases sharply with N , even though it increases with T . For N ≥ 500 the likelihood of an

inadmissible γ is below 5% and for for N ≥ 1000 it is at most 1%.

Tables 1 and 2 give results for variance, bias, and RMSE in the benchmark simulations.

Variance, bias, and RMSE improve with larger N . RMSE and variance improve with in-

creased T . However, the bias of the GMM estimator of ρ increases with T .
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Table 1. Benchmark Small Samples Results for Variance, Bias, and RMSE of ρ̂GMM .

T\N 250 500 1000 2500 5000 10000

3 Variance 0.0571 0.0326 0.0166 0.0065 0.0031 0.0016

Bias 0.0032 -0.0014 0.0027 0.0009 -0.0007 0.0004

RMSE 0.2239 0.1767 0.1282 0.0806 0.0556 0.0394

4 Variance 0.0240 0.0123 0.0066 0.0025 0.0012 0.0006

Bias -0.0446 -0.0253 -0.0104 -0.0041 -0.0020 -0.0011

RMSE 0.1514 0.1110 0.0815 0.0503 0.0349 0.0248

6 Variance 0.0105 0.0060 0.0026 0.0010 0.0005 0.0003

Bias -0.0889 -0.0442 -0.0209 -0.0057 -0.0026 -0.0011

RMSE 0.1252 0.0879 0.0554 0.0328 0.0226 0.0159

8 Variance 0.0075 0.0042 0.0018 0.0006 0.0003 0.0002

Bias -0.1557 -0.0774 -0.0309 -0.0081 -0.0032 -0.0014

RMSE 0.1613 0.0992 0.0528 0.0267 0.0181 0.0128
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Table 2. Benchmark Small Samples Results for Variance, Bias, and RMSE of β̂GMM .

T\N 250 500 1000 2500 5000 10000

3 Variance 0.0192 0.0078 0.0035 0.0015 0.0007 0.0004

Bias 0.0100 0.0073 0.0024 0.0012 0.0006 0.0007

RMSE 0.1300 0.0869 0.0591 0.0384 0.0274 0.0195

4 Variance 0.0101 0.0039 0.0019 0.0008 0.0004 0.0002

Bias 0.0024 0.0016 -0.0012 0.0006 0.0000 0.0003

RMSE 0.0942 0.0609 0.0430 0.0277 0.0198 0.0137

6 Variance 0.0047 0.0021 0.0010 0.0004 0.0002 0.0001

Bias -0.0172 -0.0040 -0.0002 0.0006 0.0003 0.0005

RMSE 0.0653 0.0448 0.0323 0.0206 0.0140 0.0099

8 Variance 0.0035 0.0016 0.0008 0.0003 0.0001 0.0001

Bias -0.0323 -0.0128 -0.0008 0.0005 0.0003 0.0001

RMSE 0.0607 0.0406 0.0279 0.0175 0.0122 0.0085

Tables 3 and 4 give the results for size and power. For T = 3 and 4, size is satisfactory

even for a relatively small N . However, there are large size distortions for T = 6 and 8, most

likely owing to the rapidly (quadratically) growing number of instruments. For these cases,

one needs large N to reduce the percentage of over-rejection. Notably, size for the β tests

improves more rapidly than the size for the ρ tests with increased N . We need N ≥ 2500 to

bring down the size to below 10% for ρ and N ≥ 1000 for β.
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Table 3. Benchmark Small Samples Results for Size and Power of Tests Based on ρ̂GMM

T\N 250 500 1000 2500 5000 10000

3 Size H∗0 0.0536 0.0636 0.0627 0.0600 0.0515 0.0545

Power H†a 0.1157 0.1382 0.1728 0.2811 0.4595 0.7115

Power H‡b 0.0433 0.0683 0.1102 0.2331 0.4255 0.7380

4 Size H0 0.0817 0.0728 0.0697 0.0540 0.0545 0.0505

Power Ha 0.2240 0.2619 0.3180 0.5560 0.8315 0.9780

Power Hb 0.0618 0.0781 0.1976 0.5045 0.8205 0.9875

6 Size H0 0.2478 0.1508 0.0901 0.0625 0.0560 0.0530

Power Ha 0.5937 0.5780 0.6855 0.9045 0.9955 1.0000

Power Hb 0.0986 0.1549 0.3540 0.8525 0.9935 1.0000

8 Size H0 0.7072 0.3977 0.1816 0.0750 0.0530 0.0605

Power Ha 0.9309 0.8785 0.9020 0.9875 1.0000 1.0000

Power Hb 0.3026 0.1433 0.4667 0.9630 1.0000 1.0000

∗ H0 : ρ = 0.5. † Ha : ρ = 0.6. ‡ Hb : ρ = 0.4 (5% level).
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Table 4. Benchmark Small Samples Results for Size and Power of Tests Based on β̂GMM

