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Quantifying survey expectations:

What’s wrong with the probability approach?

Abstract

We study a matched sample of individual stock market forecasts consisting of both
qualitative and quantitative forecasts. This allows us to test for the quality of
forecast quantification methods by comparing quantified qualitative forecasts with
actual quantitative forecasts. Focusing mainly on the widely used quantification
framework advocated by Carlson and Parkin (1975), the so-called “probability ap-
proach”, we find that quantified expectations derived from the probability approach
display a surprisingly weak correlation with reported quantitative stock return fore-
casts. We trace the reason for this low correlation to the importance of asymmetric
and time-varying thresholds, whereas individual heterogeneity across forecasters
seems to play a minor role. Hence, our results suggest that qualitative survey data
may not be a very useful device to obtain quantitative forecasts and we suggest
ways to remedy this problem when designing qualitative surveys.

JEL-Classification: C53, D84, G17
Keywords: Quantification, Stock Market Expectations, Probability Approach



1 Introduction

The concept of (rational) expectations is an essential element of modern macroeconomics

and finance. Consequently, a large amount of research has been dedicated to investigating

whether expectations are formed rationally or not (e.g. Elliott et al., 2005), how well

expectations actually forecast future economic activity and financial market outcomes

(e.g. Nolte and Pohlmeier, 2007), whether expectations are stabilizing or not (Frankel

and Froot, 1990), why forecasters form divergent beliefs (Patton and Timmermann, 2010)

or how these belief dispersions impact financial markets (e.g. Beber et al, 2010, Anderson

et al., 2009).

However, actually measuring expectations is a difficult task and there are many proposals

in the literature on how to deal with this problem. One particular way of measuring

expectations is the use of survey data where individuals are directly asked for their ex-

pectations regarding some financial or macroeconomic variable. Often, these surveys are

conducted in a qualitative way, i.e. respondents do not issue precise point forecasts but

rather vote on an ordinal scale such as “up”, “unchanged”, or “down” (see e.g. Pesaran

and Weale, 2006, for an overview of survey designs). In this situation, a common proce-

dure is to apply some quantification algorithm to convert qualitative survey expectations

into quantitative forecasts. While many shortcomings of available quantification methods

have been discussed (see Nardo, 2003, for an overview), it is still common to apply variants

of these quantification techniques when confronted with qualitative data (e.g. Doepke et

al., 2008, Mankiw et al., 2003, Menkhoff et al., 2009).

In this paper, we first investigate how well standard quantification methods achieve their

goal to deliver a reliable proxy for actual, quantitative expectations. We mainly focus

on the workhorse of quantification methods, i.e. the so-called “probability approach” as

advocated by Carlson and Parkin (1975, henceforth CP) which is still used widely today.

We find that standard quantification methods lead to a poor fit between quantified ex-

pectations and actual quantitative expectations. In a second step, we examine the reason

of this poor performance and investigate the relative importance of different possible ex-

planations. We find that (i) assumptions about the distribution of return expectations

in the CP procedure do not seem to matter, (ii) that the assumption of time-constant
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threshold values (which forecasters use to convert their true expectations into qualitative

expectations) explains most of the poor performance of the CP procedure, and (iii) that

forecaster-specific heterogeneity matters only to a limited extent. Hence, our results pro-

vide guidance on how to design a survey and on how to convert qualitative expectations

into quantitative expectations which we discuss in more detail below. We are, to the best

of our knowledge, the first to analyze a sample of stock return expectations that contains

both qualitative and quantitative forecasts and to provide direct evidence on the weakness

(as well as the reasons for this weakness) of popular quantification procedures in such a

setting.

A special feature of our empirical study is that we have available a unique matched sam-

ple of individual stock market forecasts consisting of both qualitative and quantitative

forecasts issued by the same forecasters (see, e.g. Defris and Williams (1979), Batche-

lor (1986), Maag (2010), Lui, Mitchell, and Weale, 2011a, and Lui, Mitchell, and Weale,

2011b) for matched samples dealing with inflation expectations or business surveys). This

allows us to test for the quality of forecast quantification methods by comparing the out-

come of a quantification procedure based on qualitative forecasts with actual quantitative

forecasts. More specifically, we ask the following question: how close are quantified ex-

pectations to actual quantitative expectations? This validity check is arguably the most

direct way to evaluate the CP procedure.

In contrast to earlier papers we investigate expectations of financial experts on stock

prices. Analyzing these data has several interesting features compared to earlier studies

which are mostly based on consumer’s expectations. First, the survey participants are

professional forecasters who are supposed to form unbiased and rational expectations.

Rationality of forecasts is crucial to calibrate the level of expected returns in standard

quantification procedures. Second, the target variable (DAX30 stock price index) is pre-

cisely defined and well known among the survey participants, whereas in consumer surveys

respondent’s perceived prices may deviate substantially from the official consumer price

index. Finally, stock returns are quite different from inflation rates. In particular, stock

returns are much more volatile and less persistence than inflation rates. Furthermore, the

expected component of returns (i.e., the risk premium) is less important for future returns

than expected inflation is for future inflation outcomes. Hence, results of our study shed
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light on the performance of the CP procedure in a quite different forecasting context than

most earlier studies and thus form an interesting out of sample test of these results.

In our empirical analysis, we first employ standard quantification methods to convert

qualitative expectations into quantified expectations. Next, we show that these quanti-

fied expectations are only mildly correlated with actual quantitative expectations (roughly

45%). Furthermore, the level of quantitative and quantified expectations differs substan-

tially over extended periods of time. To investigate the source of this low correlation,

we first provide parametric and and non-parametric estimates of key model parameters

of quantification procedures, namely the indifference limits (or “threshold values”) which

forecaster use to convert quantitative expectations into qualitative expectations. We find

that these threshold values are strongly time-varying, a feature not captured by standard

quantification methods, and that allowing for this time-variation in thresholds increases

the correlation between quantified and quantitative expectations to levels well above 90%.

Hence, taking time-variation in indifference limits into account seems to be the most im-

portant feature both for designing surveys and for the end-users of these surveys, at least

when dealing with expectations of a highly volatile series such as stock returns.

