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Abstract

In this note we consider the D�optimal design problem for the heteroscedastic

polynomial regression model� Karlin and Studden 
����a� found explicit solutions

for three types of e�ciency functions� We introduce two �new� functions to model

the heteroscedastic structure� for which the D�optimal designs can also be found

explicitly� The optimal designs have equal masses at the roots of generalized Bessel

polynomials and Jacobi�polynomials with complex parameters� It is also demon�

strated that there exist no other e�ciency functions such that the supporting poly�
nomial of the D�optimal design satis�es a generalized Rodrigues� formula�
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� Introduction

Consider the weighted polynomial regression model of degree p

E�Y jx� �

pX
j��

�jx
j

�����

V �Y jx� �
��

��x�
�

where � denotes a positive e�ciency function� and the explanatory variable x is taken
from the design space X � R� An approximate design � is a probability measure with
�nite support on the design space X � and the Fisher information matrix for the parameter
� � ���� � � � � �p�

T is given by the matrix

M��� �

Z
X

��x�f�x�fT �x�d��x�������

where f�x� � ��� x� � � � � xp�T denotes the vector of monomials up to the order p �see
Fedorov ������� Kiefer ������� Silvey ������ or Pukelsheim �������� A D
optimal design
maximizes the determinant of the Fisher information matrix� In their pioneering work
Hoel ���	�� and Karlin and Studden �����a� proved that the D
optimal designs for the
e�ciency functions

��x� � �
 X � ���� �������

��x� � ��� x������ � x����
 X � ���� �� ��� � 	 ��������

��x� � exp��x�
 X � ��������	�

��x� � x��� exp��x�
 X � ����� �� 	 ��������

��x� � exp��x��
 X � �����������

have equal masses at the roots of classical orthogonal polynomials �see Karlin and Studden
�����b� or Fedorov ������ for more details�� In the following period numerous authors
have worked on generalizations of these results motivated by di�erent aspects �see Antille
������� Huang� Chang and Wong ����	�� He� Studden and Sun ������� Chang and Lin
������� Imho�� Kraft and Schaefer ������� Ortiz and Rodrigues ������ or Dette� Haines
and Imho� ������ among many others�� Most authors derive a di�erential equation for
the supporting polynomial of the D
optimal design� which induces a �nite dimensional
eigenvalue problem� The components of the eigenvector corresponding to the minimal
eigenvalue in this problem give the coe�cients of the supporting polynomial� In such
cases the D
opimal designs can be readily obtained numerically� but the results of Huang�
Chang and Wong ����	�� He� Studden and Sun ������� Chang and Lin ������� Ortiz

�



and Rodrigues ������ and Imho�� Kra�t and Schaefer ������ demonstrate that analytic
results are in general di�cult to derive�
The �rst purpose of this note is to give a partial explanation why only the e�ciency
functions of the form ����� 
 ����� yield D
optimal designs with support points given by
the zeros of classical special functions� We use a result of Cryer ������ to demonstrate
that there are essentially �ve types of e�ciency functions for which the solution of the
D
optimal design problem is �simple� in the sense that the corresponding supporting
polynomial has a representation by a generalized Rodrigues� formula� Besides the three
�classical� e�ciency functions speci�ed by ����� 
 ������ there appear two �new� e�ciency
functions for which the support points of the D
optimal design problem can be speci�ed
as the zeros of classical �nonorthogonal� polynomials� namely

���x� � �� � x����� exp��� arctan x�
 X � �����������

���x� � x�� exp��
�x�
 X � ����� ������

where � � �����p � ��� �� � � R� 
 � R
� � Note that for the case � � � the e�ciency

function ����� has been considered by Dette� Haines and Imho� ������� but the general
case � � Rnf�g is not symmetric� which causes additional di�culties�
The second purpose of this note is to determine the D
optimal designs in the weighted
polynomial regression model with e�ciency functions ����� and ����� �for the open cases�
explicitly� It will be shown that in these cases the D
optimal design puts equal masses at
the p�� roots of a Jacobi polynomial with complex parameters and a generalized Bessel
polynomial� respectively�

