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Microarrays are part of a new class of biotechnologies which allow the monitoring of ex-

pression levels of thousands of genes simultaneously. In microarray data analysis, the

comparison of gene-expression pro�les with respect to di�erent conditions and the selec-

tion of biologically interesting genes are crucial tasks. Multivariate statistical methods

have been applied to analyze these large data sets. In particular, Dudoit et al. [2002]

developed methods using t-statistics with p-values calculated through permutations, and

with the Westfall and Young [1993] step-down approach to correct for multiple testing.

Thomas et al. [2001] developed a regression modelling approach. Following the idea of

Efron et al. [2000] and Tusher et al. [2001], Pan [2002] proposed a Normal mixture mod-

elling approach that relaxes many strong assumptions on the null distributions of the test

statistics. This paper makes two contributions to the analysis of microarray data. The

�rst is the introduction of a new method for the calculation of the cut-o� point and the

acceptance region, and the second is the replacement of the based Normal mixture density

estimators proposed by Pan et al. [2002], with less restrictive kernel nonparametric ones.

A useful modi�cation is suggested in order to increase the performance of the kernel esti-

mator on the tail of the distribution. We apply our approach to leukemia data of Golub

et al. [1999] and compare our results to those of Pan [2002].

Keywords: Kernel estimator; Microarray; Mixture modeling; Regression modeling, t-

test.
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1 Introduction

Gene expression regulates the production of protein, the ultimate expression of the

genetic information, which in turn governs many cellular processes in biological

systems. The knowledge of gene expression has applications ranging from basic

research on the mechanism of protein production to applications such as diagnosing,

staging, treating and preventing of diseases. Microarray techniques provide a way

of studying the RNA expression levels of thousands of genes simultaneously; see

for example Brown and Botstein [1999], Lander [1999], Quackenbush [2001]. The

identi�cation of di�erentially expressed genes is a question which arises in a broad

range of microarray experiments which produce enormous amounts of data, see

Spellman et al. [1998], Galitski et al. [1999], Golub et al. [1999], Callow et al. [2000],

Friddle et al. [2000], and Guimaraes and Urfer [2002], to name a few. The expression

level can refer to summary measure of relative red to green channel intensities in

a uorescence-labeled complementary DNA or cDNA array, a radioactive intensity

of a radiolabeled cDNA array, or summary di�erence of the perfect match (PM)

and mis-match (MM) scores from an oligonucleotide array, see Li and Wong [2001]).

Microarray experiments involve a number of distinct stages which are discussed in

Smyth et al. [2002]. The expression levels may have been suitably preprocessed to

acquire red and green foreground and background intensities for each spot of the

arrays, including dimension reduction, data normalization and data transformation;

see for example Dudoit et al. [2002], Efron et al. [2000], Li and Wong [2001]. We

suppose here that all stages to get data are satis�ed. For the purpose of the paper,

let Rf and Gf (resp. Rb and Gb) be the foreground (resp. the background) red

and green intensities for each spot. The log-di�erential expression ratio will be

Y = log

2

(R=G) where usually R = Rf�Rb and G = Gf�Gb; where G > 0: One of

the core goals of microarray data is to compare, for example, the expression levels of

genes in samples drawn from two di�erent cell types, such as healthy versus diseased

cells, and to identify which of the genes show good evidence of being di�erentially

expressed. Statistical methods are very helpful to reach this goal. In the early

days, many data analysis programs sort the genes according to the absolute level

of Y , where Y is Y -values for any particular gene across the replicate arrays, see

Smyth et al. [2002] for more details. This is known to be unreliable (see Chen

et al. [1997]) because statistical variability of the expression levels for each genes

was not taken account. It has also been noted that data based on a single array

may not be reliable and may contain high noises (see Lee et al. [2000]). Moreover,

the need for independent replicates has been recognized (see Lee et al. [2000]), and

several methods from combining information from several arrays have been proposed.