Finally, we also examine the extent to which forecaster-specific heterogeneity matters for

the poor performance of the CP procedure based on a novel testing procedure. We find

significant evidence of individual heterogeneity among forecasters but show that most of

this heterogeneity washes out at the aggregate level and, hence, does not matter much

for the low correlation between quantified and quantitative expectations. To further

scrutinize this issue, we conduct some stylized Monte Carlo simulations which are able

to reproduce our main findings when allowing for time-varying thresholds. It should be

noted, however, that we are mainly interested in the performance of the CP procedure at

the aggregate level, i.e., the way it is usually employed in practice and by other researchers,

but not at the individual level of forecasters. Our results reflect this focus and do not deal

in detail with the importance of heterogeneity at the level of individual forecasters (see,

e.g., Mitchell, Smith, and Waele, 2002, 2005 for analyses based on a panel of individual
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forecasters).1

The remainder of the paper is organized as follows: We discuss related literature in the

next Section, describe our data in Section 3, briefly discuss some quantification methods

in Section 4, and provide estimation details for these methods in Section 5. We estimate

time-varying indifference limits in Section 6, investigate the importance of forecaster-

specific heterogeneity in section 7, and back up our main findings by means of Monte

Carlo simulations in Section 8. Section 9 concludes.

2 Related literature

Our general conclusion that quantification procedures need to be interpreted with great

care, is not new. For example, several papers found some form of parameter instability

(e.g. Batchelor and Orr, 1988, Dasgupta and Lahiri, 1992), deviations from the normal

distribution and asymmetries (e.g. Berk, 1999, Maag, 2010), and conclude that quantified

qualitative survey expectations do not necessarily forecast the target variable better than

simple time-series models (e.g. Claveria et al., 2007, Nolte and Pohlmeier, 2007, Breitung

2008), or directly suggested improvements and extensions of the CP approach to alleviate

other problems of the method (e.g. Fishe and Lahiri, 1982, Löffler, 1999, Mitchell et al.,

2007, or Müller, 2010). Regarding the latter task, Mitchell, Smith, and Weale (2002, 2005)

show how to use panel data on qualitative forecasts to circumvent problems associated

with the CP procedure which focuses on aggregate expectations.

In contrast to these papers, however, our data allow us to directly assess the reliability

of quantification approaches rather than analyzing merely the forecast performance or

statistical properties of quantified expectations. It is important to note that common

quantification procedures do not pass this direct test (at least in our specific sample)

which casts some doubt on the common practice to simply infer quantitative forecasts

from qualitative survey data.

1More specifically, we do not assume that the researcher has available data on individual quantitative,
retrospective data that can be used to adapt the CP methodology to exploit individual expectations. We
rather focus on the situation where the researcher has to quantify expectations based solely on aggregate
balance statistics which is likely to be more common in applied work.
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Defris and Williams (1979), Batchelor (1986), and Maag (2010) also investigated matched

samples of qualitative and quantitative forecasts. The first two studies found a rather

poor performance of the CP procedure. While Batchelor (1986) found a modest corre-

laton of 0.61 between the CP measure of consumer’s inflation expectations, the short

term movements (measured changes in expectations) reveal no statistical significant re-

lationship to the reported quantitative figures. More recently Maag (2010) compares the

outcome of the 5-category probability method of Batchelor and Orr (1988) to reported

quantitative inflation expectations from the Swedish Consumer tendency survey. Apply-

ing various empirical tests he found that “the actual response scheme is neither symmetric

nor homogenous across individuals”, as assumed by the (generalized) CP methodology.

Furthermore, “quantitative beliefs are not normally distribued and cannot be reconciled

with a noncentral t distribution either.”

A growing body of work has also investigated the relationship between qualitative and

quantitative data at the individual level (e.g., Lui, Mitchell, Weale, 2011a, Lui, Mitchell,

Weale, 2011b) where indifference limits are directly estimated via ordered choice models.

Hence, since threshold parameters are directly estimated from the data, these approaches

allow for tests of the degree of threshold heterogeneity across forecasters.

3 The data set and some descriptive results

Our sample is based on a monthly survey conducted by the Centre for European Eco-

nomic Research (ZEW), one of the largest economic research institutes in Germany. Each

month, approximately 350 professional forecasters from large German banks, institutional

investors, or treasury departments of large corporations are asked for their forecasts of

a variety of macro and financial variables over the next six months. The forecasts can

be assigned to the categories “up”, “unchanged”, “down”, or no “no opinion”, so par-

ticipants issue qualitative forecasts. The number of participants in the survey is quite

large (compared e.g. to the Survey of Professional Forecasters) and the average number

of participants is 223 forecasters (excluding those that answer “no opinion”).2

Among other things, the survey covers forecasts for the German stock market and specif-

2A discussion of these survey data can also be found in Pesaran and Weale (2006).
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ically asks for forecasts of DAX30 returns six months ahead, which have been collected

on a monthly basis since December 1991. Part of our sample data are based on this

qualitative survey.

In addition to this qualitative survey, the ZEW has started to collect quantitative ex-

pectations for the DAX as well. More specifically, starting in February 2003, the same

forecasters that issue qualitative forecasts were also asked to issue point forecasts for the

DAX for the same forecast horizon of six months. Since we will need to look at expected

returns instead of point forecasts in the following, we convert the point forecasts into

return forecasts based on current DAX index level on the day the forecast is issued.

Our total sample extends from February 2003 to October 2008. Hence, the sample is not

excessively long but still includes both the bull market from 2003 to 2007 as well as a large

chunk of the recent market crash. Descriptive statistics for the average quantitative return

expectations are presented graphically in Figure 1. Shown are the cross-sectional mean,

standard deviation, skewness, and kurtosis of individual forecasters’ return expectations

for each of the 69 months in our sample. It can be seen that all four moments are changing

substantially over time and they are far from being constant. It is also apparent that the

mean and standard deviation of return expectations tend to move in the same direction.

While return expectations clearly show some persistence due to the overlapping forecast

horizons, it is clearly implausible to assume that returns (and expectations thereof) are

nonstationary. We test for this using a number of tests (ADF, DF-GLS, Phillips-Perron

tests) and find significant evidence against a unit root for each test just as expected.

Finally, it is worth noting that the average of return forecasts in our sample is roughly

3.4% which translated into an annualized return expectation of about 6.9%, a figure that

seems reasonable for the German stock market.

Figure 1 about here

For reasons that will become apparent below it is also interesting to investigate whether

return expectations are normally distributed. Although results for the skewness and

kurtosis in Figure 1 do not support the assumption of normally distributed expectations,
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we also directly test for this using a standard Jarque-Bera test. The p-values of this test

for each cross-section, i.e. each month, in our sample are shown in Figure 2. It is obvious

from this graph that the test usually rejects normality of return expectations. In fact, the

test rejects normality at the 5% level in about 82% of all months in our sample.