T\N 250 500 1000 2500 5000 10000

3 Size H∗0 0.0604 0.0511 0.0541 0.0490 0.0610 0.0540

Power H†a 0.1608 0.2457 0.4184 0.7274 0.9430 0.9990

Power H‡b 0.1140 0.2102 0.4149 0.7654 0.9705 0.9995

4 Size H0 0.0800 0.0660 0.0522 0.0545 0.0505 0.0445

Power Ha 0.2564 0.4081 0.6670 0.9400 0.9990 1.0000

Power Hb 0.1940 0.4023 0.6354 0.9675 1.0000 1.0000

6 Size H0 0.1450 0.0875 0.0641 0.0620 0.0450 0.0485

Power Ha 0.5737 0.7185 0.8848 0.9975 1.0000 1.0000

Power Hb 0.3658 0.6500 0.9049 0.9990 1.0000 1.0000

8 Size H0 0.2732 0.1376 0.0950 0.0660 0.0565 0.0590

Power Ha 0.8258 0.8842 0.9630 1.0000 1.0000 1.0000

Power Hb 0.4664 0.7399 0.9750 1.0000 1.0000 1.0000

∗ H0 : β = 0.3188. † Ha : β = 0.4188. ‡ Hb : β = 0.2188 (5% level).

We next modify the benchmark DGP of yit, xit and ci in various ways and look at the

behavior of our estimators. A sample of the results of these variations is given in Table 5 for

T = 3 and N = 500.

First, we look at the effect of the variance of the fixed effects. We increase σc so that

π̄ = 0.75 and then further so that π̄ = 0.95. Increasing σc causes a deterioration of the

estimates, increasing the percentage of γs falling out of bounds, along with variance, bias,

and RMSE, a rise in size and decrease in power. However, the actual size is still generally

close to the nominal size for N ≥ 5000.

Next, we vary ρ and β individually in the benchmark simulation, choosing ρ = ρbm ± 0.4

and β = βbm ± 0.2. These variations impart little change to the results of the benchmark.

The higher value of ρ causes a fall in the percentage of γ falling out of bounds.

Next, we modify the benchmark to allow the fixed effect to be correlated with the ex-

ogenous variables. We set ci = bω,T (ωx̄bm
i + (1 − ω)cbm

i ), where x̄bm
i = 1

T

∑T
t=1 x

bm
it and cbm

i
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is the benchmark fixed effect, for ω = 0.25, 0.50, 0.75. bω,T is chosen so that π̄ is equal to

the benchmark value. This has little or no effect on the results as compared to those of the

benchmark.

We also consider the effect of cross-sectional heterogeneity in xit by modifying the bench-

mark exogenous process to, xit = h(µi + σi|εit|), where µi ∼ U(0, 1), σ2
i ∼ χ2

2, and εit ∼

N(0, 1). We set h = 0.52444 to match the value of π̄ in the benchmark model. We find

that the results for the estimates of ρ are not much affected by the heterogeneity in the xit

processes. The results for β, on the other hand, have higher variance, bias, and RMSE than

the results obtained under the benchmark model. The same also applies to size and power

where under heterogeneity we observe a deterioration in size and power as compared to the

benchmark case.

We then consider the effect of autocorrelation in the exogenous variables on the results.

In this case we modify the benchmark exogenous process to xit = |0.1ζ it + dT + 0.2t|, where

ζ i is a Gaussian AR(1) with autoregressive coefficient 0.5, variance 1, and independently

distributed across i. ci are generated as in the benchmark case. The parameters are calibrated

by simulation to produce an expected proportion of 1’s of π̄bm in populations of size N =

10000. Autocrrelation has no significant effect on the results for ρ. However, the variance,

bias, and RMSE of β̂ are all higher than the benchmark values. Size also deteriorates with

autocorrelation, with the power being significantly lower than under the benchmark case.
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5.2 GMM versus CMLE

In this section we report comparative results for GMM and CMLE estimation methods for

ρ with β = 0. Recall that CMLE method is not applicable if β 6= 0. GMM estimation uses

the following moment conditions,

E(eit) = 0, t = 3, . . . , T,

E(yiseit) = 0, t = 3, . . . , T, s = 1, . . . , t− 2.

The CMLE procedure is described in 3.3.

The results for bias and RMSE are summarized in Tables 6 and 7, and for size and power

in Tables 8 and 9. In terms of RMSE, GMM outperforms CMLE for all values of T under

consideration (T = 3, 4, 6,8), although for T = 6 and 8 GMM shows a higher degree of bias

than CMLE. In terms of size, CMLE does better than GMM, and matches the nominal size

for all values of T , whilst GMM tends to over-reject when T > 6. But generally GMM

outperforms CMLE in terms of power when the sizes are comparable.