These methods assign a test score to each of the genes and then select those that
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are \signi�cant". The test statistics included the t-test (Zhang et al. [1997], Alon et

al. [1999]), the ANOVA F -statistics (Kerr et al. 2000]) and the information theoric

measure known as InfoScore (Hadenfalk et al. [2001]). Recently, Chilingaryan et

al. [2002] used a multivariate approach based on Mahalanobis distance between

vectors of gene expressions as a criterion for simultaneously comparing a set of

genes, and developed an algorithm for maximizing it. A Similar vectorial approach,

including principal components analysis, is also given by Kuruvilla et al. [2002].

Bayesian probabilistic framework for microarray data analysis are also developed by

Friedman et al. [2000], Baldi et al. [2001], Imato et al. [2002] among others. In

this paper we consider the detection of di�erentially expressed genes with replicated

measurements of expression levels using Bayesian inference with the mixture model

approach of Pan et al. [2002]. It is one of the three methods reviewed by Pan [2002].

In particular, we introduce a kernel estimator of density functions in order to form

the test statistic in the Bayesian techniques.

The paper is organized as follows. In Section 2, we describe the statistical model

and two existing testing methods: the t-test approach and the Normal mixture

model approach. In Section 3, we propose a kernel estimation procedure, and we

give a new method to determine the cut-o� point and the acceptance region. This

nonparametric approach is illustrated in Section 4 using the leukemia data of Golub

et al. [1999], and is compared to the Normal mixture model approach of Pan et

al. [2002]. Section 5 summarizes some concluding remarks and gives an outlook for

further activities.

2 Statistical model and existing methods

In this section, we give a general statistical model from which we make the compar-

ative studies. Then, we recall the construction of the t-test method and the mixture

modeling approach.

2.1 The model

Various models are proposed to summarize multiple measurements of gene expres-

sion. A general survey is given by, for example, Thomas et al. [2001], Li and Wong

[2001] and Sebastiani and Romani [2002]. We will focus on a simple model studied

in particular by Pan et al. [2002].

Suppose that Y

ij

is the expression level of gene i in array j, i = 1; :::; n and

j = 1; :::; J . We suppose that J = J

1

+ J

2

and that the �rst J

1

and last J

2

arrays

are obtained under the di�erent conditions, say treatment and control, respectively.
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We consider the following general statistical model:

Y

ij

= �

i

+ �

i

x

j

+ "

ij

(1)

where x

j

= 1 for 1 � j � J

1

and x

j

= 0 for J

1

+ 1 � j � J

1

+ J

2

, and "

ij

are independent random errors with mean 0. Hence �

i

+ �

i

and �

i

are the mean

expression levels of gene i under the two conditions respectively.

Let H

0i

denote the null hypothesis of equal treatment and control mean ex-

pression levels for gene i; i = 1; :::; n: Here we consider only two-sided alternative

hypotheses; one-sided alternatives can be handled in similar manner. Then, deter-

mining whether a gene has di�erential expression is equivalent to testing the null

hypothesis

H

0i

: �

i

= 0 against H

1i

: �

i

6= 0:

A statistical test consists of two parts. The �rst is to construct a summary test

statistic which will rank the genes in order of evidence for di�erential expression,

from strongest to weakest evidence. The second is to choose a critical-value, or the

signi�cance level or p-value associated with the test statistic above which any value

is considered to be signi�cant. In many microarray studies the aim is to identify a

number of candidate genes for con�rmation and further study.

To focus on the main issue, we use � = 0:01 as the genome-wide signi�cance level.

To account for multiple hypothesis testing, one may calculate adjusted p-values, see

Sha�er ([1995] and Westfall and Young [1993]. According to Sha�er [1995], given

any procedure, the adjusted p-value corresponding to the test of single hypothesis

H

0i

can be de�ned as the level of the entire test procedure at which H

0i

would just

be rejected, given the values of all test statistics involved. The Bonferroni method is

perhaps the best known method with multiple testing (see Dudoit et al. [2002] and

Thomas et al. [2001]). This method should be used here. Hence the gene-speci�c

signi�cance level (for a two-sided test) is �

�

= �=(2n):

In the following, we review two existing methods along the line.

