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Abstract 
 
We study the introduction of new technologies when their costs are subject to idiosyncratic 
uncertainty and can only be fully learned through individual experience. We set up a dynamic 
model of clean experience goods that replace old polluting consumption options and show 
how optimal regulation evolves over time. In our base setting where social and private 
learning incentives coincide, the optimal tax of the polluting consumption is increasing over 
time. However, if social and private learning incentives diverge, we show that it will be 
optimal to temporarily increase the tax rate beyond net marginal external damages to induce 
optimal learning, before reducing the tax rate to the steady-state level. Alternatively, one 
needs to complement the tax by subsidies for first-time users which will be phased out over 
time. Similar results apply if consumers have biased expectations. We therefore give a 
rationale for introductory subsidies of new, clean technologies and non-monotonic tax paths 
from a perspective of consumer learning. 
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1.  Introduction 

Many environmental regulation schemes involve taxes or subsidies that change over time. In 

this paper, we study the dynamics of environmental regulation to control the adoption of a socially 

beneficial experience good. That is, by trying out a new, less polluting consumption choice, 

consumers may learn about their specific individual net costs of its use.  

Examples are widespread: car users are often only partially informed about the specific costs 

and benefits of using public transport (or other means of transportation).  Ecologically produced 

food and clothing may have attributes unknown to the inexperienced user, including taste, 

durability, social acceptance and the like.  Household or office appliances are often advertized in 

terms of their higher energy efficiency relative to the older versions they seek to replace, but 

consumers have only limited knowledge about operating costs and convenience associated with the 

new products. Experience learning may also relate to the sensation of warm-glow or social 

reputation from using environmentally friendly products (Andreoni 1990, Benabou and Tirole 

2006).  Common to these examples is that the new product reduces an externality and that 

consumers are uncertain about their personal benefits and costs before trying out the new product.   

We study the optimal regulation of an experience good and explore rationales for initial 

subsidies for a new product, and demonstrate how optimal regulation levels change over time.  We 

focus on the dynamics of government intervention that is driven exclusively by consumers’ 

personal learning from adopting a new technology. That is, we abstract both from learning 

spillovers among consumers as well as from supply-side arguments like cost reductions through an 

intensified use of the new technology that may be caused by technological spillovers among firms. 

The study of experience goods is novel in the environmental economics domain. Our paper is, 

however, related to studies in industrial organization that focus on monopolistic supply of 

experience goods. Bergemann and Välimäki (2006) examine monopolistic pricing of experience 

goods in a dynamic model. They show that the dynamics crucially depend on a simple dichotomy 

between mass and niche markets.1 While prices in mass markets are declining over time, they may 

                                                 

1 In their paper, a mass market is characterized by the optimal price for informed consumers being low enough such 
that uninformed consumers have an incentive to try the new product.  In such a market, all consumers will eventually 
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initially be low but subsequently increase in niche markets.  The low initial prices are set with a 

focus on increasing market penetration, whereas the higher prices in the steady state (where no 

more learning takes place) maximize monopoly profits.  The literature on dynamic pricing of 

experience goods goes back to Shapiro (1983) who considers learning in a simple two-period 

model. Pricing of experience goods has also been discussed by Cremer (1984), Farrell (1986), 

Milgrom and Roberts (1986), and Tirole (1988).   

We set up a dynamic model of a new experience good that replaces an old consumption option 

generating an environmental externality. We consider an infinite-horizon, discrete-time model with 

a continuum of consumers, who have (at most) unit demand per period for the new product. 

Alternatively, they consume the traditional, more polluting product.  Consumers differ in their 

expected net costs of using the new technology and face an ex ante unknown cost component. The 

latter is subject to idiosyncratic uncertainty and can only be learned through individual experience. 

We assume that consumers learn their true costs/valuation when first consuming the new 

technology for one time period.2   

We consider two different regulatory regimes: we start by analyzing the first-best case in 

which the regulator, at each point in time, determines both the number of inexperienced consumers 

that are exposed to the new technology for the first time, and the set of experienced consumers who 

should continue using the technology. Second, we consider a setting where the regulator needs to 

rely on subsidies/taxes only.  Here, the subsidy in the given period determines both the behavior of 

the experienced consumers as well as the inexperienced consumers’ decision to try the new 

technology.   

We show how optimal regulation evolves over time. As long as consumers’ and social 

discount rates coincide and expectations about net costs of the new technology are unbiased, the 

first-best case can be decentralized by relying on a tax for the polluting technology only, with the 

                                                                                                                                                                 
learn. Conversely, a niche market will involve consumers that do not try the new product as they do not have an 
incentive to do so at the optimal price for informed consumers.   

2 This clearly is a highly stylistic assumption. In general, learning takes places at different rates and consumers may 
have different initial knowledge about the new technology. Empirical evidence suggests that the rate of learning 
crucially depends on the market (e.g., Erdem and Keane (1996), Ackerberg (2003), Erdem, Imai, and Keane (2003), 
Israel (2005), Osborne (2005), and Goettler and Clay (2006), Crawford and Shum (2005)).   
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optimal tax rate increasing over time.  If private discount rates exceed the social discount rate or 

consumers cost expectation is biased, however, the first-best solution can only be implemented by 

complementing the tax with a subsidy for first-time users. This subsidy will be decreasing over 

time. If the regulator cannot discriminate between first-time and experienced users, the second best 

taxation scheme may involve a non-monotonic path: tax rates are first increasing with a focus on 

reaching the optimal amount of learning, before being reduced to the level that reflects the 

marginal social costs of using the polluting alternative.   

Our results are qualitatively similar to those derived by Bergemann and Välimäki (2006) in the 

context of optimal monopoly pricing of experience goods.  During the approach path, the 

government (or monopolist) sets the tax with a focus on inducing optimal learning.  In the steady 

state, however, no more learning takes place, and the tax (price) is chosen in order to maximize 

social welfare (monopoly profits).   

We believe that our results indicate an important reason for a slow introduction of pollution 

taxes that is motivated by the fact that consumers are uncertain about their personal costs or 

benefits from using a new and cleaner technology. Only by trying it will they learn about the 

personal fit. We show that such a setting not only motivates taxes that are increasing over time, but 

also that it may require introductory subsidies for first-time users that are phased out over time.  

Our paper is structured as follows. Section 2 presents our basic model and section 3 discusses 

the social optimum. Section 4 considers the case of first-best regulation, while we turn to a second 

best regulation that solely relies on usage taxes in section 5. Section 6 concludes.    

 

2.  Base model 

Consumers choose one of two mutually exclusive alternatives, which we will label A and B.  

