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Abstract

Dynamic Programming is used to derive the optimal feedback solution to

the minimization of a quadratic welfare loss-functional subject to a linear

econometric model, when the value of some instrument variables can not be

optimized in every model period, but only in single ones. In this way, the

relative inertia of fiscal policy-making, as compared to monetary policy-

making, can e.g. be taken into account. Analytical expressions are derived

for the optimal feedback rules and for the minimum expected losses, and

iterative schemes are proposed for their numerical computation. It is sug-

gested that a numerical analysis of the economic gain to be realized by

making more frequent adjustment of fiscal policy variables than is actually

the case could yield valuable information for policy-makers.



r. INTRODUCTION

In recent yea r s , several authors have addressed problems in macroeconomic

policy-making with the help of l i nea r -quadra t i c control methods, see e .g .

Pindyck [1973], Chow [1975]. Spec i f i ca l ly , these authors consider the l i n e a r

or l inear ized econometric model in s t a t e - v a r i a b l e form

(la) x = A x + B u + D z + £ , t = 1 , 2 , . . .

(lb) x = x
o

where x is a (n x 1) vector describing the state of the economy in the

period t, x being the given initial state; u is a (m x 1) vector of

instruments or control variables whose value is set by the policy-maker;

z is a (p x 1) vector of exogenous or predetermined variables; e is a

(n x 1) vector of stochastic disturbances, which are normal-distributed with

mean o and serially uncorrelated; the parameter matrices A , B , and D

are exactly known.

For every initial state x, (la) describes the possible behavior of the

economy over time as a function of the instrument variables u , of the

incontrollable events z and of the random phenomena £ . Because of the

disturbance e this behavior is only probabilistically known. The time-

dependency of the matrices A, B, and D expresses eventual changes in the

economy's structure over time.

The afore mentioned authors also assume an objective function in the

form of a quadratic welfare loss-functional



N 1 - T
(2) W = E[ S - (x - x ) K (x - x )] •* min

t = 1 z t c x: C t

where E[.] is the expectation operator, T denotes transposition, x is

an exogenously specified target vector of desired values for the state in t

and K is a given non-negative definite weighting matrix. In general it is

appropriate to define (la) so that x includes u as subvector, thus

making u an argument of W without complicating the notation unnecessarily.

(The weighting of u in W can express the technical or political costs of

using macroeconomic instruments. It may also be used to keep the fluctuation

of u within reasonable bounds without explicitly introducing restrictions

on these fluctuations.)

The optimal policy problem is to determine the instrument sequence

u.,...,u that minimizes the welfare loss (2) subject to the economic con-
1 N

straints (la) and (lb). It can be shown—see e.g. Chow [1975]—that the

*
optimal control in t, u , is a deterministic, linear function of the current

state x 1

(3) u* = G x + g , t = l , . . . , N ,

(linear feedback rule), with

(4a) Gt = ~ (BtHtV

(4b)

Bt Gt )

(5b) h t - 1 - \ _ i \ - i + ( A t + B t G t ) T ( h t " H t D t z t ) '



3

The system (4) - (5) can easily be solved numerically. A feasible compu-

tational scheme is to use alternatively (4) and (5) for t = N,N-1,...,1

together with the initial condition H = K , h = K x to determine back-

N N N N N
ward in time the matrices and vectors G , g ; H ,,h , ; G , ,g .; ...;

N N N-l N-l N-l N-l

G ,g . Note that the feedback matrices G and forcing vectors g are

independent of the values taken by x and u over t = 0,...,N so that they

can be predetermined before even x is known. Given G and g , the
*

optimal control u is determined by (3) as a function of the current state

of the economy, x 1.

The above solution (3) - (5) assumes that the value of every component

of u, i.e., of every instrument variable, can be optimized by the policy-

maker in every period t, t = 1,...,N. In actual policy making, however, this

may indeed not be true. Consider, for example, the case when the econometric

model is a quarterly model, and the instrument vector includes both fiscal

policy and monetary policy variables. On the one hand, monetary policy

variables can usually be adjusted more or less continuously in time. There-

fore, it will in general be justified to assume that the components of u

corresponding to the monetary policy variables can be optimized in every

period t. On the other hand, for technical, political, or institutional

reasons, many important fiscal policy variables like tax rates etc. are

normally kept constant over the whole fiscal year. In our example, this means

that the corresponding components of u can only be optimized every four

periods, in t., t.+4, t.+8, ..., t.+4n, ... . Between t.+4n and t.+4(n+l)

they remain "frozen" at the value they were given in t.+4n.