2.2 The t-test

Let us recall that H

0i

denote the null hypothesis of equal expression levels under

the two di�erent conditions (e.g. control and treatment ) for gene i, i = 1; :::; n. As,

we consider only two-sided alternative hypotheses, the t-statistic comparing gene

expression for gene i is

Z

i

=

Y

i(1)�

Y

i(2)

q

s

2

i(1)

J

1

+

s

2

i(2)

J

2

; (2)
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where Y

i(1)

and Y

i(2)

denote the average expression level of gene i in the J

1

treatment

and J

2

control hybridizations, respectively. Similarly, s

2

i(1)

and s

2

i(2)

denote the sam-

ple variances of gene i's expression level in the treatment and control hybridizations,

respectively.

Large absolute t-statistics suggest that the corresponding genes have di�erent

expression levels in the control and treatment groups. Note that the replication is

essential for such an analysis because of the need for assessing the variability of gene

expression levels in the treatment and control groups.

Under the Normality assumption of Y

ij

, Z

i

approximately has a t-distribution

with degree of freedom

d

i

=

(s

2

i(1)

=J

1

+ s

2

i(2)

=J

2

)

2

(s

2

i(1)

=J

1

)

2

=(J

1

� 1) + (s

2

i(2)

=J

2

)

2

=(J

2

� 1)

:

A classical approximation of d

i

is given by J

1

+ J

2

� 1, see for example Sche��e

[1970] and Best and Rayner [1987]. If we do not assume the t-distribution, we use

permutation to estimate their distribution, see Dudoit et al. [2002] for more details.

Wastfall and Young [1993] suggest approximating the p-values using asymptotic

theory, see also Dudoit et al. [2002] for a computational algorithm.

2.3 The mixture model approach

The ordinary t-statistic is not ideal because of its restrictive assumptions. Strong

assumptions (e.g. normality, equality of variances) are needed for the null distribu-

tion of the test statistics. To estimate the null distribution, Pan [2002] and Pan et

al. [2002] constructed the following null statistics

z

i

=

Y

i(1)

u

i

=J

1

� Y

i(2)

v

i

=J

2

q

s

2

i(1)

J

1

+

s

2

i(2)

J

2

(3)

where Y

i(1)

= (Y

i1

; Y

i2

; :::; Y

iJ1

); Y

i(2)

= (Y

iJ

1

+1

; Y

iJ

1

+2

; :::; Y

iJ

1

+J

2

); u

i

is a random per-

mutation of column vector containing J

1

=2 1's and �1's respectively, and v

i

is a

random permutation of column vector containing J

2

=2 1's and �1's respectively.

Let f and f

0

be the distribution densities of Z

i

and z

i

.

If there is no expression change for gene i , then Z

i

should have the same distri-

bution as that of z

i

: Under the weak assumption that the random variable "

ij

in (1)

has a distribution symmetric about its mean 0, then under H

0i

, f = f

0

.

If we assume that the distribution of Z

i

's for genes that are di�erentially ex-

pressed is f

1

, f can be expressed as a mixture of f

0

and f

1

, that is

f = p

0

f

0

+ p

1

f

1
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where p

1

is an unknown proportion of the genes that are di�erentially expressed and

p

0

= 1� p

1

.

For any given Z, if we know the densities f

0

and f , we use the likelihood ratio

test statistic:

LR(Z) = f

0

(Z)=f(Z) (4)

to test for H

0

. Then, by the optimal Neyman-Pearson test, a small value of LR(Z),

say LR(Z) < c, provides evidence to reject H

0

. The cut-o� point c is determined

such that the type I error kind is

�

n

=

Z

LR(z)<c

f

0

(z)dz (5)

where � is the genome wide signi�cance level.

In the absence of strong parametric assumptions, the parameters p

0

; f

0

and f

1

are not identi�able, see Efron et al. [2000]. By assuming a normal distribution for

Z

i

, for each i, one can estimate the components of the mixture by using for example

the EM algorithm (see Dempster et al. [1977]). Lee et al. [2000] and Newton

et al. [2001] considered parametric approaches by assuming Normal or Gamma

distributions for f

0

and f

1

respectively. Efron et al. [2000] avoided such parametric

assumptions and considered a nonparametric empirical Bayesian approach.