Table 6. Small Samples Results for CMLE Estimates of ρ when β = 0.

T\N 250 500 1000 2500 5000 10000

3 Variance 0.1000 0.0484 0.0237 0.0093 0.0044 0.0024

Bias 0.0300 0.0150 0.0107 0.0031 0.0025 0.0006

RMSE 0.3176 0.2205 0.1543 0.0966 0.0666 0.0487

4 Variance 0.0477 0.0230 0.0116 0.0050 0.0022 0.0011

Bias 0.0078 0.0034 0.0052 0.0017 -0.0009 -0.0008

RMSE 0.2186 0.1518 0.1077 0.0706 0.0474 0.0336

6 Variance 0.0300 0.0130 0.0064 0.0026 0.0013 0.0006

Bias -0.0100 -0.0031 -0.0039 -0.0007 0.0003 -0.0005

RMSE 0.1600 0.1141 0.0804 0.0512 0.0357 0.0255

8 Variance 0.0203 0.0105 0.0055 0.0020 0.0010 0.0005

Bias -0.0019 0.0009 -0.0008 -0.0004 -0.0006 0.0001

RMSE 0.1427 0.1026 0.0745 0.0447 0.0318 0.0230
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Table 7. Small Samples Results for GMM Estimates of ρ when β = 0.

T\N 250 500 1000 2500 5000 10000

3 Variance 0.0640 0.0325 0.0170 0.0069 0.0032 0.0017

Bias 0.0301 0.0130 0.0055 0.0005 0.0001 0.0007

RMSE 0.2427 0.1774 0.1301 0.0828 0.0567 0.0412

4 Variance 0.0264 0.0135 0.0067 0.0027 0.0012 0.0006

Bias -0.0121 -0.0045 -0.0022 -0.0015 -0.0017 -0.0001

RMSE 0.1599 0.1161 0.0818 0.0522 0.0353 0.0249

6 Variance 0.0115 0.0054 0.0026 0.0010 0.0005 0.0002

Bias -0.0288 -0.0121 -0.0057 -0.0014 -0.0005 -0.0006

RMSE 0.1105 0.0747 0.0515 0.0318 0.0217 0.0156

8 Variance 0.0080 0.0036 0.0015 0.0006 0.0003 0.0002

Bias -0.0514 -0.0174 -0.0052 -0.0018 -0.0005 0.0000

RMSE 0.1030 0.0622 0.0394 0.0249 0.0177 0.0127

Table 8. Small Sample Size and Power Results for CMLE Estimation of ρ when β = 0.

T\N 250 500 1000 2500 5000 10000

3 Size H∗0 0.0445 0.0440 0.0520 0.0410 0.0430 0.0540

Power H†a 0.0640 0.0730 0.0915 0.1750 0.2895 0.5475

Power H‡b 0.0455 0.0600 0.0900 0.1715 0.3100 0.5320

4 Size H0 0.0525 0.0510 0.0560 0.0600 0.0540 0.0510

Power Ha 0.0800 0.0970 0.1490 0.3155 0.5650 0.8450

Power Hb 0.0625 0.0900 0.1545 0.3265 0.5365 0.8430

6 Size H0 0.0500 0.0475 0.0500 0.0525 0.0475 0.0535

Power Ha 0.1000 0.1530 0.2640 0.4995 0.7935 0.9765

Power Hb 0.0900 0.1415 0.2230 0.4990 0.7990 0.9725

8 Size H0 0.0455 0.0520 0.0615 0.0485 0.0445 0.0540

Power Ha 0.1090 0.1600 0.3000 0.6010 0.8710 0.9920

Power Hb 0.1050 0.1790 0.2890 0.6025 0.8810 0.9905
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∗ H0 : ρ = 0.5. † Ha : ρ = 0.6. ‡ Hb : ρ = 0.4 (5% level).

Table 9. Small Sample Size and Power Results for GMM Estimation of ρ when β = 0.