In this note we extend the basic problem (1) - (2) in order to be able

to take into consideration such instrument variables v which can not be

optimized in every period t but only in single periods t ,t ,...,t. ,...

with t. ., - t. > 1 for at least one i. The variables v will be called
l+l l
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intermittent control variables; the variables u, which can be optimized in

every period, permanent control variables. (Our introductory example was, of

course, unnecessarily restrictive in considering a situation where the inter-

val between successive adjustments of the intermittent controls is a constant

number of periods. The above problem formulation allows for variable intervals

between optimizations of v.) We derive analytical expressions for the optimal

feedback rules with intermittent controls and for the minimum expected welfare

loss, and propose iterative schemes for the numerical computation of these

expressions. The social costs caused by the impossibility of adjusting the,

instruments v in other periods than in t , t, ,etc, can thus be determined

o 1
numerically.

II. OPTIMAL POLICY MAKING WITH INTERMITTENT CONTROLS

In order to take into consideration intermittent controls, the problem

(1) - (2) is extended to

N 1 - T
(6) J = E[ S -(x - x ) K. (x - x )] -»• min

t=l
 2 t t t t t T T T

(

subject to

(7a) 3

(7b) x = x ,
o

(8) v = v , t. £ t < t , t,t.e{0(+l)N> .

where v are the intermittent and u the permanent controls. Here also



(7a) can be defined so tha t x includes u and v as subvectors. The

solution of th is problem i s now derived using Dynamic Programming, see

Bellman [1957] , Chow [1975].

According to Bellman's Principle of Optimality the optimal control for

*

the period t , y ,can be obtained as the solut ion of the one-period optimi-

zation problem

(9) V. = E - (x. - x ) K. (x_,_ - x.) + V, , . CT ] -»- min

*
where V = min V , a describes the process behavior up to time t ,

and

(10) y t : =

T T
( u

t '
v

t )
 f o r t = t

i > i = 0 , 1 , . . . , K,

for t

That is, V is to be minimized with respect to u and v whenever

*T *T *T
t = t., and with respect to u alone whenever t ̂  t.. Thus y = (u ,v )

1 u. J. U ^ ^

*T *T
for t = t., and y = (u ) for t. < t < t. . In this last case the

*
"v -part" of the control is a priori given with the value v . Note that by

i

(7a) and the assumption, £ i s independent from cr , i t i s possible to r e -

place 0 in (9) with x without changing the opt imizat ion 's r e su l t .

This suggests tha t here also the optimal control in t wi l l be independent

of x , T ? t - 1 .

Let ' s assume tha t the functional equation V i s of the form

(11) Vfc = E[ \ x^H tx t + x^Q tv t + \

with H and P non-negative de f in i t e . This i s obviously t rue for



t = N with

( 1 2 ) H : = K , P = 0 , 0 = 0 , h : = K x , p = 0 , c = — x K x
N N N N ' N N N N N 2 N N 1

For simplicity's sake l e t ' s use the notation $ to designate the set of

matrices and vectors (H ,Q ,P ,h ,p ,c ) . We will show that expression (11)

is reproducible for t-1 when i t holds for t — i . e . , that i t holds for all

t <_ N. While doing so, we will derive the optimal feedback rule for deter-

*
mining y and provide computationally feasible schemes to obtain $ for

t = T-1 from i t s value for t = x.

Using the model (7a) for x in (11) and taking expectations, we obtain

V as a function of x and y alone,

vt

(AtVi + Btut + ctvt + Vt } \

IT T IT

V + + E [ £

A case differentiation is now to be made:

Case a: t. < t < t. . Then v = v and (13) is to be minimized with
i

respect to u alone. The necessary (and, as will be shown later, sufficient)

conditions for a minimum are



The solution of (14) yields the optimal decision for the period t

(15) u*

with

(16a). Gfc

(16b)

(16c)

Equation (15) is the optimal feedback rule for t ^ t . . Like i t s equivalent

(3) for the basic problem (1) - (2), i t is linear. The system (16) plays a

similar role to (4) in the basic problem.