Figure 2 about here

4 Quantification methods

The probability framework was proposed by Anderson (1951) and Theil (1952) and refined

by Carlson and Parkin (1975). Since the latter authors’ approach is most common in the

literature, we mainly focus on their method. The CP procedure is based on on a set of

assumptions that can be summarized as follows:

Assumption CP: (a) The expectations of respondent i at period t is independently and

identically distributed as yeit ∼ N (µt, σ
2
t ). (b) The respondents report rit = 1 (increase) if

yeit > δ+, rit = −1 (decrease) if yeit < δ− and rit = 0 (no change) if δ− ≤ yeit ≤ δ+. (c)

The number of respondents Nt in period t is sufficiently large such that n+
t /Nt ≈ p+t and

n−t /Nt ≈ p−t , where n+
t (n−t ) denotes the number of respondents in t reporting an increase

(decrease), p+t = Prob(yeit > δ+) and p−t = Prob(yeit < δ−).

Let Φ(z) denote the c.d.f. of the standard normal distribution and define the inverse

normal scores as

q+t = Φ−1(1− p+t ) = (δ+ − µt)/σt (1)

q−t = Φ−1(p−t ) = (δ− − µt)/σt . (2)

Solving for µt yields

µt = δ+z1t − δ−z2t (3)

where z1t = q−t /(q
−
t − q+t ) and z2t = q+t /(q

−
t − q+t ). Assuming rational expectations of

the survey respondents we have µt = E(yt|It), where It is the information set available at

period t.
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The original CP approach employs a constant information set It = {1} and symmetric

indifference limits δ+ = −δ− ≡ δ. This gives rise to the instrumental variable estimator

of the indifference limit

δ̂cp =

T∑
t=1

yt

T∑
t=1

zt

, (4)

where zt = z1t + z2t.

Various modifications of this setup have been proposed in the literature (see Nardo, 2003,

for a survey of the literature) and we briefly discuss some of these modified procedures

below. One extension of the original framework is to include zt in the information set (cf.

Bachelor, 1982 and Breitung, 2008) yielding the least-squares (LS) estimator

δ̂ls =

T∑
t=1

ytzt

T∑
t=1

z2t

(5)

As a third variant of the probability approach, the regression estimator suggested by Berk

(1999) includes z1t and z2t separately in the information set It. This allows estimating

the (asymmetric) limits δ+ and δ− from the OLS regression

yt = δ+z1t − δ−z2t + ut. (6)

Such a regression may provide a better fit since there is little a priori reason to assume

that thresholds should be symmetric. We denote this estimator as “ALS” in the following.

As an alternative to the probability approach, Pesaran (1984, 1985) proposed a method

known as the regression approach. Assume that conditional on reporting rit = 1 (“up”)

the expectation of yeit is α, whereas E(yeit|rit = −1) = β and E(yeit|rit = 0) = 0. It follows

that for large Nt

µt ≈ αp+t + βp−t (7)

and, therefore, quantitative reference values of the qualitative expectations can be ob-

tained as the fitted values of the regression equation

yt = αp+t + βp−t + et

The widely-used balance statistic (BS) of Anderson (1952) results as a special case by

setting α = −β = 1. As argued by Pesaran (1987) and Breitung (2008), the regression
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approach results as a special case of the CP methodology by assuming that the survey

expectations are uniformly distributed.

5 Empirical results based on time invariant thresholds

We now present empirical results of the quantification procedures described above and

highlight some interesting similarities and differences. Furthermore, we provide some pre-

liminary findings concerning the relative performance of alternative quantification meth-

ods.

The left panel of Table 1 shows results for regressions of the form (4)-(7). We employ

six-months ahead DAX returns as the dependent variable in our regressions. Using the

CP-method and future actual returns yields a threshold estimate of 2.96% which is not

significantly different from zero. We also present results for the symmetric LS variant of

the CP method obtained from the regression yt = δzt+ut with zt entering the forecasters’

information set yielding δ̂ls = (
∑
ytzt) / (

∑
z2t ). The threshold estimate is now statisti-

cally significant with a value of 3.8%. The asymmetric LS method (ALS) obtained from

regression (6) yields insignificant parameter estimates δ̂+ = −0.58 and δ̂− = −18.70 which

differ strongly from the estimates of the other variants above. One possible explanation

for this result is that the regressors z1t and z2t are highly multicollinear (with a variance

inflation factor of 3.78).

Table 1 about here

As a first indication of the performance of the quantification procedure, Figure 3 compares

the quantified survey expectations ŷt obtained from the CP estimator ŷt = δ̂cpzt and the

average of the reported quantitative expectations.3 The correlation between quantified

expectations ŷt (either computed by the CP or LS approach) and µ̂t is about 0.45 and,

thus, rather low. Also, there are large deviations between quantitative and quantified

expectations for sustained periods of time (e.g. µ̂ = 3% versus 12% derived from the

3Using the LS estimator instead of the CP estimator yields an almost identical figure.
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CP method around 2005). In sum, our preliminary results already provide a first indi-

cation that the probability approach may not yield reliable measures of the underlying

quantitative expectations.

Figure 3 about here

This result is rather uncomforting and already suggests that care has to be taken when

interpreting quantified survey expectations as proxies for actual expectations. Hence,

we present results from a simple, but nevertheless instructive, diagnostic test. The CP

procedure (and many variants thereof) identify the threshold parameters by assuming

unbiased expectations conditional on some information set. Since we have quantitative

expectations at hand, we can circumvent this assumption and directly identify the thresh-

old parameters by regressing actual quantitative expectations (µ̂t) on zt (or the share of

up and down votes in the regression approach). This seems interesting since forecaster’s

rationality is not warranted and even if forecasts were unbiased, there is no reason to

believe that estimates based on this assumption are very reliable in small samples.

The right panel of Table 1 reports results for this regression setup. Using the CP and

LS methods with average survey expectations µ̂t yields results that appear much more

reasonable and in line with economic intuition. Both the CP and the LS method yield a

highly significant threshold value of roughly 2% (the two estimates only differ after the

third digit), whereas the ALS method yields values of about 1.8% for δ+ and about −3.3%

for δ−. These estimates seem much more reliable than those obtained from actual future

returns and their (absolute) magnitude seems intuitively reasonable. Finally, Pesaran’s

(1984, 1985) regression-based approach (column “PRA” in Table 1) yields estimates which

are not directly interpretable in terms of threshold values of some indifference interval,

but we generally find similar results as above.