Practical determination of the cut-o� point c and decision rule.

From Efron and Tibshirani [1993], Pan [2002], Pan et al. [2002], Efron et al. [2000,

2001], a parametric bootstrap approach proceeds as follows. We draw B random

samples from f

0

: z

(1)

; z

(2)

; :::; z

(B)

, where z

(b)

= fz

(b)

1

; z

(b)

2

; :::; z

(b)

N

g for b = 1; :::; B.

Then for a possible cut-o� point c, the average of false rejections can be calculated

by:

False(c) =

1

B

B

X

b=1

#fi : LR(z

(b)

i

) < cg:

Based on a desired false rejection number, we can choose the corresponding c. This

cut-o� point c yields the corresponding rejection region for H

0

which is given by

fZ : LR(Z) < cg :

Remark. With the Normal mixture model in Pan et al. [2002], it is possible to

numerically solve the equation (5) in order to determine the cut-o� point c by using

the bisection method (Press et al.[1992]).

6



3 A fully nonparametric approach

Based on the likelihood ratio test approach of Pan et al. [2002] and using z

i

's and

Z

i

's de�ned respectively in (2) and (3), we will nonparametrically estimate f

0

and f

by a kernel method and develop a procedure to determine the rejection region from

an approximation of (5).

3.1 Kernel estimation of f

0

and f

The construction of a kernel estimator of the density functions f and f

0

requires

a choice of a real (density) function K (called kernel), and bandwidths h

n

and h

0n

which are sequences of positive numbers tending to 0 as n tends to in�nity. From

fZ

i

; i = 1; :::; ng and fz

i

; i = 1; :::; ng, f and f

0

can be estimated nonparametrically

by

f

n

(z) =

1

nh

n

n

X

i=1

K

�

z � Z

i

h

n

�

(6)

and

f

0n

(z) =

1

nh

0n

n

X

i=1

K

�

z � z

i

h

0n

�

: (7)

Well known theoretical results show that the choice of a reasonable K does not

seriously a�ect the quality of the estimators (6) and (7). In order to get smoother

estimation, one can use a kernel K which is bounded, symmetric and satisfying

jzjK(z) ! 0 as jzj ! 1 and

R

z

2

K(z)dz < 1. Some special kernel functions are

given in Table 1.

Kernel K(z)

Uniform

1

2

1(jzj � 1)

Triangle (1� jzj)1(jzj � 1)

Epanechnikov

3

4

(1� z

2

)1(jzj � 1)

Quartic

15

16

(1� z

2

)

2

1(jzj � 1)

Triweight

35

36

(1� z

2

)

3

1(jzj � 1)

Gaussian

1

p

2�

exp�

z

2

2

Cosines

�

4

cos(

�

4

z)1(jzj � 1)

Table 1: Examples of density kernel functions.

On the contrary the choice of the bandwidths h

n

and h

0n

turns to be crucial for

the accuracy of the estimators (6) and (7). Some indications about this choice are
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given in Bosq and Lecoutre [1987]. For example, one can use

h

n

= b�

n

n

�1=5

and h

0n

= b�

0n

n

�1=5

; (8)

where b�

n

and b�

0n

denote the empirical standard deviation of the Z

i

's and the z

i

's.

From a theoritical point of view, this choice minimizes some asymptotic mean square

error (see Deheuvels [1977]). In practice, this choice gives an idea of the amount of

smoothing needed for the estimator. For the graphical aspect of the corresponding

estimated density function curve, the user can choose to increase or decrease the

value of the bandwidth in order to obtain the desired smoothing of the density

estimators.

Note that it is well-known that the kernel density estimator does not perform

well on the support edges of the distribution. In the following, we suggest a very

simple and practical method for overcoming edge e�ect problems, and by the way

for giving more eÆcient estimator of the LR function.