T\N 250 500 1000 2500 5000 10000

3 Size H∗0 0.0496 0.0509 0.0533 0.0510 0.0485 0.0515

Power H†a 0.0926 0.1081 0.1523 0.2646 0.4405 0.6915

Power H‡b 0.0380 0.0566 0.1016 0.2216 0.3895 0.7025

4 Size H0 0.0712 0.0607 0.0595 0.0650 0.0545 0.0480

Power Ha 0.1761 0.2007 0.2890 0.5305 0.8090 0.9755

Power Hb 0.0577 0.1069 0.2150 0.4840 0.8130 0.9815

6 Size H0 0.1097 0.0795 0.0690 0.0545 0.0425 0.0420

Power Ha 0.3179 0.3865 0.5750 0.8795 0.9930 1.0000

Power Hb 0.1268 0.2310 0.4640 0.8840 0.9960 1.0000

8 Size H0 0.1989 0.1055 0.0615 0.0490 0.0580 0.0540

Power Ha 0.5746 0.5915 0.7735 0.9785 1.0000 1.0000

Power Hb 0.1643 0.3490 0.7035 0.9840 1.0000 1.0000
∗ H0 : ρ = 0.5. † Ha : ρ = 0.6. ‡ Hb : ρ = 0.4 (5% level).

5.3 Reducing the Number of Instruments

In order to address the issue of the large number of instruments, we fix the DGP to the

benchmark specification and limit the number of instruments following five different proce-

dures. (1) The first (benchmark) procedure uses all available linear instruments as detailed

in section 5.1. Procedure (2) restricts the set of instruments, following the method proposed

by Mehrhoff (2009), by utilizing only the few largest principal components (PC) of the in-

struments in estimation. The number of principal components is selected so that at least

95% of the total variation of the instruments under consideration is explained by the PC’s.8

Procedure (3) reduces the number of instruments to two lags of yit and xit, as well as the

8We also tried setting the threshold at 90%. This gets rid of too much information when T is small and

does not help much for large T so it does not substantively change the main results of our experiments.
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constant. That is, it utilizes the following 5T − 11 moment conditions,

E(eit) = 0, E(xiteit) = 0, E(xi,t−1eit) = 0, for t = 3, 4, ..., T ;

E(yit−2eit) = 0, for t = 3, 4, ..., T ;

E(yit−3eit) = 0, for t = 4, 5, ..., T.

Procedure (4) applies Mehrhoff’s method to the reduced set of instruments under (3). Finally,

procedure (5) reduces the number of instruments further by using two lags of yit, and only

one lag of xit, as well as the constant, bringing the total number of instruments to 4T − 9.

Tables 10 and 11 report the results for T = 4, 6, 8 and N = 250, 500, 2500, as these were

the sample sizes for which the GMM estimator performed worse. Reducing the number of

instruments typically improves bias and size at a small cost to variance and RMSE. The

benefit of the reduction in the number of instruments is most pronounced for T = 6, 8, where

bias and size are significantly improved. In terms of variance, procedure (1) is optimal.

Procedures (4) and (5) have the lowest bias. Procedure (2) is best for the RMSE of β̂.

For the RMSE of ρ̂, there is no clear winner among the alternative instrument selection

procedures, although procedure (5) performs best in terms of RMSE for T = 8. Procedures

(4) and (5) have the best size properties. We conclude that the GMM estimator performs

well for large T when the number of instruments is reduced by one of the methods employed

here.

5.4 Average Partial Effects

To provide additional support for our choice of the exponential specification, here we present

evidence of its ability to reproduce the average partial effects of a dynamic logistic model.

Suppose the DGP is given by the logistic specification

Pr(yit = 1 |yi,t−1, cil, xit ) =
eρlyi,t−1+βlxit+cil

1 + eρlyi,t−1+βlxit+cil
,

Then the marginal effect for continuous xit is

∂P [yit = 1|yi,t−1, cil, xit]

∂xit
=

βle
ρlyi,t−1+βlxit+cil

(1 + eρlyi,t−1+βlxit+cil)2
.
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On the other hand, the marginal effect of yi,t−1 is given as

P [yit = 1 |yi,t−1 = 1, cil, xit ]−P [yit = 1 |yi,t−1 = 0, cil, xit ] =
βle

ρl+βlxit+cil

(1 + eρl+βlxit+cil)2
− βle

βlxit+cil

(1 + eβlxit+cil)2
.

For a particular xit, say the average x̄ = 1
NT

∑
i,t xit, we may be interested in the aver-

age marginal effect over the entire population (i.e. averaging over the fixed effects). These

quantities may be calculated as,

APEX (yi,t−1 = 1, xit = x̄) = eβ
′
lx̄+ρlβl lim

N→∞

1

N

N∑
i=1

ecil

(1 + ecil+βlx̄+ρl)2 ,

APEX (yi,t−1 = 0, xit = x̄) = eβlx̄βl lim
R→∞

1

N

N∑
i=1

ecil

(1 + ecil+βlx̄)2 ,

APEY (xit = x̄) = eβlx̄ (eρl − 1) lim
R→∞

1

N

N∑
i=1

[
ecil

(1 + ecil+βlx̄) (1 + ecil+ρl+βlx̄)

]
,

where the averages over i are obtained by drawing from the distribution of cil. That is, the

average partial effects are obtained by stochastic integration over cil.