It is important to note that the R2s of the regressions with quantitative expectations (µ̂t)

as dependent variables are surprisingly low (only 0.2 in three out of four regressions).

If Assumption CP is fulfilled the expectation is a linear combination of z1t and z2t (cf.

(3)) and, therefore, we expect an R2 close to one in a regression of µ̂t on z1t and z2t.
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This suggests that probability-based approaches and Pesaran’s regression approach do

not track the (usually unobserved) quantitative expectations very well. The regression

approach (or the balance statistic) yield qualitatively similar results and, therefore, we do

not present the respective results from the subsequent steps of our analysis.

For robustness, we have also employed a sample that stops directly before the recent

financial crisis in June 2007. We find that these even strengthens our main results. The

threshold parameters implied by the CP method (and their variants) become quite large

while the same is not true for the threshold estimates based on quantitative expectations.

For example, the standard CP method leads to a threshold estimate of 6.4% and the

LS method leads to 5.8%, both of which are quite high relative to typical stock market

movements during that time period. In contrast, regressing quantitative expectations on

zt (as in the right panel of Table 1) delivers almost identical threshold estimates of e.g.

1.81% for the CP method and 1.88% for the LS method. Hence, our main result is robust

to an in- or exclusion of the crisis and, if anything, rather strengthens our argument.

6 Time-varying thresholds

Two of the main assumptions of the CP methodology are that (i) returns are normally

distributed and (ii) that the indifference thresholds are constant over time. We have

already shown above (Figure 2) that return expectations are not normal but given the

extensive evidence in the literature that non-normality does not matter too much (e.g.

Mitchell, 2002), we do not expect non-normality to be an important driver of our results

(we will validate this conjecture below). However, it seems reasonable to assume that

forecasters have heterogeneous threshold values and that these thresholds vary over time,

for example in response to changing market volatility. In this section we investigate

whether these threshold levels are indeed time invariant (as assumed in the CP approach)

and we consider two different methods for estimating the thresholds δ+t and δ−t for each

time period separately.
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6.1 Parametric estimation

Let

µ̂t =
1

Nt

Nt∑
i=1

yeit (8)

and σ̂2
t =

1

Nt

Nt∑
i=1

(yeit − µ̂t)2 (9)

denote the first two sample moments of the expectations yeit at period t. Under Assumption

CP we have

q−t = Φ−1(p−t ) ' (δ−t − µ̂t)/σ̂t (10)

q+t = Φ−1(1− p+t ) ' (δ+t − µ̂t)/σ̂t . (11)

For Nt →∞ these approximations become identities provided that the conditions for the

weak law of large numbers are satisfied. From these relationships we obtain the following

estimators for the indifference limits at period t:

δ̂+t = σ̂tq
+
t + µ̂t (12)

δ̂−t = σ̂tq
−
t + µ̂t . (13)

The resulting estimators may be used to investigate whether the assumption of fixed limits

(Assumption CP (b)) is valid.

Figure 4, Panels (a) and (b), presents the estimators δ̂+t and δ̂−t along with simulated

95% confidence intervals. The confidence intervals are obtained from 10,000 estimates of

the threshold parameters, where the individual expectations are simulated by normally

distributed random variables with expectation µ̂t and variance σ̂2
t . For reference the sym-

metric estimates δ̂ls estimated by the CP and LS methods are also included as horizontal

lines. The results clearly indicate that the assumption of fixed indifference level is violated.

Figure 4 about here
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6.2 Nonparametric estimation

Since the descriptive analysis of Section 2 clearly indicates that the normality assumption

is violated for the vast majority of time periods, we also apply a nonparametric estimation

procedure, where yeit is allowed to have an arbitrary distribution function Ft(z) that may

be different from the normal distribution. Note that

p−t = Prob(yeit < δ−t ) (14)

= Ft(δ
−
t ) (15)

and, therefore, δ−t = F−1t (p−t ). The inverse of the empirical distribution function F̂t(·)

can be obtained from the ranks of yeit. To this end we form the ranks of yeit, yielding the

ordered set {ye(1),t, . . . , ye(Nt),t
}, where ye(1),t is the smallest value of the set {ye1t, . . . , yeNtt

}

and ye(Nt),t
is the largest value. Next, we select the value of ye(i),t (i = 1, . . . , Nt) such that

its rank is equal (or closest) to Nt · p−t . This value is the nonparametric estimator of the

lower indifference limit and it is labeled as δ̃−t . In a similar manner the upper limit results

as the value of ye(i),t for which 1− (i/Nt) comes closest to p+t .

To compute the standard errors for the nonparametric estimator, a bootstrap procedure

is employed. Let Yeit denote the bootstrap analog of yeit obtained by drawing (with replace-

ment) from the sample {ye1t, . . . , yeNtt
}. From the new sample {Ye1t, . . . ,YeNtt

} we estimate

the lower and upper limits by using the nonparametric approach obtaining the threshold

estimates δ̃−t (Yeit) and δ̃+t (Yeit). The confidence intervals for the nonparametric estimators

of the indifference limits can be estimated as the α/2 and 1 − α/2 quantiles of the sim-

ulated distribution of δ̃−t (Yet ) and δ̃+t (Yet ), where α denotes the probability level of the

confidence interval.4

The resulting estimates are presented in Figure 5 along with 95%-confidence intervals.

It turns out that the nonparametric estimates of the indifference limits correspond fairly

well to the parametric estimates presented in Table 4 and, therefore, the violation of the

normality assumption does not have an important effect on the estimated threshold as

argued above. Therefore, the results do not change much if the parametric estimates of

4Note that this bootstrap treats each cross-section separately and, hence, delivers correct point-wise
standard errors for each month. However, care must be taken when looking at the whole path of standard
errors where time-dependence of forecasts would have to be taken into account.
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the limits are replaced by nonparametric estimates.

Next we investigate whether the use of the time-varying nonparametric estimates of the

thresholds is able to improve the fit of the quantitative expectations. To this end we

compute quantified expectations according to empirical analog of eq. (3)

µ̃∗t = δ̃+t z1t − δ̃−t z2t

where the fixed thresholds are replaced by the estimated time varying thresholds.

If the qualitative data is generated by the probability model characterized by Assumption

CP but with time varying thresholds, we expect that µ̃∗t is highly correlated with the

sample means of the expectations µ̂t. In fact the substantially improved correlation of

0.95 (instead of 0.45) suggests that the lack of fit of the original CP method can be

explained (at least to a large extent) by imposing time-constant thresholds.