3.2 The reection approach in kernel estimation

Reection principles in density estimation have been described and studied by Schus-

ter [1985], Silverman [1986], and Cline and Hart [1991]. Here we present a slighty

di�erent version of the geometric approach for removing the edge e�ects proposed

by Hall and Wehrly [1991].

Let x

(1)

; : : : ; x

(n)

be the initial ordered data from which we will determine the

estimator of the density function, say g. We add �% arti�cial observations in the

tail of the distribution using the following principle.

� In the left tail, the \new" observations are ~x

(i+1)

= x

(1)

�

�

x

(i+1)

� x

(1)

�

; i =

1; : : : ; [�n=2], where [m] is the integer part of m.

� In the right tail, the \new" observations are x̂

(i+1)

= x

(n)

+

�

x

(n)

� x

(n�i)

�

; i =

1; : : : ; [�n=2].

Finally we estimate g from the overall data set (i.e. from the union of the original

data x

i

and the pseudo-data ~x

i

and x̂

i

.

Remark 1. When the number n of observations is large, the adjusted estimator

is very sensitive to the percentage � of arti�cial observations. Generally, it suÆces

to take it very small (around 0.5%) to get a reasonable estimator.

Remark 2. If there are not enough observations close to the extreme values x

(1)

and x

(n)

, we can adapt the same outline described previously by replacing x

(1)

and

x

(n)

by some extreme empirical quantiles, such as the 1th and 99th centiles of the

data.

8



3.3 Implementation of the nonparametric method

Here we propose an empirical method to solve (5). This method works even in Pan's

approach and with any estimator of f and f

0

.

For the purpose of this paper, the densities f and f

0

are replaced by their kernel

estimators f

0n

and f

n

given in (6) and (7). We solve the modi�ed equation

�

n

=

Z

c

LR(z)<c

f

0n

(z)dz; (9)

where

c

LR(z) = f

0n

(z)=f

n

(z).

For a �xed value c > 0, let A

c

= fz : T < cg where T = LR(z). We generate an

ordered grid of N points f~z

k

; k = 1; : : : ; Ng covering the support of the Z

i

's. Let

b

T

k

=

c

LR(~z

k

); k = 1; : : : ; N . Let us de�ne

b

A

c

=

n

~z

k

:

b

T

k

< c; k = 1; : : : ; N

o

and

b

A

c

=

n

~z

k

:

b

T

k

� c; k = 1; : : : ; N

o

, the complementary of

b

A

c

. We assume now that

b

A

c

is a connex set (that is an interval). Let ~z

c;(1)

; ~z

c;(2)

; : : : ; ~z

c;(q)

be the q ordered

values of

b

A

c

. Then

Z

A

c

f

0

(z)dz �

Z

b

A

c

f

0n

(z)dz �

Z

~z

c;(1)

�1

f

0n

(z)dz +

Z

+1

~z

c;(q)

f

0n

(z)dz

�

Z

~z

c;(1)

~z

1

f

0n

(z)dz +

Z

~z

N

~z

c;(q)

f

0n

(z)dz:

The left hand side integral can be evaluated by classical numerical integration

method (trapezoidal quadrature). Now, the approximate cut-o� point is the value

c

�

of the set f

l

N

; l = 0; 1; : : : ;Ng where N is chosen as large as possible, such that

�

n

�

Z

b

A

c

�

f

0n

(z)dz:

From this cut-o� point c

�

, we can easily deduce the rejection region which is given

by

fZ : Z < ~z

c

�

;(1)

or Z > ~z

c

�

;(q)

g:

4 Data analysis

This section is devoted to the application of our proposed method. We describe

the data and present the results on expression level study of genes. Then, using

simulation study, we check the eÆciency of the kernel method against the true

Normal Mixture model.
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4.1 The data

We apply the methods on the leukemia data of Golub et al. [1999]. Data have been

generated for leukemic myeloid (AML) and lymphoblastic (ALL) cells taken from

di�erent individuals. There are 27 ALL samples and 11 AML samples. Here our

goal is to �nd genes with di�erential expression between ALL and AML. This data

set was analyzed by Thomas et al. [2001], Pan [2002], Grant et al. [2001] among

others. There are n = 7129 genes in each sample.