� The Rodrigues� formula

Recall that the support points of the D
optimal design for the heteroscedastic polyno

mial regression model with e�ciency function ����� are given by the zeros of the Jacobi
polynomial

P
�����
p�� �x������

orthogonal with respect to the measure ���x�����x��dx on the interval ���� ��� ��� � 	
��� �see Fedorov �������� Similary� the constant e�ciency function ����� yields the zeros
of the polynomial

�x� � ��P �
p�x������

as the support points of the D
optimal design� where P �
p is the derivative of the pth

Legendre polynomial orthogonal with respect to the Lebesgue measure on the interval
���� ��� Note that the class of e�ciency functions ����� essentially contains ����� �if �� � �
��� and it appears therefore somewhat arti�cial to consider these cases separately� This
problem can be avoided by using a di�erent representation for the supporting polynomials�
which does not refer to orthogonality� To be precise� we note that the Jacobi polynomial
of degree p is given by

P �����
p �x� �

����p

�pp�
��� x����� � x����

d

dx
�pf��� x�p���� � x�p��g�����
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�see Szeg�o ����	�� p� ���� This representation is called Rodrigues� formula and does
not require the orthogonality with respect to an absolute continuous measure� which is
equivalent to the condition �� � 	 �� for the parameters� The Legendre polynomial Pp�x�

is equal to P
�����
p �x� �by its de�nition�� and formula ����� yields

��� x��P �
p�x� � ��� x���

d

dx
�p��f��� x��pg � �p���p� �������p��P

�������
p�� �x�

for the supporting polynomial of the D
optimal design in the case of constant e�ciency�
Consequently� the support points of the D
optimal designs in the polynomial regression
model with e�ciency functions ����� and ����� are obtained as the zeros of the polynomial

��� x����� � x����
d

dx
�p��f��� x�p������ � x�p����g�����

whenever �� � � ��� Similary� the e�ciency functions ���	� and ����� yield D
optimal
designs supported at the zeros of the polynomial

x��ex�
d

dx
�p��fe�xxp����g���	�

whenever � � ��� Note that for � 	 �� this polynomial is proportional to L
���
p���x� �see

Szeg�o ����	�� p� ����� while for � � �� it gives xL
���
p �x� up to a constant� Finally� the

support of the D
optimal design for polynomial regression with e�ciency ����� is given
by the zeros of the �p � ��th Hermite polynomial proportional to

ex
�

�
d

dx
�p��fe�x

�

g�����

�see Szeg�o ����	�� p� ����� From this point of view there exist only three types of ef

�ciency functions and the support points of the D
optimal design in the corresponding
heteroscedastic polynomial regression model are given by the zeros of a polynomial� which
can be represented by a generalized Rodrigues� formula �see Erdelyi� Magnus� Oberhet

tinger� Tricomi ���	��� of the form

�


�x�
�
d

dx
�p��f
�x� � hp���x�g�����

where h is a given polynomial and 
 an arbitrary function� The following result proved by
Cryer ������ characterizes the class of functions 
 and polynomials h such the generalized
Rodrigues� formula de�nes a polynomial of degree p� � for each p � ��� �� �� � � ��

Theorem �Cryer ������	
 If the generalized Rodrigues� formula ����� de�nes a polyno	
mial of degreee p � � for p � ��� �� �� � � � � then the function 
 and the polynomial h are
of the following type �modulo a
ne transformations�g

w�x� � e�x
�

� h�x� � ������

�



w�x� � xae�x � h�x� � x�����

w�x� � ��� x�a�� � x�b � h�x� � ��� x��������

w�x� � x�ae�b�x � h�x� � x�������

w�x� � �� � x��aeb arctan x � h�x� � �� � x���������

Note that ����� 
 ������ correspond to the classical cases ����� 
 ����� with e�ciency
functions given by ����� 
 ������ However� there are two new cases� which have not
been considered so far and correspond to the e�ciency functions in ����� and ������ The
corresponding D
optimal design problems will be discussed in the following section�

� D�optimal design problems for weighted polyno�

mial regression � two new results

Consider the polynomial regression model ����� with e�ciency function ������ In order to
guarantee the existence of an optimal design on the design space R� the induced design
space n