Figure 5 about here

6.3 Explaining time varying thresholds

Since our empirical results point to a substantial time-variation of the indifference lim-

its we further investigate the temporal variation by estimating variants of the following

dynamic regressions:

δ̃+t = a0 + a1 δ̃
+
t−1 + β′xt + et , (16)

where δ̃+t denotes the nonparametric estimate of the upper threshold in period t and xt

represents additional explanatory variables such as past returns or standard deviations. A

similar regression is performed for δ̃−t . Based on the theory of signal extraction Bachelor

and Orr (1988) specify xt = σ2
t and estimate the parameters using a data set on inflation

expectations as â1 = 0.16, â1 = 0.27 and β̂ = 0.11.

Our estimation results based on different specifications are presented in Table 2. The

standard errors of the coefficients are computed by using robust (HAC) standard errors
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as suggested by Newey and West (1987). The first column presents the estimation results

for the specification proposed by Batchelor and Orr (1988). For positive thresholds,

our estimates of the constant and the lagged thresholds are somewhat larger but the

estimate for the lagged standard deviation correspond well to the estimate reported by

Batchelor and Orr (1988). Including lagged returns of the last month or the last 6 months

(the time interval that is used to compute the dependent variable) yields a substantial

improvement of the fit. Somewhat surprisingly, past returns are negatively correlated with

the thresholds. This may suggest that following an increase in stock prices the survey

participants tend to match their current view on future stock prices with the positive

market conditions by lowering the upper and lower thresholds. On the other hand, an

increase in lagged return volatility (measured as lagged volatility over one month or six

months based on daily data) only has a marginal effect on the indifference limits. Similarly,

the time dependent volatility (as measured by the conditional variances of a GARCH(1,1)

specification for the returns) do not contribute much for explaining temporal fluctuations

of the indifference thresholds. In any case our results indicate that the assumption of

fixed indifference limits that underlies the probability approach is grossly violated.

Table 2 about here

Overall, our analysis suggests that incorporating additional information when modeling

the threshold levels maybe a fruitful exercise. This seems especially relevant, since we

find that economic variables (especially lagged returns in our setup) add quite a bit of

explanatory power. Hence, simple time-series models for thresholds (as suggested by the

AR(1) component in our setup) or time-varying parameter models5 do not necessarily

provide the best fit.

5See e.g. Nardo (2003) for an overview of these models and Claveria et al. (2007) for a recent
application. Also see Seitz (1988) or, more recently, Henzel and Wollmershäuser (2005) for approaches
based on time-varying thresholds.
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7 Individual specific heterogeneity

So far we have focused on temporal heterogeneity. In this section we investigate the

effects of individual specific heterogeneity.6 To this end we assume that the indifference

thresholds and the mean of the expectations vary across individuals such that

δ+i = δ+ + ν+i

δ−i = δ− + ν−i

µit = µt + ηi

where ν+i , ν−i and ηi are random disturbances with expectations equal to zero. The

probability of a negative response is given by

p−t =
1

n

n∑
i=1

Φ

(
δ− − µt
σt

+
ε1i
σt

)
, (17)

where ε1i = ν−i + ηi. If E(ε21i) = σ2
ε1

is small relative to σ2
t we can apply a Taylor series

expansion yielding

p−t = Φ

(
δ− − µt
σt

)
+ φ

(
δ− − µt
σt

) 1
n

∑n
i=1 ε1i

σt
+Op(σ

2
ε1
/σ2

t ) (18)

= Φ

(
δ− − µt
σt

)
+Op(n

−1/2) +Op(σ
2
ε1
/σ2

t ),

where φ(·) denotes the density function of the standard normal distribution.7 This sug-

gest that the distortions due to mild individual specific heterogeneity are negligible if n

gets large. A similar reasoning applies to p+t . Accordingly, introducing temporal hetero-

geneity seems sufficient to explain the low correlation between the CP measure and the

quantitative expectations. We also investigate this issue in more detail below by means

of a simulation experiment.

It is nevertheless interesting to assess the individual specific heterogeneity in the ex-

pectations of the respondents. To illustrate our empirical strategy, assume that under

6There are several reasons why forecasters might be heterogeneous. One reason considered in the more
recent literature is that forecasters might employ different loss functions when forming their forecasts (see,
e.g., Elliott et al., 2005). Das et al. (1999) and Lui, Mitchell and Weale (2011a) have investigated this
issue on the basis of qualitative forecasts. For the analysis in this paper, we abstract from the specific
source of heterogeneity but simply assume that forecasters have the same loss function when forming
qualitative and quantitative expectations.

7The analysis based on a Taylor series expansion is inspired by and similar to the analysis in Mitchell,
Smith and Weale (2002).
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the null hypothesis all parameters of the probability model comprised in the vector

θt = (µt, σt, δ
−
t , δ

+
t )′ are known. The qualitative indicator rit ∈ {1, 0,−1} can be rep-

resented as

rit = E(rit) + eit

= P (rit = 1)− P (rit = −1) + eit

=

[
1− Φ

(
δ+t − µt
σt

)]
− Φ

(
δ−t − µt
σt

)
+ eit

= G(θt) + eit. (19)

If the probability model is correctly specified we have E(rit) = G(θt) or E(eit) = 0 for all

i and t. On the other hand, if some parameters of the model are individual specific, then

E(eit) 6= 0. This suggest to compare the mean of the observed responses of individual i

ri =
1

T

T∑
t=1

rit

with the expected value based on the probability model G(θ̂) = T−1
∑T

t=1G(θ̂t), where

the parameters in the vector θt are replaced by their sample counterparts, i.e., we employ

the (cross-sectional) average quantitative return expectations µ̂t, standard deviations σ̂t,

and non-parametric threshold estimates δ̂+t , δ̂−t from our analysis above. If ri > G(θ̂),

then the respondent is relative optimistic, whereas a pessimistic respondent is indicated

by observing ri < G(θ̂).

First we apply a simple t-statistic to test the hypothesis that the model is overall correctly

specified.8 We observe (
1

n

n∑
i=1

ri

)
−G(θ̂) = 0.0764

with associated t-statistic of 0.065. We therefore tentatively conclude that the (homoge-

nous) probability model is able to reproduce the overall mean of the qualitative indicator.