Alternative A is the status quo and all of its costs and benefits are known, including environmental 

externalities (example: commuting by car).  Alternative B is characterized entirely by private costs 

(example: commuting by train).  For simplicity, we assume that alternative B does not have 
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external costs or benefits, and that alternative A does not generate private costs.3  Consumers who 

have never used alternative B are uncertain about the total private costs and benefits involved, 

which varies by individual.  Once a consumer tries B for one period, she learns her true net costs 

(or equivalently, her overall utility).  If these net costs are below those associated with alternative 

A, she will continue using alternative B; otherwise she will revert to alternative A.4  Consumers 

ignore external effects when maximizing their utility.   

We separate the private net costs into a part that is unknown to the consumer until she tries 

alternative B, and another part that she knows beforehand.  This allows for the possibility that 

consumers have some information about some costs, even if they are unsure about the total costs.   

We will denote a consumer’s ex-ante known costs as ∆ , which are distributed within the 

population according to the p.d.f. ( )g ∆  and c.d.f ( )G ∆ .  In addition, each consumer faces a cost 

component δ  that is unknown before experiencing the good. We denote the p.d.f. and c.d.f. of δ  

across the population as ( )f δ  and ( )F δ , respectively.  We assume that ∆  and δ  are distributed 

independently of each other and have full support.  Without loss of generality, we normalize 

[ ] 0E δ =  such that a consumer’s type can be characterized by her ex ante expected costs 

( | ) ( )E Eθ δ∆ = ∆ + = ∆ . 

Every period, a fraction of consumers tries alternative B for the first time.  The distribution of 

∆  defines the sequence according to which consumers try alternative B, with the first ones to learn 

being consumers with the lowest expected costs ∆ .  This means that we can express the fraction of 

consumers who have learned at any given time as ( )tG ∆ , where t∆  refers to the threshold in 

expected private costs below which all consumers have learned.   

                                                 

3 This assumption conveys no loss of generality as long as the marginal costs of B are larger than those of A even for 
the first user that switches from A to B.  In this case, defining C=C(B)-C(A) yields the exact same first-order 
conditions as in our model.  We can therefore interpret C as the incremental costs from providing alternative B relative 
to A, which are assumed to be positive, increasing, and convex.  The same logic applies to environmental damages.  

4 Key to our model is the reversibility of the decision.  For our example of car commuting vs. public transportation, 
this means that consumers would keep the car when trying the public transport option rather than selling it immediately.  
Other examples could include renting of zero-energy housing, or of electric cars.  Again, the key assumption is that the 
decision is reversible without additional costs, that the new technology is costlier than the old one, and that switching 
from the old to the new technology reduces an externality.   



6 

We denote tθ  as the threshold for private net costs up to which informed consumers continue 

to use alternative B at time t .  A consumer who has already learned her private net costs θ δ= ∆ +  

by trying alternative B chooses to use B if and only if tθ δ θ= ∆ + ≤ . Let [0,1]tΩ ∈  describe the 

fraction of consumers that use B at time t. Normalizing the mass of consumers to 1, we obtain 

1( ) ( ) ( ) ( )t

t t t tF dG G Gθ
∆

+−∞
Ω ≡ −∆ ∆ + ∆ − ∆∫       (1) 

where the first term describes the fraction of informed consumers that chooses B over A at any 

given time t, and 1( ) ( )t tG G+∆ − ∆  is the fraction of the consumers that learn in period t.5   

The use of the dirty alternative A generates external damages (1 )tD D= −Ω  (with ' 0D > , 

'' 0D ≥ ). The clean alternative B causes operating costs that depend on the number of users, 

( )tC C= Ω  (with ' 0, '' 0C C> ≥ ). We assume that in any period, the usage rate of alternative B is 

capacity constrained: t t tK kΩ ≤ +  where tK  denotes the already existing capacity from the 

previous period and tk its expansion in period t. Expanding the capacity of alternative B in period t 

to 1t t t tK K k K+ = + ≥  generates costs ( )tA k  (with ' 0, '(0) 0, '' 0A A A≥ = > ). A natural example 

for our study is that of building infrastructure, e.g. for a public transportation network.  Such 

networks are costly to build, and it is usually a slow process such that costs per period are highly 

convex.   

 

3.  The social optimum 

We set up a dynamic optimization problem from the point of view of the social planner who 

aims to minimize costs (which is equivalent to maximizing social welfare under a utilitarian social 

welfare function).  Defining the per-period increment in the fraction of informed consumers as 

1t t ts += ∆ −∆  and substituting into the objective function, the intertemporal optimization problem 

                                                 

5 Because the threshold θt can change over time, a consumer could potentially switch back and forth between the two 
alternatives.   
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can be written as minimizing social costs (SC) by choosing the control variables ,t tsθ  and tk  at 

every point in time, subject to state equations for the state of learning and the available capacity, a 

capacity constraint, nonnegativity constraints and initial conditions for the state of learning and 

capacity:  

1

, , 0

1

1

1

0 0 0 0

min ( ) ( ) ( ) ( ) (1 ) ( ) ( )

. .
;

;
0; 0; 0;

;

t t t

t t t
t

rt
t t ts k t

t t t

t t t

t t

t t t

t t

SC e dF dG dG D C A k

s t s
K K k
K

s k
K K

θ

θ
δ δ

θ

+∆ −∆ ∆∞
−

= −∞ −∞ ∆

+

+

+

= =

 
= ⋅ ∆ + ∆ + ∆ ∆ + −Ω + Ω +  

 

∆ = ∆ +

= +

≥ Ω

≥ ≥ ≥

∆ = ∆ =

∑ ∫ ∫ ∫

 (2) 

The first term measures the net costs of informed consumers that choose alternative B at period 

t; the second term reflects the expected per-period costs of learning; and the last three terms refer 

to net environmental damages, net costs of the clean alternative and the costs of capacity 

extensions, respectively.  For each period, the social planner determines the cost cutoff value tθ  for 

informed consumers as well as rate of first-time users ts  and the capacity extension tk .6  The 

Bellman equation corresponding to (2) is  

( ) ( )
, ,

, min ,
t t t

r
t t t t t ts k

J K SC e J s K k
θ

−∆ = + ⋅ ∆ + +       (3) 

subject to the capacity and nonnegativity constraints and initial conditions from (2), leading to a 

Lagrangian of the form  

( ), ( )r
t t t t t t t tL SC e J s K k K kλ−= + ⋅ ∆ + + + + −Ω      (4) 

                                                 

6 Per-period capacity extension kt, and thus also the state of extension Kt, depend on the choice of θt and st over time 
and could be substituted out, reducing the problem to one with two control variables.  Specifically, kt=max (Ωt-Ωt-1,0).  
We chose to leave it in the model because it facilitates exposition.   
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Dropping the function arguments for (·), (·)D C  and (·)A , the optimality conditions are 

( ' ' ) 0 ; 0t t tD C λ θ θ− − − ≥ ≥    (5) 

[ ] 1 1
1 1

( , )( ' ' ) ( ) 0 ; 0r t t
t t t t

J KD C g e sλ − + +
+ +

∂ ∆
∆ − − − ⋅ ∆ + ≥ ≥

∂∆    (6) 

' 1 1( , ) 0 ; 0r t t
t t t

J KA e k
K

λ − + +∆
− + ≥ ≥

∂    (7) 

0 ; 0t t t tK k λ+ −Ω ≥ ≥    (8) 

with complementary slackness holding everywhere.  A solution to the Bellman equation is a 

sufficient condition for optimality.  Equation (5) implies that along the optimum approach path as 

well as in the steady state, marginal private cost tθ  associated with alternative B must be equal to 

marginal net benefits ( ' ' )tD C λ− −  of using this alternative, where tλ  adjusts for the current-period 

value of a marginal capacity expansion.  Equation (6) equates the net social cost of subjecting the 

marginal uninformed consumer (the consumer with 1t+∆ = ∆ ) to learning in period t, consisting of 

the marginal expected cost of using this alternative 1t+∆  less the marginal reduction in damages, to 

the discounted marginal social value of having an additional informed consumer in the next period.  