��� x� � � � � xp�T��x� j x � R

o

has to be bounded� which requires � 	 �p � � in ������ For such cases the D
optimal
design can also be described by the roots of Jacobi polynomials using complex parameters�

Theorem �
�
 The D	optimal design for the weighted polynomial regression model with
e
ciency function

���x� � �� � x����� exp��� arctanx�

and � 	 �p� � puts equal masses at the zeros of the Jacobi polynomial

P ���i����i��
p�� �xi�

de�ned by ������

Proof
 In the case � � � the result is reduced to Theorem ��� of Dette� Haines and
Imhof ������ and therefore we restrict ourselves to the case � 
� � throughout this proof�
Careful inspection of the directional derivative shows that for � � �p� � the D
optimal
design has p�� support points� and a standard argument shows that the optimal weights
at these points have to be equal� The determinant of a design with equal weights at the
p � � points x�� � � � � xp is proportional to

pY
i��

���xi�
Y

��i�k�p

�xi � xk�
��

	



Taking partial derivatives and using the same arguments as in Karlin and Studden �����b�
we obtain the di�erential equation

�� � x��y�� � ��� � �� � ��x�y� � �p� ���p� ��� � ���y � ������

for the supporting polynomial g�x� �
Qp

i���x�xi�� This gives for the function �y�x� � y�ix�
the di�erential equation

��� x���y�� � ���i� �� � ��x��y� � �p� ���p� ��� � ����y � �������

It is well known from the theory of hypergeometric functions that a fundamental set of
solutions of the di�erential equation ����� is given by

�y��x� � F
�
�p� �
 p� �� � �
 �� �i� �


�� x

�

�

�y��x� � ��� x�����i � F
�
�p� �� � � �i
 p� � � � � �i
 �� � � �i


�� x

�

�
�

where

F �a
 b
 c
 x� � � �
�X
���

a�a � �� � � � �a� � � ��

� � � � � ��

b � �b � �� � � � �b � � � ��

c � �c� �� � � � �c� � � ��
� x�

denotes the hypergeometric series �see Whittaker and Watson ����	�� p� ���
��� or An

drews� Askey and Roy ������� p� �	
���� For � 
� � the function �y� is not a polynomial�

while �y� is proportional to the Jacobi polynomial P
���i����i��
p�� �x� �see Szeg�o ����	�� p� ����

which yields for the supporting polynomial

g�x� �

pY
j��

�x� xj� � �y��ix� � c � P
���i����i��
p�� ��ix�

� c����p��P
���i����i��
p�� �ix��

where the last equality follows from the symmetry property of the Jacobi polynomials
�see Szeg�o ����	�� p� 	��� and the constant c is de�ned such that the leading coe�cient
of the right hand side is equal to one� This proves the assertion for � � �p � � and the
remaining case � � �p� � follows by continuity�

�

Remark �
�
 There is an intuitive explanation of the result of Theorem ���� To be
precise� observe that

arctan z �
�i

�
log

� � iz

�� iz
�

which gives for the e�ciency function

���z� � �� � z�����

�
� � iz

�� iz

���i
� ��� iz����i���� � iz����i�� �

�



and a naive generalization of the classical cases ����� and ����� yields the assertion of
Theorem ����

We will conclude this section giving the corresponding statement for the e�ciency function
������

Theorem �
�
 The D	optimal design for the weighted polynomial regression model with
e
ciency function

���x� � x�� exp��
�x�

and 
 	 � puts equal masses at the roots of the generalized Bessel polynomial

Yp���x���� 
� �

p��X
k��

�
p� �

k

�
�p� k � � � ���k��

x



�k�����

where z��� �� � and z�k� �� z�z � �� � � � �z � k � �� if k � ��

Proof
 The same arguments as given in the proof of Theorem ��� show that the D

optimal design is supported at p�� points x�� � � � � xp� and that the supporting polynomial
g�x� �

Qp
j���x� xj� satis�es the second order di�erential equation

x�y�� � �� � �x�y� � �p� ���p� ��y � �������

It now follows from the results of Krall and Frink ������ that g�x� is proportional to the
generalized Bessel polynomial de�ned in ������

�
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