For individual probabilities, however, the Taylor expansion according to (18) yields

P (rit = −1) = Φ

(
δ− − µt
σt

)
+ φ

(
δ− − µt
σt

)
ε1i
σt

+Op(σ
2
ε1
/σ2

t ) (20)

P (rit = 1) = 1− Φ

(
δ+ − µt
σt

)
− φ

(
δ+ − µt
σt

)
ε2i
σt

+Op(σ
2
ε2
/σ2

t ), (21)

8For this test we assume that responses are independent across individuals and that the estimation
error in G(θ̂) is negligible.
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where ε2i = ν+i + ηi. Therefore, the difference between ri and G(θ) results as

E(ri|εi)−G(θ) ≈ ϕ1(θ)ε1i + ϕ2(θ)ε2i (22)

where

ϕ1(θ) = −
T∑
t=1

φ−t (θt)

σt
and ϕ2(θ) = −

T∑
t=1

φ+
t (θt)

σt

and φat (θt) = φ[(δat − µt)/σt] with a ∈ {+,−}. Accordingly, the difference between ri and

G(θ) are (approximately) proportional to the individual effects ε1i and ε2i.

Assuming that the probability model is well specified, we have θ̂ = (µ̂t, σ̂t, δ̂
−
t , δ̂

+
t )′ =

θ+Op(n
−1/2) and Gt(θ̂) = G(θ) +Op(n

−1/2). Thus, the t-statistic for E(ε1i) = E(ε2i) = 0

results as

mi(θ̂) =
1√
T

T∑
t=1

êit (23)

=

(
1√
T

T∑
t=1

eit

)
+Op

(√
T

n

)
.

If T/n→ 0 it follows from the central limit theorem that

mi(θ̂)
d→ N (0, s2i ) (24)

where

s2i = lim
N,T→∞

E

 1

T

(
T∑
t=1

eit

)2
 .

Note that due to the overlapping horizon of the expectations, the expectation errors are

autocorrelated up to the fifth lag. We therefore estimate the variance s2i by using the

HAC standard errors as suggested by Newey and West (1987).

Applying this testing strategy to those respondents that participate in at least 30 time

periods (yielding n = 257) we obtain 44.4 percent of the test statistics ti(θ̂) = mi(θ̂)/ŝi

(i = 1, . . . , 257) larger than 1.96, whereas 21.0 percent of the test statistics are smaller

than −1.96. That is, in only 34.6 percent of the cases the test statistics accept the

null hypothesis that the residuals have a zero mean. Under the null hypothesis the test

statistics are asymptotically i.i.d. N (0, 1). For large N the rejection frequency under

the null hypothesis is (approximately) normally distributed with N (0.05, 0.05 · 0.95/n)

yielding an 0.05 upper critical value for the rejection frequency of 0.077. Since the actual
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rejection rate of 0.654 is much higher than the upper limit of 0.077 we can safely reject

the null hypothesis of individual homogeneity.

8 Simulation experiments

Finally, we present results of two simulation experiments designed to investigate the rea-

sons for the poor performance of the CP methodology. The first experiments examines

whether time-varying thresholds alone can reproduce the poor performance of the CP

procedure documented in Table 1. We find that introducing time-varying thresholds go

a long way towards reproducing our empirical findings above. The second experiment

additionally considers forecaster-specific heterogeneity in thresholds (and return expecta-

tions) to discriminate between the importance of pure time-variation in thresholds and

heterogeneity between forecasters. We find that adding forecaster-specific heterogeneity

leads to an even closer fit between simulated results and our empirical results based on

actual data. However, the improvements are fairly minor and suggest that time-varying

thresholds capture the lion’s share of the poor performance of the CP procedure.

8.1 Time variation in thresholds

To examine the effect of time-varying thresholds on the performance of the CP procedure,

we simulate quantitative expectations for each forecaster distributed as Yeit ∼ N (µ̂t, σ̂
2
t ),

where µ̂t and σ̂2
t are sample average and variance of the reported survey expectations. We

transform these quantitative expectations into qualitative expectations (r̃i,t) by comparing

the artificial quantitative expectation to the upper and lower threshold values

r̃it =


1, if Yeit > δ+t
0, if δ−t ≤ Yeit ≤ δ+t
−1, if Yeit < δ−t .

(25)

for i = 1, . . . , N . From the simulated qualitative expectations r̃it we calculate the time-

series for the regressor z̃t as described in Section 3. Running a regression of µ̃t =

N−1
∑N

i=1 Yeit on z̃t yields the estimated threshold parameter δ̂ls and the regression R2. In

all our simulations, we set the number of forecasters equal to 200 and T = 69 months.9

9Increasing the number of cross-sections has no material effect on our results.
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We employ five different simulation setups. Setup I sets a symmetric and constant thresh-

old equal to the time-series mean of our parametric threshold estimates from above. To

generate data with symmetric thresholds we set δ̂sym = T−1
∑T

t=1
1
2
(δ̃+t − δ̃−t ). The time

constant parameter σ2 is fixed at the sample mean of σ̂2
t . Setup II also employs constant

thresholds and a constant standard deviation but we allow for asymmetric thresholds

by setting the upper and lower threshold equal to the sample means of the respective

threshold time-series δ̂+t and δ̂−t . Setup III relaxes the assumption of constant standard

deviations and we employ the time series of estimated cross-sectional standard deviations

σ̂t obtained from the original data set. Setup IV uses time-constant standard deviation

(again computed as square root of the sample mean of σ̂2
t ) but now we allow the thresholds

to vary over time. We employ the parametric estimates δ̂+ and δ̂− to simulate expecta-

tions in this setup. Finally, Setup V allows for time-varying thresholds (as in setup IV)

and time-varying standard deviations (as in setup III).

Simulation results based on 25,000 repetitions for each setup are shown in Table 3. Panel A

shows percentiles of the simulated distribution of estimated threshold parameters whereas

Panel B reports the same for regression R2s. Considering the median values first, we find

that the most restrictive setup I yields an estimate for δ of 2.78 and a median R2 of 0.91.

This can be compared to our estimate for the actual survey data with δ̂ls = 1.96 and an

R2 of 0.20 (see Table 1). Thus, we find that both the threshold parameter and the R2 are

much to high. In fact, the estimated threshold parameter is significantly different from

1.96 on a 5%-level and an R2 of 0.20 as in the actual data has a chance of being observed

of less than 0.5%. Thus, the constant and symmetric threshold model with constant

standard deviations is clearly not supported by our data.