We take the genome-wide signi�cance level at the usual � = 0:01. Data prepro-

cessing and normalization are accomplished by Pan [2002].

4.2 Summary of the results obtained with the Normal mix-

ture model

The density function f

0

and f estimated by Pan [2002] are

f

0m

(z) = 0:479�(z;�0:746; 0:697) + 0:521�(z; 0:739; 0:641) (10)

and

f

m

(z) = 0:518�(z;�0:318; 1:803) + 0:482�(z; 0:7781; 4:501); (11)

where �(z; a; b) denotes the normal density function with mean a and variance b.

Using the bisection method (Press et al. [1992], p.353), the cut-o� point obtained by

Pan [2002] is c = 0:0003437. The corresponding rejection region for H

0

is fZ : Z <

�4:8877 or Z > 4:4019g, which gives 187 genes with signi�cant expression changes.

More details are in Pan [2002].

4.3 Results obtained with our nonparametric approach

In order to implement our nonparametric modelling approach, we have to choose

the kernel and the bandwidth. To estimate nonparametrically f

0

and f , we used

the Gaussian density as kernel K. Other kernel functions did not yield noticeably

di�erent results and will not be presented here. Concerning the choice of the band-

widths h

n

and h

0n

, we �rst used the formulae given in (8). We obtained the following

values: h

n

= 0:313 and h

0n

= 0:187. The estimated densities f

n

and f

0n

de�ned

respectively in (6) and (7) are plotted on Figures 1(a). For comparison, the density

functions f

0m

and f

m

of Pan [2002] given in (10) and (11) are also plotted with

dotted lines. One can observe that with this choice of bandwidths these curves are

clearly not suÆciently smoothed. The same is true for the corresponding likelihood

ratio curve presented in Figure 1(b). The deviations from the smooth curves are due
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(a) Kernel density estimation of the Z

i

's with the bandwith h

n

(on the left hand side)

and of the z

i

's (on the right hand side)
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(b) Corresponding estimated LR function

Figure 1: Estimation of the density functions f and f

0

and of the LR function

without over-smoothing. (The dotted lines are the corresponding curves obtained by

Pan [2002].)

to background noises which are not informative. Smoother curves can be obtained

by broadening the bandwidths.

From graphical point of view, in order to obtain a reasonably smoothed estimator

of f , f

0

and LR, we need to increase the values of the bandwidths. This is done by

multiplying them by a factor 2.5 which is the \optimal value" obtained from our

computational study of this data. The corresponding bandwidths are h

�

n

= 0:782

and h

�

0n

= 0:468. Figure 2(a) and 2(b) present the histogram of the z

i

's and the Z

i

's,

and the estimated densities f

0n

and f

n

. Again for comparison, the density functions

f

0m

and f

m

given in (10) and (11)) are also plotted in Figure 2(a) and 2(b). The

corresponding LR function is depicted in Figure 3.
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Figure 2: Estimation of the z

i

's and Z

i

's densities.
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Figure 3: Estimation of the LR function (Pan estimator (dotted line) and over-

smoothed kernel estimator (solid line).

To solve the equation (5), we use the approximation presented in (9) and the

implementation procedure described in Section 3.3. Then we get the cut-o� point

c = 0:00002, yielding a rejection region of fZ : Z < �4:158 or Z > 4:485g for

H

0

. It gives 211 genes with signi�cant expression changes comparing to the 187

obtained with the Normal mixture model of Pan [2002]. Note that the common

rejection region between kernel and Normal approaches is fZ : Z < �4:887 or

Z > 4:485g, and the common number of genes with signi�cant expression changes

is 178. With our approach, we obtain 33 di�erentially expressed genes not detected

by Pan's approach; similarly 9 di�erentially expressed genes have been detected by

the Normal mixture model but not with our nonparametric method.