If learning is not constrained by current capacity such that t tK > Ω , marginal capacity expansion 

has no value, in which case (8) implies that 0tλ = .  For 0tλ > , equation (7) states that marginal 

expansion costs '
tA  have to be equal to the current-period marginal value of expansion tλ  plus the 

discounted social marginal value of having a larger capacity in the next period.   

The intertemporal arbitrage conditions are given by  
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[ ]

1 1

1 1 1

( , ) ( ) ( ) ( ) ( ) ( )

( ' ' ) ( ) ( ) ( ) ( ) ( , )

t t

t t t t t t t t

r
t t t t t t t t

J K dF g g g

D C F g g g e J K

θ

δ δ

λ θ

−∆

∆ + +
−∞

−
+ ∆ + +

∆ = ∆ + ∆ + ∆ ∆ −∆ ∆

− − − −∆ ∆ + ∆ − ∆ + ∆

∫    (9) 

1 1( , ) ( , )r
K t t t K t tJ K e J Kλ −

+ +∆ = − + ∆        (10) 

We can use these equations to explore the dynamics of the optimal approach path by means of 

a phase diagram that relates the fraction of informed consumers t∆  to the cost cutoff tθ  in any 

given period.  Because an interior first-best solution will feature a monotonic approach path for all 

variables, conditions (5)-(8) will hold with equality during the approach path as well as in the 

steady state.  This property can be used to combine eqs. (6)-(10) (see Appendix) to get 

( ) ( )( ) ( )1 1 ( )
t t

r r
t t t t t te e dF

θ

θ θ θ θ δ δ
−∆

−
−∞

− = − −∆ + −∆ −∫     (11) 

' '
1

r
t t tA e Aλ −

+= −           (12) 

A steady state is given by (5), (11) and (12) with 0t ts k= =  and 1t tθ θ −= .7  To analyze the 

solution in /t tθ∆ -space, we derive the equation of motion for t∆  by setting 0ts =  in eq. (5)8  

while holding tλ  constant,9 and the equation of motion for tθ  by setting 1t tθ θ −=  in eq. (11).   

Starting with the former we obtain an implicit relationship between tθ  and t∆  which we 

denominate ( )tθ ∆ , and which can be shown to be decreasing (see Appendix):  

                                                 

7 For A’[0]=0, eq. (11) implies that λt=0 for kt=kt+1=0.  But with no learning and no change in the cost threshold, the 
same number of users will continue to use alternative B in the following period such that no capacity expansion is 
necessary.  With a monotonic approach path, it follows that kt+1=0 if st=kt=0 and θt=θt+1.   

8 The learning rate st appears in the usage rate Ωt as defined in eq. (1), which consists of informed users and new users 
(“learners”).  Setting st=0 implies that usage of the clean alternative is restricted to informed users.   

9 A completely rigorous treatment would leave λt free and result in a 3-dimensional phase diagram.  However, we 
know that λt=0 at the steady state such that the third dimension would complicate the exposition with little gain in 
intuition.   
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0;

( ) ( '' '') ( ) ( )( ) ( ); 0
1 ( '' '') ( ) ( )tt t

t t t t
t t ts

t t

d D C F g
d D C f dG

λ λ

θ θθ θ
θ

∆= =

−∞

∆ − + −∆ ∆
∆ ≡ ∆ = <

∆ + + −∆ ∆∫



   (13) 

The economic interpretation of (13) is as follows:  When no more learning takes place, the 

presence of more informed agents leads to higher usage rate of the clean technology, all else equal, 

and thus to lower marginal social costs.  But this means that the cutoff value tθ  that fully 

internalizes external costs (for any given value of tλ ) will be lower.  Conversely, if fewer people 

have learnt, usage of the clean technology will decrease, and a higher tθ  is needed to ensure that (5) 

holds.   

Setting 1t tθ θ −=  in equation (11) and solving for tθ  leads to another relationship between 

cutoff costs and the state of learning, which we denote by ˆ( )tθ ∆ .  It can be interpreted as the 

threshold of social marginal costs tθ  of using the old technology at which consumers up to ex ante 

expected costs of t∆  should optimally learn. Intuitively, we obtain an increasing relationship 

between t∆  and tθ  (see Appendix):  

1

ˆ( )ˆ( ) ( ); 1
t t

t
t t t

t

d
dθ θ

θθ θ
−=

∆
∆ ≡ ∆ =

∆
       (14) 

Hereby, the difference  t tθ∆ −  can be interpreted as the value of learning for a consumer with 

ex ante expected costs t∆  when regulation stays at tθ . It is constant in t∆  due to our specification 

that a consumer’s ex post costs for are given by θ δ= ∆ + .   

The two relationships are shown graphically in Figure 1.  The steady state is defined by the 

intersection of the lines defined by ˆ( )θ ∆  and ( )θ ∆ , where no learning takes place and tθ  remains 

constant.  Substituting (1) into (5) implies that for ( )t tθ θ< ∆ , learning will be positive ( 0ts > ) 
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such that the system moves to the right below ( )tθ ∆ , and to the left above.10  From (11), we see 

that 1t tθ θ −>  if ˆ( )t tθ θ> ∆  and vice versa. These dynamics are illustrated by the arrows of motion 

in the figure.  As a consequence, the optimal path into the steady state is characterized by cut off 

costs tθ  that increase over time and, naturally, by increasing t∆  with consumers with the smallest 

expected costs trying the new technology first.  The capacity of the systems tK  increases 

simultaneously. The dashed line in Figure 1 illustrates an example for the path into the steady state.  

For the first-best solution, we can therefore summarize this result as follows: 

 

Proposition 1 

In the first-best transition path into the steady state, the marginal cost of participation 

'(1 ) '( )t t t tD Cθ λ= −Ω − Ω −  increases over time.   