Setup II (asymmetric and constant thresholds, constant standard deviation) yields thresh-

old estimates which are closer to their in-sample counterparts in Table 1 but still yields

very large values for the regression R2 which are not observed in the real-world data.

Similar results are obtained for setup III. However, setups IV and V, which both allow for

time-varying thresholds, lead to a distribution of threshold parameter estimates and R2

which are well in line with our empirical findings reported above. The median threshold

parameters are close to 2 and the median R2 are 0.23 and 0.25, respectively. These values

are very close to our empirical findings of δ̂ls = 1.96 and an R2 of 0.20 in Table 1. There-
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fore we conclude that time varying thresholds alone are able to explain most of the poor

observed fit between quantitative and quantified expectations documented in Section 3.

8.2 Individual heterogeneity in thresholds

In a second simulation experiment, we add forecaster-specific heterogeneity by allowing

for noise in individual thresholds. More specifically, we employ the same five simulation

setups as above, but add normally distributed error terms to the thresholds, so that

δ̂i,sym = δ̂sym + νi (Setup I), δ̂+i = δ̂+ + ν+i and δ̂−i = δ̂− + ν−i (Setup II and III), or

δ̂+i,t = δ̂+t + ν+i,t and δ̂−i,t = δ̂−t + ν−i,t (Setup IV and V). All error terms have mean zero

and we consider standard deviations of 0%, 10%, 20%, ..., 100% of the standard deviation

of expected returns. The latter specification just serves to benchmark the “amount”

of forecaster heterogeneity to some observable variable. Note that a relative standard

deviation of 0% basically reproduces the experiment in the preceding section whereas

a relative standard deviation of 100% implies that thresholds across forecasters are as

dispersed as return expectations.10

Results for these simulations are shown in Table 4 where we report CP threshold estimates

in Panel A, and regression R2s in Panel B as in Table 3 above. However, to conserve

space, we only report medians across the 25,000 simulations. As can be inferred from

these results, allowing for an increasing heterogeneity of forecasters tends to decrease the

size of simulated threshold estimates (Panel A) and R2s and drives them closer to the

benchmark of δls = 1.96, R2 = 0.20 (Table 1). However, allowing for forecaster-specific

thresholds alone does not seem to suffice to reproduce our empirical findings from Section

3 above. As in our simulations above, we are only able to reproduce the low observed R2

when allowing for time-varying thresholds as in Setup IV and V. For these two setups,

we do find, however, that introducing forecaster-specific heterogeneity allows for a more

or less perfect replication of our benchmark results in Table 1. For example, a relative

standard deviation of 90% leads to a median threshold estimate of 1.95 and median R2 of

20% in Setup V which is extremely close to the values we find for our actual data in Table

10Other papers have also investigated threshold heterogeneity across forecasters, see e.g., Lui, Mitchell,
Weale (2011a) and Lui, Mitchell, Weale (2011b) which directly estimate thresholds from a panel of
individual forecasters.
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1. Hence, these results corroborate our claim above that time-variation in thresholds

captures the lion’s share of the observed poor performance of the CP procedure whereas

forecaster-specific heterogeneity plays a minor role.

Table 4 about here

9 Conclusions

In this paper we analyze a unique sample of individual stock market forecasts consist-

ing of both qualitative and quantitative forecasts issued by the same forecasters. The

probability approach for quantifying qualitative survey data suggested by Carlson and

Parkin (1975) implies a strong and stable correlation among qualitative and quantitative

expectations. In contrast we observe that in our data set the reported quantitative fig-

ures are only weakly correlated with the respective qualitative forecasts. We investigate

several potential explanations for this surprising result. Although we find evidence for

severe violations of the normality assumption in most of the time periods, this does not

seem to have an important effect on the relationship between quantitative and qualitative

expectations. On the other hand, we find that temporal and individual heterogeneity of

the indifference thresholds are able to explain the break-down in the correlation between

quantitative and qualitative forecasts.

Provided that qualitative expectations are only weakly correlated with quantitative ex-

pectations, the classical probability approach renders measures of market expectations

unreliable. Since we find that temporal variation in indifference thresholds is a major

source of the low correlation between qualitative and quantitative expectations, we pro-

pose to specify explicitly the indifference limits in the questionnaire. For example, one

may ask the respondents whether they think that stock prices will rise/fall more than

±5 percent during the next 6 months. Such a detailed definition of qualitative expec-

tations seems practical and will eventually improve the reliability of quantified survey

expectations.
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Furthermore, we show that there is substantial cross-sectional heterogeneity across fore-

casters which also interferes with standard quantification procedures (although to a lesser

degree than time-varying thresholds in our stock market setting). Yet, many published

survey results do not provide information about the dispersion in forecasts so that it

seems impossible to deal with this heterogeneity in applied research. We thus suggest to

publish more information and not just the share of optimistic and pessimistic forecasters.

Alternatively, an even better solution would be to publish data on the full panel of fore-

casters which would allow for improved quantification methods (Mitchell, Smith, Weale,

2002, 2005).
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Figure 1: Cross-sectional moments of return expectations over time
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Notes: This figure shows time-series plots of the cross-sectional mean, standard deviation,
skewness, and kurtosis of individual return expectations. The sample period is February
2003 – October 2008.
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Figure 2: Tests for normality
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Notes: This figure shows time-series plots of Jarque-Bera tests for normality of return
expectations for each cross-section of forecasts in our sample. The sample period is
February 2003 – October 2008.
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Figure 3: Quantitative expectations versus quantified expectations
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Notes: This figure depicts the quantified return expectations based on the method of
Carlson and Parkin (solid line) and average quantitative expectations from the survey of
point forecasts (dashed line, circles). Expected returns are in percent.
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Table 1: Parameter estimates

Dependent: yt Dependent: µ̂t
CP LS ALS PRA CP LS ALS PRA

δ 2.96 3.76 δ 1.96 1.96

[1.41] [2.13] [6.85] [6.81]

δ+ -0.58 δ+ 1.78

[-0.10] [3.37]

δ− -18.70 δ− -3.34

[-1.24] [-1.81]

α 0.29 α 0.07

[4.63] [5.87]

β -0.86 β -0.07

[-2.70] [-1.37]

R
2

0.09 0.09 0.11 0.23 R
2

0.20 0.20 0.29 0.20

Notes: This table reports parameter estimates from different quantification procedures.