Now suppose that data from this logistic DGP are used to estimate ρe and βe using the

GMM procedure we have outlined above (i.e. based on the exponential specification). The

question is, how well do these estimates reproduce the (true) average partial effects given

above for the logistic specification? To answer this question, we must first specify how the

fixed effects of the exponential specification are to be computed. We do this by deriving fixed

effects under exponential specification, cie, in terms of the fixed effects of the true logistic

specification, cil, by matching the transitions from 0 to 1 given xit = x̄i = 1
T

∑
t xit across

the two specificiations, namely9

1− e−cie−β′ex̄i =
ecil+β′lx̄i

1 + ecil+β′lx̄i
,

which yields

e−cie =
eβ
′
ex̄i

1 + ecil+β′lx̄i
.

9It is also possible to match the transitions from 1 to 1 given xit = x̄i. This gives slightly different

exponential fixed effects. But it doesn’t change the general conclusion of this section. The results are

available from the authors on request.

35



We may then estimate the average partial effects as

ÂPEX (yi,t−1 = 1, xit = x̄) =β̂ee
−ρ̂e−β̂ex̄ lim

N→∞

1

N

N∑
i=1

eβ̂ex̄i

1 + ecil+βlx̄i

ÂPEX (yi,t−1 = 0, xit = x̄) =β̂ee
−β̂ex̄ lim

N→∞

1

N

N∑
i=1

eβ̂ex̄i

1 + ecil+βlx̄i

ÂPEY (xit = x̄) =e−β̂ex̄(1− e−ρ̂e) lim
N→∞

1

N

N∑
i=1

eβ̂ex̄i

1 + ecil+βlx̄i
.

The benchmark APE results are computed under the logistics model employed by Honoré

and Kyriazidou (2000), where ρl = 0.5, βl = 1, xit ∼ N(0, π2/3), and cil ∼ N(0, 1). To avoid

any complications with initial conditions, the data are burned in for the first 100 periods in

each replication, while being careful to keep xit fixed across replications. The simulations are

based on N = 1000, T = 3, and each experiment is repeated 2000 times to obtain the mean,

variance, bias, and RMSE of the APEs. We vary the DGP and the data sets in a variety of

ways (see Table 12).

The results indicate that the average partial effects obtained using the exponential spec-

ification, with matched fixed effects as explained above, are close to the true average partial

effects. In particular, the ÂPEY is typically quite close to APEY . This provides further

evidence of the robustness of the exponential specification in that it yields sensible estimates

for the average partial effects even with a misspecified model.

5.5 Summary of MC Results

The GMM estimator performs well under a variety of scenarios. To assess the robustness

of the GMM estimator we experimented with different values of the variance of the fixed

effects, different values of ρ and β, allowed for correlation between the fixed effects and

the regressors, allowed for heterogeneity in the regressors across the different units, and

allowed for autocorrelation in the regressors. In each of the experiments, we considered bias,

variance, RMSE, size, and power of the GMM estimators. They are shown to work quite

well for relatively small sample sizes. Interestingly, GMM emerges as a better estimator than
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CMLE for small values of T (when β = 0 and both estimators can be computed). In the case

of large T we experiment with the moment reduction techniques of Mehrhoff (2009) finding

significant improvements in performance in small samples. We also present evidence of the

ability of the exponential specification to match the average partial effects from a logistic

dynamic binary choice model.

6 Conclusion

In this paper we consider identification and estimation of dynamic binary response panel

data models. We develop an exponential class of models and derive moment conditions

that enable us to eliminate the unobserved heterogeneity and at the same time to identify

the model parameters. The resulting GMM estimator we propose is consistent and root-N

asymptotically normal. As a result, our approach is general and offers several advantages

over the existing estimators.

As is well known, it is important to use a dynamic binary choice specification to model

the state dependence in a panel setting because of the model’s ability to distinguish the state

dependence from the unobserved heterogeneity among other useful features. The dynamic

binary choice models, however, have been rarely used in analyzing microeconomic data,

mainly due to the problems associated with the initial condition in combination with the

incidental parameter problems. Our approach based on the exponential specification resolves

these two issues at the same time; the resulting GMM estimator can be readily implemented,

and also has nice asymptotic properties. Our comprehensive Monte Carlo study not only

demonstrates the good finite sample properties of the GMM estimator, but also addresses

the issues of choice of instrument variables, and robustness of the exponential specification.