This result may be surprising at first glance: One might expect that as consumers learn, more 

people use the new technology such that net marginal damages D C′ ′−  decrease over time (recall 

that D C′ ′−  is declining in the usage rate tΩ ).  Proposition 1 implies that this is only the case if 

the marginal value of capacity expansion declines by even more.  With sufficiently low expansion 

costs, ( )tλ−  will increase by less than tθ , such that D C′ ′−  will increase too, implying a declining 

usage rate.  This rather counterintuitive result for a new technology can be explained as follows: If 

capacity expansion is free or very cheap such that the shadow value of capacity is at or near zero in 

the beginning (recall that it is always zero in the steady state), it will be optimal for consumers to 

learn early on, because this enables them to take advantage of the new technology should their 

idiosyncratic cost δ∆ +  turn out to be low enough ( tθ δ≥ + ∆ ).  Increasing net environmental 

costs D C′ ′−  therefore imply that the increase in informed users due to an increase in tθ  is over-

                                                 

10 This latter point applies in theory, but since we do not allow for “unlearning” in our model, a disequilibrium above 
the ( )tθ ∆ -line would have to be adjusted by lowering θt instead.  Note also that due to the nonnegativity condition on 
learning, the initial state of learning ∆0 must be below the steady state in order for this solution to hold. For a higher 
initial state of learning, no additional learning should take place and we obtain a trivial dynamics of the system. 
Similarly, the initial capacity K0 has to be below steady-state capacity in order for the capacity constraint to be binding.   
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compensated by the decline in first-time users. 11  Note also that a declining usage rate implies 

building too much capacity, which cannot be optimal if expansion is costly.   

Next, we examine how the steady state depends on the underlying parameters of the model. 

The relationship ˆ( )tθ ∆  depends on the distribution of ( )f δ  (and on whether consumers form 

unbiased expectations of personal costs θ δ= ∆ + , a point to which we return below). It further 

increases in r , which is a measure of consumers’ (im)patience: Higher discounting implies a larger 

marginal cost threshold to make learning worthwhile for the same agent, all else equal. With an 

increase in r, the steady state moves up the ( )tθ ∆ -line leading to a larger SSθ , combined with a 

smaller steady-state SS∆ .  This effect is shown in Figure 2 as a move from 0̂ ( )tθ ∆  to 1̂( )tθ ∆ , 

leading to a new steady state SS’.   

The function ( )tθ ∆  increases with marginal social damages ' 'D C− . A more polluting 

original technology (or equivalently, a cleaner new technology) increases the social value of 

learning such that 0 ( )tθ ∆  is shifted to 1( )tθ ∆ , the steady state moves up along the 0̂ ( )tθ ∆  line to 

SS’’, which is associated with both a higher state of learning as well as a higher SSθ  .   

We illustrate our result numerically, using the following functional forms:  The uniform 

distribution with support [-0.5, 0.5] for ( )f ⋅ ; the uniform distribution with support [0.5, 1.5] for 

( )g ⋅ ;12 2(1 ) ( / 2) (1 )t tD α−Ω = ⋅ −Ω  and 2( ) ( / 2)t tC βΩ = ⋅Ω , and 2( ) ( / 2)t tA k kγ= ⋅ .   

                                                 

11 This follows from the definition of Ωt: If D’-C’ increases, Ωt has to decrease.  But with increasing θt and ∆t, usage 
by informed consumers (the first part in eq. (1)) has to increase, such that the reason for the decline in the usage rate 
has to be a decrease in new users (the second part in (1)).   

12 The rationale for these choices is primarily tractability.  With the uniform distribution of unit support, f(δ)=g(∆)=1, 
such that dF(δ)=dδ and dG(∆)=d∆.  The choice of f(δ) further ensures that E[δ]=0. We set the lower limit of g(∆) to 
0.5 in order to avoid negative tax rates.  The fraction of informed consumers at any moment is given by G(∆t)=∆t-0.5.   
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Figure 3 shows the time paths of tθ , t∆ , ts , Kt, tk  and tΩ  for various choices of γ , with α , 

β  and r held constant (the qualitative nature of the paths is stable across these parameter values).  

The marginal cost tθ , the state of learning 0.5t∆ −  and total capacity Kt increase, whereas the rate 

of capacity expansion tk  decreases over time.  The participation rate tΩ  decreases if capacity 

expansion is cheap (γ  at or close to zero), because the decrease in initially very high learning rates 

overcompensates the increase in informed users.  The higher the expansion costs, the slower are 

the increases of tθ , t∆  and tΩ .  The rate of learning rates ts  monotonically decreases with low 

expansion costs, but is inversely U-shaped with medium to high costs.13   

 

4.  Optimal policy choices 

We now address the question of how this optimal transition path can be decentralized by price 

instruments. For this, we consider a tax (price) tτ  on using the dirty alternative in period t  as well 

as a subsidy14 tσ  for first-time users of the clean alternative, i.e. those consumers who learn about 

their personal cost iδ  in period t .   

Consumers choose if and when to learn (i.e. to try the clean alternative for the first time), based 

on their private known costs i∆ , their expected unknown costs, and the prevailing tax and subsidy 

rates.  Conditional on the policy-path ( , )t tτ σ  and their private rate of discount Pr , consumers 

choose the optimal moment of learning ( )T ∆  that minimizes the current value of expected total 

costs by solving the stopping problem  

                                                 

13 The intuition behind the nonlinear shape is as follows: Suppose that expansion is costly such that only a small 
fraction of consumers should learn in the first period.  Due to the low cutoff value, most of these first-period learners 
will revert to the old technology, leaving room for more learning using the capacity built in the first period.  Together 
with the capacity added in period 2, learning will be higher in the second period than in the first.  As θt increases, the 
fraction of experienced to first-time users will also increase, slowing the increase in learning and eventually leading to 
a falling st.   

14 Theoretically, the subsidy could be negative, i.e. a tax.  It corrects for a learning inefficiency:  If consumers are too 
impatient (meaning that rP>r), they require a learning subsidy to learn according to (11).  In contrast, if they are too 
eager to learn, they have to be deterred from too fast learning with a learning tax.  We refer to a subsidy because it is 
difficult to motivate the situation of rP<r, but the model does not exclude the possibility that σt<0.  
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[ ]
1

0 1
min ( ) ( ) ( ) 1 ( )

t i

P P P

T
r t r T r t

t i T i t i tT t t T
e e dF F e

τ

τ σ δ δ τ τ
−∆− ∞

− − −

= = + −∞

  + ∆ − + ∆ + + − −∆ 
  

∑ ∑ ∫  (15) 

We explicitly allow the private discount rate to differ from the social discount rate.  There is a 

large literature on private and social discount rates, with some arguing that they should be the same 

(e.g. Baumol, 1968) and others indicating that investment has a public good component and should 

therefore be rewarded by a social discount rate that is below the private one (Weitzman, 1994).   