The left panel of the table employs future returns (yt) as dependent variable whereas the

right panel of the table employs actual quantitative expectations (µ̂t). CP is the estimator

originally suggested by Carlson and Parkin (1975) where the threshold is estimated from

yt = δzt+ut using only a vector of ones as instruments (see (4)). The LS estimator is also

based on on the regression yt = δzt + ut but uses zt as instrument. The asymmetric LS

estimator (ALS) of Berk (1999) is based on the LS regression (6), and the PRA denotes

the regression approach of Pesaran (1985).
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Figure 4: Parametric threshold parameters with point-wise 95% confidence intervals

(a) Parametric δ+

(b) Parametric δ−

Notes: The figure presents parametric upper thresholds (δ̂+t , Panel (a)) and lower thresh-

olds (δ̂−t , Panel (b)) along with 95% point-wise confidence intervals. Time-invariant
thresholds from the CP and LS method are also shown as horizontal lines. Confidence
intervals are based on a bootstrap with 10,000 replications.
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Figure 5: Non-parametric threshold parameters with point-wise 95% confidence intervals

(a) Non-parametric δ+

(b) Non-parametric δ−

Notes: The plot shows non-parametric upper thresholds (δ̃+t ) and lower thresholds (δ̃−t )
along with 95% point-wise confidence intervals. Time-invariant thresholds from the CP
and LS method are also shown as horizontal lines. Confidence intervals are based on a
bootstrap with 10,000 replications.
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Table 2: Explaining thresholds

dependent variable: δ̃+t dependent variable: δ̃−t

const. 0.64 1.08 1.03 0.99 -1.83 -1.93 -1.93 -2.01

[2.26] [6.63] [4.47] [4.58] [-3.56] [-4.61] [-4.75] [-4.38]

δ̃·t−1 0.55 0.57 0.51 0.49 0.55 0.42 0.42 0.02

[5.95] [8.45] [8.51] [7.42] [5.96] [4.44] [4.31] [0.11]

σt−1 0.11 0.03 0.00 0.00 -0.02 -0.09 -0.13 -0.05

[1.54] [1.65] [0.13] [-0.13] [-0.29] [-1.69] [-2.26] [-0.88]

σt−1:t−6 0.04 0.04 0.02 0.05

[3.64] [2.86] [1.14] [2.73]

σ̂GARCHt 0.00 -0.06

[1.24] [-3.42]

rt−1 -0.15 -0.12 -0.13 -0.16 -0.13 -0.08

[-11.04] [-7.37] [-6.76] [-3.62] [-3.18] [-2.66]

rt−1:t−6 -0.03 -0.03 -0.03 -0.07

[-4.06] [-3.73] [-2.00] [-3.68]

adj.R2 0.45 0.76 0.78 0.78 0.29 0.43 0.43 0.59

Notes: This table shows regressions results of (nonparametrically) estimated threshold

parameters (δ̃+t , δ̃−t ) on various determinants. δ̃·t−1 denotes the lagged threshold parameter

depending on the dependent variable, rt−1 (rt−1:t−6) denotes the lagged market return over

the previous month (previous six months), and σt−1 (σt−1:t−6) denotes the lagged standard

deviations of market volatility over the previous month (previous six months). σ̂GARCHt

denotes the fitted volatility forecast from a GARCH(1,1)-model for monthly DAX returns.

t-statistics in squared brackets are based on Newey-West HAC standard errors.
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Table 3: Simulation results: Time-varying thresholds

Panel A: Threshold parameter estimates

Setup 0.5% 2.5% 10% 50% 90% 97.5% 99.5%

I 1.31 2.05 2.44 2.78 2.95 3.03 3.09

II 0.00 1.29 1.85 2.15 2.27 2.31 2.36

III 1.70 1.89 2.01 2.15 2.26 2.31 2.35

IV 1.84 1.90 1.95 2.05 2.13 2.18 2.22

V 1.87 1.92 1.97 2.06 2.14 2.18 2.21

Panel B: R2 from regressions of µ on z

Setup 0.5% 2.5% 10% 50% 90% 97.5% 99.5%

I 0.20 0.66 0.84 0.91 0.94 0.95 0.96

II -1.02 0.44 0.78 0.85 0.90 0.91 0.92

III 0.70 0.77 0.81 0.86 0.90 0.91 0.92

IV 0.08 0.13 0.16 0.23 0.30 0.33 0.36

V 0.10 0.14 0.18 0.25 0.32 0.36 0.39

Notes: This table shows results of the simulation exercises where we generate simulated

qualitative expectations from observed quantitative expectations. Panel A reports various

percentiles of the distribution of estimated thresholds δ. Panel B reports R2s from these

regression. We run 1,000 simulations for five different simulation setups (I – V) which are

described in the text.
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Table 4: Simulation results: Individual heterogeneity

Relative standard deviation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Setup Panel A: Threshold parameter estimate (median)

I 2.78 2.78 2.78 2.77 2.76 2.74 2.72 2.70 2.67 2.64 2.60

II 2.15 2.15 2.15 2.15 2.15 2.14 2.12 2.10 2.08 2.05 2.03

III 2.15 2.15 2.15 2.14 2.12 2.09 2.07 2.03 1.99 1.95 1.90

IV 2.05 2.05 2.04 2.04 2.03 2.01 1.99 1.97 1.94 1.91 1.87

V 2.06 2.06 2.06 2.05 2.04 2.03 2.02 2.00 1.97 1.95 1.92

Setup Panel B: R2 from regression of µ on z (median)

I 0.91 0.91 0.91 0.91 0.90 0.90 0.89 0.88 0.87 0.85 0.84

II 0.85 0.85 0.85 0.85 0.84 0.84 0.83 0.82 0.81 0.80 0.78

III 0.86 0.86 0.86 0.85 0.84 0.83 0.81 0.79 0.76 0.74 0.70

IV 0.23 0.23 0.23 0.23 0.22 0.21 0.20 0.19 0.17 0.15 0.13

V 0.25 0.25 0.25 0.25 0.24 0.24 0.23 0.22 0.21 0.20 0.18

Notes: This table shows results of extended simulation exercises where we follow the simu-

lation design underlying Table 3 but additionally introduce forecaster-specific heterogene-

ity in thresholds by means of normally distributed random errors (for each forecaster).

The standard deviation of these forecaster-specific errors ranges from 0% to 100% of the

standard deviation of expected returns (i.e., the “relative standard deviation” ranges from

0.0 to 1.0 as indicated in the first two rows). We run 25,000 repetitions in each simulation

setup and for each relative standard deviation and report medians of the 25,000 runs.
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