Therefore, our approach can find wide applications in analyzing microeconomic panel data

from a dynamic perspective.
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7 Appendix

7.1 Proof of the Uniqueness of the Exponential Distribution

Proposition A1: Suppose F is a differentiable cumulative distribution function. If there exist

functions G and H such that F (x + y) − F (x) = G(y)H(x) then F = 1 − C exp(−Dx) for

some positive constants C and D.

Proof: Assume without loss of generality that sgn(G(y)) = sgn(y) and H is non–negative.

Now take the limit as y →∞. Then A = limy→∞G(y) exists and 1− F (x) = AH(x). Since

F is a cumulative distribution function, it is non–constant and so A 6= 0. In particular, the

non–negativity of G over positive real numbers implies that A > 0. This now implies that

F (x+ y)− F (x) = A−1(1− F (x))G(y). Divide both sides by y and take the limit as y → 0.

The differentiability of F implies that B = limy→0G(y)/y exists and F ′(x) = B
A

(1 − F (x)).

Since F is non–decreasing and bounded by 0 and 1, the sign of B cannot be negative. Since

F is also non–constant B 6= 0 so we must have B > 0. The final step is to note that we

have arrived at a differential equation in x that can be solved as, F (x) = 1 − C exp(−B
A
x)

for some constant C. Again, since F is a cumulative distribution we must have C > 0.

7.2 GMM in the case where β = 0 and T = 3

In the case where T = 3 we only have one moment condition to estimate γ (or ρ), namely

N∑
i=1

ei3(γ)yi1 =
N∑
i=1

yi1

[
(yi3 − γyi2) (1− γyi1)

(1− γyi2)
− (yi2 − γyi1)

]
= 0. (19)

Note that ei3(γ) does not depend on γ if yi1+yi2+yi3 = 0 or = 3. Consider now the case where

yi1 + yi2 + yi3 = 2, and note further that observations where yi1 = 0 and yi2 = yi3 = 1 can be

dropped since yi1ei3(γ) = 0. The other remaining cases are (yi1, yi2, yi3) = (1, 0, 0), (1, 1, 0),

and (1, 0, 1). Denote the number of cross section units associated with these patterns of

observations over time by n100, n110 and n101, respectively. Then the moment condition in γ

can be written as

n100γ̂GMM,1 − n110 + n101 = 0.
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Hence, if n100 6= 0

γ̂GMM,1 =
n110 − n101

n100

.

An estimate for ρ can be obtained if n110 < n100 + n101.

In the case where n100 = 0, the above GMM estimator is not valid. But sinceE(eit |yi,t−s ) =

0, we also have unconditionally that E(eit) = 0. This suggests the following sample moment

condition
N∑
i=1

[
(yi3 − γyi2) (1− γyi1)

(1− γyi2)
− (yi2 − γyi1)

]
= 0. (20)

Once again we only need to consider observations where yi1+yi2+yi3 = 1 or yi1+yi2+yi3 = 2.

Then we have

n100γ −
1

1− γ
n010 + n001 + n101 − n110 = 0, (21)

−n100γ
2 + (n100 + n110 − n001 − n101)γ + n001 + n101 − n110 − n010 = 0. (22)

Preliminary analysis suggests that the solutions to (22) could be complex, and when real

could fall outside the range [0, 1), and hence might not yield sensible estimates for ρ. It is,

therefore, more meaningful to use the unconditional moment condition only when n100 = 0.

In this case the solution to the unconditional moment condition is unique and is given by

(obtained by setting n100 in (21) zero)

γ̂GMM,2 = 1− n101

n001 + n101 − n110

.

Hence, in general we could estimate γ by

γ̂GMM =
n110 − n101

n100

, if n100 6= 0,

= 1− n101

n001 + n101 − n110

, if n100 = 0.
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7.3 CMLE in the Case where β = 0 and T = 3

Suppose we have observations yi1, yi2 and yi3 on N individual units. Denote the set of all

observations such that yi1 + yi2 + yi3 = 1 by B and define the sets

A1 = {yi1 = 1, yi2 = 0, yi3 = 0} ,

A2 = {yi1 = 0, yi2 = 1, yi3 = 0} ,

A3 = {yi1 = 0, yi2 = 0, yi3 = 1} .

It is now easily seen that (given the Markov property and (3))

Pr(A1) = Pr(yi1 = 1) Pr(yi2 = 0 |yi1 = 1) Pr(yi3 = 0 |yi2 = 0)

= π∗i [1− F (ci + ρ)] [1− F (ci)]

=
F (ci) [1− F (ci + ρ)] [1− F (ci)]

1− F (ci + ρ) + F (ci)
.

Similarly

Pr(A2) =
F (ci) [1− F (ci + ρ)]2

1− F (ci + ρ) + F (ci)
,

Pr(A3) =
[1− F (ci + ρ)] [1− F (ci)]F (ci)

1− F (ci + ρ) + F (ci)
,

and

Pr(B) = Pr(A1) + Pr(A2) + Pr(A3).