The first term in (15) describes the costs before learning when the consumer uses the dirty 

alternative, which simply consist of paying the tax tτ  in every period up to time 1T − , discounted 

to present value by the interest rate Pr .  The second term reflects the (discounted) expected cost of 

learning at time T , reduced by the first-time user subsidy tσ . The last term represents costs that 

accrue after the consumer has learnt her value for iδ .  The integral represents the expected cost of 

remaining in alternative B, conditional on iδ  turning out to be low enough for this to be optimal 

(i.e. i i i tθ δ τ= + ∆ ≤ ).  Conversely, if the consumer’s private costs turn out to be above this 

threshold she will revert to the dirty alternative and once again incur the instantaneous cost tτ , 

possibly switching to the clean alternative again once the tax has increased to a sufficiently high 

level.  This leads us to our second result:   

 

Proposition 2 

The first-best transition path can be implemented using a usage tax tτ  for the dirty alternative in 

combination with a subsidy for first-time users of tσ .  

Proof:  In order for all agents who have already learnt to face the same incentive to use the 

clean alternative as in the first-best transition path ( , , )t tt s kθ , the regulator needs to set t tτ θ= . The 

building of new capacity tk  can directly be controlled. For generating the optimal incentives for 

agents to learn in the respective periods, we need that type t∆  as defined in the optimal approach 

path is indifferent between learning in period 1t −  and t . Considering (15), this is the case if  
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[ ]1 1( ) ( ) 1 ( ) ( )
t t

P Pr r
t t t t t t t t te dF F e

τ

σ δ δ τ τ τ σ
−∆

− −
− −

−∞

  ∆ − + ∆ + + − −∆ = + ∆ − 
  
∫   (16) 

It is instructive to generate more insights into the properties of this subsidy path for first-time 

users.  In the Appendix, we show that 

1
Pr

t t Pe if r rσ σ−
−

> >

= =
< <

        (17) 

We can summarize this in the following result:  

 

Proposition 3 

If social and private discount rates coincide, the first-best solution can be decentralized by taxing 

the dirty alternative, whereas no subsidy for first-time users is necessary. If the private discount 

rate is larger (smaller) than the social discount rate, a subsidy (tax) for first-time users is 

necessary to implement the first-best solution. The discounted absolute value of this subsidy (tax) 

decreases over time, i.e. 1
Pr

t t eσ σ −
− > ⋅ .  

Proposition 3 demonstrates that it is relatively easy to decentralize the first-best solution as 

long as individuals correctly weigh their future costs and benefits from trying the new alternative. 

The reason is that our model assumes efficient learning. If, however, the private and the social 

discount rates differ, relying on a tax for using the dirty alternative is not sufficient. If the private 

discount rate is larger, individuals do not have sufficient incentives to learn.  Suboptimal learning 

by a consumer creates an indirect externality to other consumers: as they do not learn and do not 

use the cleaner alternative B, the marginal social damages from the dirty alternative and, as a result, 

the environmental tax is inefficiently high, thereby preventing some consumers from trying the 

clean alternative even if this were socially optimal.  Consumers do not consider this pecuniary 

externality when solving the optimal stopping problem.  Incentives for efficient learning can be 
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established by subsidizing first-time users (resp. a tax if Pr r< ), and the absolute value of the 

discounted subsidy must decrease over time.  Proposition 3 thereby indicates a reason for why 

regulators may adjust their policies in a dynamic setting, specifically temporarily subsidize trying a 

new alternative: while taxes are increasing over time, the subsidy for first-time users decreases.   

Similarly, consumers may have biased expectations in the sense that their perceived 

distribution of δ  differs from the true one such that ( ) ( )F Fδ δ≠ , i.e. if they over- or 

underestimate the personal costs. , we show in the Appendix that 

1 0r
t t te if bσ σ−
−

> >
= =
< <

       (18) 

with ( ) ( ) ( ) ( )
t t t t

t t t t tb dF dF
θ θ

θ δ δ θ δ δ
−∆ −∆

−∞ −∞

≡ ∆ − + − ∆ − +∫ ∫      

If one distribution first-order stochastically dominates the other, tb  is always either positive or 

negative dominance. We immediately obtain the following corollary to Proposition 3:  

Corollary  

If consumers have overestimate costs δ such that F  first-order stochastically dominates F  (

( ) ( )F Fδ δ<  for all δ ), a subsidy for first-time users is necessary to implement the first-best 

solution. If they underestimate the costs such that F  first-order stochastically dominates F , a tax 

for first-time users is optimal. The absolute value of the discounted subsidy or tax, respectively, 

decreases over time, i.e. 1
r

t t eσ σ −
− > ⋅ .  
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To illustrate this point, consider again Figure 2.  If consumers systematically over-estimate 

their personal costs of using the clean alternative such that 0tb t> ∀ ,15 the change in (11) implies 

an increase in ˆ( )tθ ∆  that is qualitatively similar to an increase of the personal rate of discount, 

leading to a shift in the steady state from SS to SS’.   

A subsidy for first-time users allows decentralizing the first-best solution, but it may not 

always be a feasible policy. In the next section we therefore explore the situation where the 

regulator cannot differentiate between first-time and other users.   

 

5.  Decentralization with a tax on the dirty alternative only 

We now use these insights to determine the path for tτ , rendered second-best by imposing 

0tσ = .  The policy-path ( )ttτ  leads consumers to choose their optimal moment of learning ( )T ∆  

according to (15) and thus generates a learning path ( )tt∆  . The social planner’s problem can 

therefore be stated as 

1

, 0

1

1

1

0 0 0 0

min ( ) ( ) ( ) ( ) (1 ) ( ) ( )

. . ( )
;

0; 0;
;

t t t

t t
t

rt
t t tk t

t t t

t t t

t t

t t

t t

e dF dG dG D C A k

s t f
K K k
K

k
K K

τ

τ
δ δ

τ

τ

+∆ −∆ ∆∞
−

= −∞ −∞ ∆

+

+

+

= =

 
⋅ ∆ + ∆ + ∆ ∆ + −Ω + Ω +  
 

∆ = ∆ +
= +
≥ Ω

≥ ≥
∆ = ∆ =

∑ ∫ ∫ ∫

 (19) 

with  1( ) ( ) ( ) ( )t

t t t tF dG G Gτ
∆

+−∞
Ω ≡ −∆ ∆ + ∆ − ∆∫      

                                                 

15 Stutzer et al. (2011) argue the benefits of some public programs are only fully appreciated upon reflection by 
consumers, which does not take place without some form of stimulus.  This is equivalent to private expecations bt>0.   
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In order to explore the properties of the second best regulation path, we start by focusing on 

the learning decision. It is helpful to define a personal learning threshold by the level of a constant 

tax rate ˆ( )τ ∆  which makes individuals of type ∆  indifferent between learning and never learning. 