As we pointed out in Section 3, the kernel estimation method is not very eÆcient

in the distribution edges. It may be one of the reasons why a greater number of

di�erentially expressed genes was detected by this nonparametric method compared

to the Normal mixture model in Table 2. To improve our estimator, we use the

reection method described in Section 3.2. The percentage � varies between 0%

and 0.5%. Results are summarized in table 2.

We obtained, for all the � values, a cut-o� point close to 0:00002. The rejection

region and the corresponding number of di�erentially expressed genes decrease as �

increases. This phenomenom can be easily explained by the fact that the rejection

techniques arti�cially inate the tail of the distribution if � is too large. In all the

cases, we studied there were some di�erentially expressed genes detected by our

13



Number of di�erentially expressed genes

� Rejection region (number of di�erentially expressed

genes in common with the Normal

mixture model of Pan [2002])

0% fZ : Z < �4:158 or Z > 4:485g 211 (178)

0.10% fZ : Z < �4:325 or Z > 4:843g 147 (125)

0.20% fZ : Z < �4:472 or Z > 4:991g 108 (98)

0.25% fZ : Z < �4:498 or Z > 5:055g 102 (92)

0.3% fZ : Z < �4:549 or Z > 5:189g 85 (75)

0.4% fZ : Z < �4:607 or Z > 5:298g 76 (68)

0.5% fZ : Z < �4:645 or Z > 5:349g 71 (64)

Table 2: Results obtained with reection in extreme observations.

kernel approach which were not found by the Normal mixture model of Pan [2002],

and vice versa.

4.4 A simulation study

The aim of the simulation study is to validate our nonparametric computational

approach to �nd the rejection region by solving the equation (5).

We consider the Normal mixture model de�ned in (10) and (11) as the \true"

model for f

0

and f .

First, using our knowledge of f and f

0

, we evaluate the \true" cut-o� point

and the corresponding \true" rejection region for H

0

by numerically solving (5)

with n = 7129 (the sample size of our real data). We obtain c = 0:00036 and the

rejection region fZ : Z < �4:876 or Z > 4:395g, which are very close to those

obtained by Pan [2002] with the bisection method.

Then, we generate N = 100 samples of size n = 7129 from this Normal mixture

model. For each simulated sample, we estimate the cut-o� point and the corre-

sponding rejection region for H

0

by our method described in Section 3.3, using the

Gaussian kernel and the choice of the bandwidths described in Section 4.3. For

each simulated sample, the value of c is close to 0.00002 and the lower and upper

bounds of the rejection region are also close to the \true" ones. Figure 4 shows the

boxplots of these lower and upper bounds. The variations in the estimated bounds

are due to the sampling uctuations of the simulations, in particular those of the

edges distribution. Nevertheless, in all cases our computational approach yielded

essentially the same true rejection region.
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Figure 4: Boxplots of the lower and upper bounds of the rejection region for H

0

, for

100 simulated samples

5 Discussion and concluding remarks

We have reviewed and extented methods for the analysis of microarray experiments.

Following the principle of \letting the data speak about themselves", we have in-

troduced a nonparametric kernel estimation into mixture models. Our method has

three principal advantages.

1) An assumption of normality is not needed.

2) The estimation of the degrees of freedom in the existing t-test is avoided.

3) We need not use bootstrap to estimate the cut-o� point and the corresponding

rejection region.

4) The reection method is proposed to overcome the edge e�ect of the kernel

estimators.

For microarray data, small sample sizes are very common. Thus the asymptotic

justi�cation for the t-test is not applicable, and its validity depends on normality

assumptions. Alternatives have been proposed in the literature. For example Baldi

and Lang [2001], Dudoit et al. [2000], Kerr et al. [2000] and Thomas et al. [2001]

proposed parametric or partiallu nonparametric methods. In this paper we have

considered an alternative that is totally nonparametric. Furthermore, our simulation

studies show that, if the true state of the nature is the Normal mixture, our methods

yield the expected results. However, as in all kernel estimators, our approach is

sensitive to distributional edge e�ects. We adapted the reection method to study

this problem and found a practical optimal solution to mimize the edge e�ects.
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