Also

Pr(Ai) = Pr(Ai ∩ B) = Pr(B) Pr(Ai |B ),

and

Pr(Ai |B ) =
Pr(Ai)
Pr(B)

for i = 1, 2, 3.

Hence

Pr(A1 |B ) =
[1− F (ci)]

[1− F (ci + ρ)] + 2 [1− F (ci)]
,

Pr(A2 |B ) =
[1− F (ci + ρ)]

[1− F (ci + ρ)] + 2 [1− F (ci)]
,

Pr(A3 |B ) = 1− Pr(A1 |B )− Pr(A2 |B ).
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In the exponential case, 1− F (ci) = exp(−ci) and 1− F (ci + ρ) = exp(−ci − ρ), and

Pr(A1 |B ) =
1

exp(−ρ) + 2
,

Pr(A2 |B ) =
exp(−ρ)

exp(−ρ) + 2
,

Pr(A3 |B ) =
1

exp(−ρ) + 2
,

which do not depend on the incidental parameters. It is clear that conditioning on yi1 +yi2 +

yi3 = 0 and yi1 + yi2 + yi3 = 3 will not help. It only remains to consider the case where the

conditioning set is yi1 + yi2 + yi3 = 2. Denoting

C1 = {yi1 = 1, yi2 = 1, yi3 = 0} ,

C2 = {yi1 = 0, yi2 = 1, yi3 = 1} ,

C3 = {yi1 = 1, yi2 = 0, yi3 = 1} ,

D = C1 ∪ C2 ∪ C3 = {yi1 + yi2 + yi3 = 2}

It is easily seen that

Pr(C1 |D ) =
F (ρ+ ci)

2F (ρ+ ci) + F (ci)
,

Pr(C2 |B ) =
F (ρ+ ci)

2F (ρ+ ci) + F (ci)
,

Pr(C3 |B ) =
F (ci)

2F (ρ+ ci) + F (ci)
.

These conditional probabilities depend on ci even if F (·) has an exponential form. Conse-

quently, the only appropriate conditioning is yi1 + yi2 + yi3 = 1.

The conditional likelihood function for the exponential model is given by

Lc(ρ) =
∏
i∈B

(
1

exp(−ρ) + 2

)yi1+yi3∏
i∈B

(
exp(−ρ)

exp(−ρ) + 2

)yi2
=

∏
i∈B

(
1

exp(−ρ) + 2

)yi1+yi2+yi3∏
i∈B

(exp(−ρ))yi2 ,
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and

lnLc(ρ) = −
∑
i∈B

ln [exp(−ρ) + 2]− ρ
∑
i∈B

yi2 (23)

= − ln [exp(−ρ) + 2]
N∑
i=1

I(yi1 + yi2 + yi3 = 1)− ρ
N∑
i=1

yi2I(yi1 + yi2 + yi3 = 1),

where I(A) = 1 is A is true and I(A) = 0 if A is not true. The conditional log-likelihood

function can be written more compactly as

lnLc(ρ) = nB {− ln [exp(−ρ) + 2]− ρ p̂}

where nB =
∑N

i=1 I(yi1 + yi2 + yi3 = 1), and

p̂ =

∑N
i=1 yi2I(yi1 + yi2 + yi3 = 1)∑N
i=1 I(yi1 + yi2 + yi3 = 1)

=

∑N
i=1 I(yi1 = 0, yi2 = 1, yi3 = 0)∑N

i=1 I(yi1 + yi2 + yi3 = 1)
.

Also since
∂ lnLc(ρ)

∂ρ
= nB

{
exp(−ρ)

2 + exp(−ρ)
− p̂

}
then the conditional maximum likelihood estimator of ρ is given by

ρ̂ = − ln

(
2p̂

1− p̂

)
. (24)

The standard error for ρ̂ can be obtained using the second derivative of the conditional

log-likelihood function. We have

V ar(ρ̂) =
1

nB

[2 + exp(−ρ)]2

2 exp(−ρ)
.

7.4 Proof of Theorem 1

Given assumption (A3)

P (yi1 = 1|ci) =
1− e−ci

1− e−ci(1− e−ρ0)
,

and it is evident that this choice of initial distribution makes yit stationary conditional on ci.

Thus π∗i = P (yit = 1|ci) = P (yi1 = 1|ci) for t ≥ 1.
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Proof. to simplify notation we utilize the following alternative form of eit

eit = eρ∆yit−1(yit − 1) + 1− yit−1.