It is given by  

ˆ

1 0

ˆ

ˆ ˆ ˆ( ) ( ) (1 ( ))

ˆ ˆ( 1)( ) ( ) ( )

p p

p

r t r t

t t

r

dF F e e

e dF

τ

τ

δ δ τ τ τ

τ δ τ δ

−∆∞ ∞
− −

= =−∞

−∆

−∞

  ∆ + ∆ + + − −∆ = 
  

⇔ − −∆ = ∆ + −

∑ ∑∫

∫
   (20) 

In general, however, the tax path is not constant. Here, the threshold ˆ( )τ ∆  helps to 

characterize the timing of learning that is formulated in the following lemma (proof in Appendix): 

 

Lemma 1. 

For a given path of usage taxes ( )tτ , individual of type ∆  will either decide to try the clean 

alternative in a period t  with ˆ( ) tτ τ∆ <  or never.  

In particular, Lemma 1 implies that agents will not learn along a decreasing portion of the 

taxation path. Furthermore agents of type ∆  will never learn if the tax rate never exceeds ˆ( )τ ∆ . 

They will only consider to learn in a period where 1 ˆ( )t tτ τ τ− < ∆ ≤ . 

We use these insights to determine the second-best tax path tτ . If no more learning takes place 

( 1t t+∆ = ∆ ) and the capacity is built up sufficiently, the optimization necessarily implies

'(1 ) '( )SS SS SSD Cτ = −Ω − Ω , i.e. ( )SS SSτ θ= ∆  as defined in (13).  That is, the relationship between 

the optimal tax and net marginal damages remains unchanged.  Since at this tax rate no uninformed 

agent can have an incentive to learn we further know that ˆ( )SS SSθ τ≤ ∆ .  

If we were to rely on a continuous and increasing approach path for the taxes, this implies that 

the steady state satisfies ˆ( ) ( )SS SS SSθ τ θ= ∆ = ∆ . We denote this private steady state by ( , )SS SS
p pθ ∆ .   
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In the following we will discuss the implications of differing discount rates for our model.  It is 

clear that the first-best path can be obtained using a tax only if Sr r= : in this case ˆˆ( ) ( )τ θ∆ = ∆  

such that the social steady state ( , )SS SS
S Sθ ∆  given by ˆ( ) ( )SS SS SSθ θ θ= ∆ = ∆ and the private steady 

state ( , )SS SS
p pθ ∆  coincide.  However, the decentralization leads to different learning behavior if 

Pr r> , in which case we have ˆˆ( ) ( )τ θ∆ > ∆ . Since ( )θ ∆  is decreasing in ∆ , this implies that 

SS SS
S Pθ θ<   and  SS SS

S P∆ > ∆ .      (21) 

Intuitively, private impatience makes people hesitant to learn.  In order to induce the same 

consumer type to learn, a larger tax rate is needed, leading to a steady state in which fewer 

consumers are informed, and consequently net marginal damages and the tax/subsidy are higher.   

When relying on the usage tax alone, any increasing tax path in the decentralized setting must 

optimally end up in the steady state ( , )SS SS
p pθ ∆ . However, we show that one can improve upon this 

by using a non-monotonic path.   

 

Proposition 4. 

If the private discount rate pr  exceeds the social discount rate r , a taxation path that is first 

increasing, but will decrease at one point in time before being constant, can improve upon a policy 

that relies on a monotonically increasing tax path.  

We prove this proposition by noting that a steady state requires that no additional learning 

takes place. Without trying to trigger additional learning, the welfare-maximizing policy for any 

assumed steady state learning rate ∞∆ is given by ( )τ θ∞ ∞= ∆ . Assuming welfare-maximization by 
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the regulator, no increasing tax path can hence improve upon the permanent steady state ( , )SS SS
p pθ ∆  

once the learning rate of SS
p∆  has been obtained.16 

The regulator could, however, temporarily increase the tax to ( )t tτ θ> ∆  in order to induce 

more agents to learn (such that SS
p p∆ > ∆ ), before adjusting the tax to a lower level 

( ) SS
P P Pτ θ θ= ∆ < . In the Appendix, we show that this is indeed optimal with the simplest example 

of a path that involves a tax rate SS
T Pτ θ>  for only one period before permanently being adjusted to 

a new lower level ( )P Pτ θ= ∆ .   

Proposition 4 thereby complements the result stated in Proposition 3: if the private discount 

rate exceeds the social one, the optimal policy involves either a subsidy for first-time users that 

may decrease over time or a tax path that is not monotonic, but rather consists of an increasing part 

before being reduced to a lower level. The intuition is that one needs to induce agents to learn by 

trying the new clean alternative. If they have done so to a sufficient amount, the relative price of 

the dirty alternative can be reduced.  Again, the same conclusions apply for biased expectations of 

costs or benefits.   

 

6.  Conclusions 

Regulation often involves introductory taxes or subsidies that may later be reduced. Usually 

this is motivated by supply-side considerations such as decreasing production costs or technology 

spillovers.  In this article, we discuss a different rationale for introductory subsidies that is 

motivated by the demand-side: If consumers are uncertain about their tastes regarding a new 

product, they may learn by trying out the new technology.  A prominent and environmentally 

highly relevant example involves the introduction of new public transport options.  While 

                                                 

16 Any announcement of further increasing tax rates to trigger learning beyond PSS∆  would not correspond to a time-

consistent policy as the regulator would have an incentive to lower the tax rates below ( )SS
Pθ ∆  once the additional 

learning has occurred. 
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consumers are usually experienced in their status quo alternative (private car use), at least a part of 

the true opportunity costs of using public transport need to be experienced before they are known.   

In this paper, we demonstrate how regulation should incorporate dynamic features that initiate 

from this “learning-by-trying”.  Any regulation needs to simultaneously account for two 

dimensions: experienced consumers will use the new technology if their private opportunity costs 

are outweighed by tax on the old technology. Second, the policy in its introductory phase needs to 

control the optimal number of new consumers.   

We demonstrate that the optimal transition path into a steady state involves increasing 

regulation levels as long as social and private learning incentives coincide.  In this case, the first-

best path can be decentralized by taxing the dirty alternative. Along the optimal path, the tax rates 

are increasing, which corresponds to a slow introduction of taxes. With zero or low fixed costs to 

expand the capacity of the new technology, the fraction of consumers using the clean alternative 

actually falls over time since initially many agents try out the alternative, but then may 

(temporarily) go back to the polluting option.  If the capacity expansion is costly, both the optimal 

tax and usage rates increase over time.   

The qualitative features of the optimal policy significantly change if the private rate of 

discount exceeds the social discount rate. Due to the divergence between private and social 

learning incentives, the first-best policy involves a subsidy for first-time users. This subsidy is 

decreasing over time. If such a special treatment of first-time users is not feasible, the regulator’s 

second best tax path also needs to take into account the different learning incentives. The optimal 

tax path is necessarily first increasing, until the (second-best) optimal number of agents has learnt, 

before being adjusted downwards to the steady state, implying an initially increasing and then 

decreasing optimal tax.   

Although we derive our results in the context of differing private and social discount rates, 

they also apply to situations where consumers have biased expectations about the full costs or 

benefits of a new technology.  Like private discount rates that differ from social ones, biased 

expectations lead to socially inefficient learning that has to be corrected by means of 

subsidies/taxes for first-time users to obtain the first-best solution (where the subsidy is equal to 

the bias), or by a non-monotonic regulation path if the first-best solution is not feasible.   



22 

More generally, our results suggest that if private learning incentives lead to a rate of exposure 

to a new experience good that lies below the social optimum, introductory subsidies can be 

justified not only with decreasing production costs, but also when consumers learn by experience. 

We believe that exploring further behavioral rationales for dynamic adjustments in regulation 

levels provides a valuable path for future research. 
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Figure 1: Phase diagram for an interior solution in the first-best policy case 

 

Figure 2: Change of steady state in response to underlying parameters 
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Figure 3: Time paths of the optimal solution 

 

 

 

 

 

 

 

Fig. 3a: Cost limit     Fig. 3b: State of learning 

 

 

 

 

 

 

 

         Fig. 3c: Rate of learning            Fig. 3d: Total capacity 
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Appendix 

Derivation of eqs. (10)-(11) 

For a continuous approach path, (6) will hold with equality during the approach path as well as 

in the steady state.  Solving for 1 1( , )t tJ K∆ + +∆  while using (5) leads to  

1 1
1 1

( , ) ( ) ( )rt t
t t t

J K e gθ+ +
+ +

∂ ∆
= −∆ ∆

∂∆
       (A.1) 

Shifting the equation by one period yields an expression for ( , )t tJ K∆ ∆ . Substituting both 

shadow prices into (9), canceling terms and dividing by ( )tg ∆ :  

1( ) ( ) ( ) ( )
t t

r
t t t t t t t te dF F

θ

θ δ δ θ θ θ
−∆

+
−∞

− ∆ = ∆ + − −∆ −∆ +∫     (A.2) 

Including ( )t t tFθ θ −∆  in the integral and solving for 1( )r
t te θ θ −−  leads to (11).  Now we solve 

(6) for 1 1( , )K t tJ K+ +∆ :  

'1 1( , ) ( )rt t
t t

J K e A
K

λ+ +∂ ∆
= −

∂
        (A.3) 

Deriving ( , )K t tJ K∆  by shifting one period and substituting both into (10) and rearranging and 

shifting the time period one forward leads to (12).   

Derivation of eqs. (13)-(14) 

Setting 0ts =  and holding tλ  constant in eq. (5) gives  

0; 0 0
' 1 '

' 1 ( ) ( ) ' ( ) ( )

t t t t

t t

t t ts s s

t t

D C

D F dG C F dG

λ λ
θ λ

θ θ λ

= = = =

∆ ∆

−∞ −∞

   = −Ω − Ω −   
   

= − −∆ ∆ − −∆ ∆ −   
      

∫ ∫
   (A.4) 

Totally differentiating and rearranging shows that the relationship ( )tθ ∆  is decreasing:   
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0; 0;
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      (13) 

The relationship is negative due to our assumption that '' 0D >  and '' 0C > .  Next, setting 

1t tθ θ −=  in (11) and solving for tθ  leads to  

1

1 ( ) ( )
1

t t

t t
t t t tr dF

e

θ

θ θ
θ θ δ δ

−

−∆

=
−∞

= ∆ + −∆ −
− ∫       (A.5) 

Totally differentiating and rearranging gives:  

1 1

1

/ˆ 1 ( )( ) 1
1 / 1 ( )

t t

t t t t

t t

t t

r
t t tt

r
t t t t

d e dFd
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θ

θ θ θ θ
θ

θ θ

θ θ δθ
θ θ δ
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= = −∞
−∆
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≡ = = =
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∫
∫

     (14) 

Derivation of eqs. (17) and (18) 

Rearranging (16) leads to  

1 1( ) ( ) ( ) ( )
t t

P Pr r
t t t t t t t te e dF

τ

σ σ τ τ δ τ δ
−∆

− −
−∞

− = ∆ − + −∆ + ∆ + −∫     (A.6) 

Eq. (11) can be rearranged to   

1( ) ( ) ( ) ( ) 0
t t

r
t t t t t te dF

θ

θ θ δ θ δ
−∆

−
−∞

∆ − + −∆ + ∆ + − =∫      (A.7) 

When substituting t tθ τ= , the RHS in (A.6) is identical to the LHS in (A.7) except for the 

interest rate.  Whether it is greater or smaller depends on the sign of 1( )t tθ −∆ − .  Note that (A.1) 
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when shifted by one period implies that 1 0t tθ −∆ − >  as ( , ) 0t tJ K∆ ∆ ≤  (the presence of more 

informed consumers can only lower the social costs). 

For Pr r> , combining (A.6) and (A.7) leads to  

1

1

0

1

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

P

t t

P

t t

r
t t

r
t t t t t t

r
t t t t t t

e

e dF

e dF

θ

θ

σ σ

θ θ δ θ δ

θ θ δ θ δ

−

−∆

−
−∞>

−∆

−
−∞>

−

= ∆ − + −∆ + ∆ + −

> ∆ − + −∆ + ∆ + −

=

∫

∫





     (A.8) 

For Pr r< , the inequality is reversed, and for Pr r=  (A.8) holds with equality, as in (17).   

To derive (18), we assume that consumers use the socially optimal discount rate, but that they 

have biased expectations in the sense their perceived p.d.f. for δ  differs from the true p.d.f. such 

that ( ) ( )F Fδ δ≠ .  Defining consumers’ bias as  

( ) ( ) ( ) ( )
t t t t

t t t t tb F F
θ θ

θ δ δ θ δ δ
−∆ −∆

−∞ −∞

≡ ∆ − + − ∆ − +∫ ∫      (A.9) 

the individual learning condition that corresponds to (A.6) becomes (setting Pr r= , and 

replacing ( )F δ  by ( )F δ ): 

1 1( ) ( ) ( ) ( )
t t

r r
t t t t t t t t te e dF b

τ

σ σ τ τ δ τ δ
−∆

− −
−∞

− = ∆ − + −∆ + ∆ + − +∫    (A.10) 

Substituting t tθ τ=  and using (A.7) we obtain (18).   

Proof of Lemma 1. 

The proof relies on showing that ˆ( )tτ τ< ∆  implies that learning in period t  cannot be optimal 

for type ∆ .  
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(i) We first show that showing this is also sufficient to rule out the case where 1t tτ τ −< . If 

learning in period t leads to smaller costs than learning in period t-1, we obtain 

1

1

( ) ( ) (1 ( ))

( ) ( 1)( ) ( ) ( )

t
p p

t
p p

r r
t t t

r r
t t t t

e dF F e

e e dF

τ

τ

δ δ τ τ τ

τ τ τ τ δ δ

−∆
− −

−
−∞

−∆

−
−∞

  ∆ + ∆ + + − −∆ ≥ + ∆ 
  

⇔ − ≥ − −∆ + −∆ −

∫

∫
    (A.11) 

which would imply ˆ( )tτ τ< ∆ .  