Let the objective function be fi(ρ) = eityit−2. Then we have

E(eρ∆yit−1(yit − 1)yit−2) = E(E(yit − 1|ci, yit−1, yit−2, . . .)e
ρ∆yit−1yit−2)

= −E(e−ci−ρ0yit−1eρ∆yit−1yit−2)

= −E(e−ci−(ρ0−ρ)yit−1−ρyit−2yit−2)

= −E(E(e−(ρ0−ρ)yit−1 |ci, yit−2, yit−3, . . .)e
−ci−ρyit−2yit−2)

= −E((e−(ρ0−ρ)(1− e−ci−ρ0yit−2) + e−ci−ρ0yit−2)e−ci−ρyit−2yit−2)

= −E(e−ci−(ρ0−ρ)−ρyit−2yit−2 − e−2ci−(ρ0−ρ)−(ρ+ρ0)yit−2yit−2

+ e−2ci−(ρ+ρ0)yit−2yit−2)

= −e−ρ0E(e−ciπ∗i ) + e−2ρ0E(e−2ciπ∗i )− e−ρ0−ρE(e−2ciπ∗i ).

On the other hand

E((1− yit−1)yit−2) = E(E(1− yit−1|ci, yit−2, yit−3, . . .)yit−2)

= E(e−ci−ρ0yit−2yit−2)

= e−ρ0E(e−ciπ∗i ).

Summing up we obtain

Efi(ρ) = (e−ρ0 − e−ρ)e−ρ0E(e−2ciπ∗i ).

Now 0 ≤ E(e−2ciπ∗i ) ≤ 1 and is equal to zero if and only if ci is almost surely infinite, which

is ruled out by assumption (A1). Thus Efi(ρ) is continuous in ρ and equals zero if and only

if ρ = ρ0. This satisfies Assumption 1.1 of Harris and Mátyás (1999).

The derivative is easily obtained as f ′i(ρ) = eρ∆yit−1∆yit−1(yit − 1)yit−2, which is clearly

continuous and bounded by emax(R) in R. It follows that,

|fi(ρ)− fi(ρ′)| ≤ emax(R)|ρ− ρ′|,
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for all ρ, ρ′ ∈ R and so f is Lipschitz. Corollary 3.1 of Newey (1991), it then follows that

N−1
∑N

i=1 fi(ρ) converges uniformly to E(fi(ρ)). This satisfies Assumption 1.2 of Harris and

Mátyás (1999) and it follows from the their Theorem 1.1 that γ̂ is consistent.

The continuity of f ′i(ρ) satisfies Assumption 1.7 of Harris and Mátyás (1999). f ′′i (ρ) =

e∆yit−1(∆yit−1)2(yit−1)yit−2 is bounded again by emax(R). It follows again from Newey (1991)

that f ′i(ρ) itself is Lifschitz and by assumption (A5), N−1
∑N

i=1 f
′
i(ρ) converges uniformly to

E(f ′i(ρ)). By Theorem 4.1.5 of Amemiya (1985), N−1
∑N

i=1 f
′
i(ρ̂) converges to Ef ′i(ρ0). This

satisfies Assumption 1.8 of Harris and Mátyás (1999).

Now let i 6= j. By assumption (A2), fi(ρ) and fj(ρ) are independent conditional on ci

and cj. Therefore, E(fi(ρ)fj(ρ)) = E(E(fi(ρ)|ci, cj)E(fj(ρ)|ci, cj)). Assumption (A2) again

implies that fi(ρ) is, conditional on ci, independent of cj. Thus E(fi(ρ)|ci, cj) = E(fi(ρ)|ci).

It follows that E(fi(ρ)fj(ρ)) = E(E(fi(ρ)|ci)E(fj(ρ)|cj)). Since E(fi(ρ0)|ci) = 0, we have

that E(fi(ρ0)fj(ρ0)) = 0 for i 6= j and so var
(

1√
N

∑N
i=1 fi(ρ0)

)
= 1

N

∑N
i=1 E(f 2

i (ρ0)). Thus

assumption (A6) implies the last necessary assumption of Harris and Mátyás (1999), their

assumption 1.9.

7.5 Proof of Proposition 1

Choose ci,e and ρe such that ci,e = −β′exi− log(1−F (β′xi + ci)), and ρe = log(1−F (β′xi +

ci)) − log(1 − F (ρ + β′xi + ci)) . Then one can verify that Pr(yit = 1 |yi,t−1, ci,e,xi;Me ) =

F (ρyi,t−1 + β′xi + ci) = Pr(yit = 1 |yi,t−1, ci,xi ). Also for ρe to be between −1 and 1, it is

equivalent that | log[(1− F (β′xi + ci))/(1− F (ρ+ β′xi + ci)]| < 1.
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