(ii) Now assume that ˆ( )tτ τ< ∆  and that tax rates ˆ( )sτ τ< ∆  for all future periods s t> . Here, 

never learning generates less costs than learning in t  for type ∆  since with the definition of ˆ( )τ ∆  

in (20), we obtain: 

( ) ( )

ˆ(

1

( )

1

( )

1

)

ˆ ˆ(

( ) ( ) (1 ( ))

( ) ( )

)

0

)( ( ) ( )

s
p p

s
p

p

r s t r s t
s s s

s t s t

r s t
t s

s t

r s t

s t

dF F e e

dF e

dF e

τ

τ

τ

δ δ τ τ τ

τ δ τ δ

δτ δτ

−∆∞ ∞
− − − −

= + =

−∆∞
− −

= +

−∆∞
− −

= +

∆

     ∆ + ∆ + + − −∆ −    
     

  = ∆ − + ∆ + − 
  
  ≥ ∆ − + ∆ +∆ ∆− 
  

=

∑ ∑∫

∑ ∫

∑ ∫

  
 

(iii) It remains the case where there exists a period where T tτ τ> . Define T  as the first period 

in which T tτ τ> , i.e. s tτ τ≤  for all t s T≤ < . We show that costs from learning in t  are larger than 

learning in T : 
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1
( ) ( ) ( )

1 1

1
( ) ( )

1

( ) ( ) (1 ( ))

( ) ( ) ( ( ) ( ) ( ))

s
p p p

s T
p p

T T
r s t r s t r T t

s s t s
s t s t

T
r s t r T t

t s T T
s t

dF F e e e

dF e dF e

τ

τ τ

δ δ τ τ τ τ

τ δ τ δ δ τ δ τ

−∆ −
− − − − − −

= + = +

−∆ −∆−
− − − −

= + −∞ −∞

     ∆ + ∆ + + − −∆ − + + ∆    
     

  = ∆ − + ∆ + − + ∆ + − − ∆ − 
  

>

∑ ∑∫

∑ ∫ ∫

[ ]

[ ]

1
( ) ( )

1

( ) ( )

1

( ) ( )

1

( ) ( ) ( ( ) ( ) ( ))

( )(1 ) ( ) ( )

1 ( 1)

1 ( 1)

t t
p p

t
p p

p p p

p

T
r s t r T t

t t t t
s t

T
r T t r s t

t t
s t

T
r r s t r T t

t
s t

r
t

dF e dF e

e dF e

e e e

e e

τ τ

τ

τ δ τ δ δ τ δ τ

τ δ τ δ

τ

τ

−∆ −∆−
− − − −

= +−∞ −∞

−∆
− − − −

= +−∞

− − − −

= +

∆ − + ∆ + − + ∆ + − − ∆ −

= ∆ − − + ∆ + −

 
> ∆ − − − − 

 

= ∆ − − −

∑∫ ∫

∑∫

∑
( )

( )1
1

0

p
p p

p

r T t
r r T t

r
e e

e

− −
− − −

−

 −
− 

− 
=

   (A.12) 

Here, we used T tτ τ>  and s tτ τ≤  for all t s T≤ < , to obtain the first inequality and ˆ( )tτ τ< ∆  

for the second inequality. 

Summarizing (ii) and (iii) shows that an agent of type ∆  may only decide to learn if ˆ( )tτ τ> ∆ . 

With (i), he may learn in period t if 1t tτ τ −> , i.e. along an increasing portion of the tax path.   

Proof of Proposition 4. 

We assume that the current SS
T P∆ = ∆ . In order to induce a marginal P∆ -type consumer to 

learn by just increasing the tax rate for one period before reducing it to ( )Pθ ∆  in such a setting, the 

tax rate Tτ  needs to satisfy the following learning condition:   

( )

( ) ( ) (1 ( ( ) )) ( ) ( )
1  1  

P PP P

P P

r r

P P P P P T Pr r
e edF F

e e

θ

δ δ θ θ τ θ
∆ −∆− −

− −
−∞

  ∆ + ∆ + + − ∆ −∆ ∆ = + ∆ − −  
∫



       (A.13) 

which can be solved for  

( )

( ) ( ( )) ( )
1  

P PP

P

r

T T P P P Pr
e dF

e

θ

τ τ δ θ δ
∆ −∆−

−
−∞

  = ∆ = ∆ + ∆ + − ∆ −   
∫



     (A.14) 
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The social costs from this path are given by: 

( )

( )

Cost( ) ( ) ( ) ( ) ( ) [1 ] [ ] ( )

( ) ( ) ( ) [1 ] [ ] (A.15)
1

SS
P T P P

SS
P

P P

P T T T T

r

P Pr

dF dG dG D C A K

e dF dG D C
e

τ

θ

δ δ

δ δ

∆ ∆ −∆ ∆

−∞ −∞ ∆

∆ ∆ −∆−

−
−∞ −∞

 
 ∆ = ∆ + ∆ + ∆ ∆ + −Ω + Ω + Ω −
 
 

 
 + ∆ + ∆ + −Ω + Ω
 −  

∫ ∫ ∫

∫ ∫


 

 

      with      
( ( ) ) ( ) ( ( ) ( ))

( ( ) ) ( )

SS
P

P

SS
T T P P P

P P

F dG G G

F dG

τ

θ

∆

∆

Ω = ∆ −∆ ∆ + ∆ − ∆

Ω = ∆ −∆ ∆

∫

∫ 

    (A.16) 

It is sufficient to show that Cost ( ) 0SS
P

′ ∆ < . Noting that ( ) ( )SS
P T P Pθ τ θ= ∆ = ∆  in SS

P P∆ = ∆ , we 

obtain: 

( )

( )

( )

Cost'( ) / ( )

( '(1 ) '( ))

( ) ( ) ( ( ) )( '(1 ) '( ))
1

( ) ( ( ))
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P
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SS SS SS
P P P P Pr
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SS SS SS SS
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g
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e
e

θ
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θ

δ δ θ

θ δ θ
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−
−∞ = ∆

−

−

∆ ∆

= ∆ − −Ω − Ω

 
 + ∆ + − ∆ −∆ −Ω − Ω −   

= ∆ − ∆ + ∆ + − ∆
−

∫
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SS SS
P P

SS SS
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r
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P P P Pr
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e

θ
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θ δ θ δ

∆ −∆

−∞

∆ −∆−

−
−∞

  
 
  
  < ∆ − ∆ + ∆ + − ∆ −   

=

∫

∫





 

  (A.17) 

where the last inequality follows from the assumed relationship between private and social 

discount rates Pr r> . The last equality follows from the learning condition in the private steady 

state.  
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