Substituting (15) in (11) for u , we obtain the minimum expected welfare

loss at period t , conditional on the economy's behavior before t , i . e . ,

equivalently on x . :

\

(Atxt-i + BtGtxt-i + Btgt + B t V t + ctvt + Dtzt)

(Vt-i + BtGtxt-i + V t + BtMtvt + ctvt + Dtzt)T

- V t + ct

Setting this last expression for t = t+1 in (9) one sees after some

simplifications that V can be written in the form (11) with



H
N = K

n '

(18b) Q t _ 1 = (At + B t G t )
T H t (B t M t + Cfc) + (Afc + B ^ ) T Q t , Q^ = 0 ,

(18c) P t x = P t + (BtMt) H t(B tM t) + (BtMt + Cfc) Q t , P^ = 0 ,

(18f) V l = \ \-lVlXt-l

• I(Vt + V t } \

this last system of equations being equivalent to (5).

The numerical solution of (15) - (16), (17) and (18) is straightforward.

Given .$ , one computes G , M and g by (16). This yields (15) and,

given x , u as well as, by (17), V . The values obtained for the

matrices G , M and g , used in (18), lead to $ . Thus we have shown

how to derive (11) for t = T-1 from (11) for t = T and how to derive the

*
optimal feedback rule at period t, u , and the expected minimum cumulated

*
loss over T = t,...,N, V , when t ? t..

Case b: t = t.. In this case V is to be minimized with respect to

T T T
(u ,v ) : = y . Otherwise the same derivations as in case a apply. We have

( 2 0 ) W~t
 = R t V A t x t - i + V t + D t z t ) + s t V V t - s t + ( V t - i + V t '

with



(21) R : = (B ,C ) , W : = ( 0 , Q ) , S
1L "t ^ t t

S t =
T

2C tQ t

It follows for y

(22)

u •> *

= G t X t - l

with

(23a)

(23b)

the l inear feedback rule (22) being equivalent to (3), and (23) to (4). V

is accordingly given by

(24) V

( A tVi+ R tG tx t-i+Vt+ D tV
m

with

(25) W.
0 0 0 0

0 P.
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Accordingly V can be expressed in the form (11) with

(25a)

(25b)

A t ( h t " w t V + G t ( s t " V t - wt

(25c) V l - \

(25d) P t 1 = 0 , Q t 1 = 0 , p t 1 = 0

these last equations playing a similar role as (5) in the basic problem. The

numerical solution of (22) - (23), (24) and (25), which leads to a) the

* *
optimal feedback rule at period t, b) u , c) V , and d) (11) for t=T.-l whe1

t = T., is again straightforward. It will not be explicitly discussed here.

We have now solved the whole optimization problem. The initial values

of the different matrices and vectors needed to construct V for t = N,

i.e. $ , are given by (12). Based on these initial values, the values of

N

the system $ for t < N and the optimal feedback rules for

t <_ N can be computed backward in time according to the formulas presented

above. The major difference with the solution of the basic problem is that

here the computation follows a "two regimes" scheme, the computational rules

being different for t = t. and t f t.. The total expected minimum loss

over t = 1,...,N is, of course, given by V .

In the above derivation, we did not check the second order conditions

for a minimum of V . In fact, these conditions are always satisfied: The

matrices H and P , which define the quadratic part in V , are
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non-negative definite for all t — for t = N by definition and, as can

easily be recognized, for t < N by construction. .The possibility of multiple

minima, however, remains open. In our derivations we implicitly assumed that

^K-J a n d (R^HJV + s) a r e invertible, see (4), (16), and (23). This is

*
obviously a sufficient condition for the uniqueness of y . It is also

necessary: When these matrices are singular, the optimal solution is no longer

unique. However, optimal solutions always exist, one of which can be obtained

by replacing the inverse in (4), (16) , or (23) by the corresponding Moore-

Penrose generalized inverse. See e.g. Garbade [1976] for details.

Note that v* is both a function of the random variable x and an

i i

argument of the optimal feedback rule in t, t. < t < t.+l. Therefore,

contrary to the basic case, the optimal feedback rule in t, t. < t < t.+l

can not be completely fixed a priori. Although it can be partially pre-

computed conditional on x. , » its final value can only be determined after

x is realized. The optimal feedback rules in t£{t.}, on the other hand,

i
can here also be computed a priori. Of course, the solution given in this note
assures that v is chosen in such a way as to be optimal with respect to

i
both its functions as a control in t, t. £ t < t.+l, and as an argument of

the feedback rule in t, t. < t < t.+l, i.e. in fact optimal with respect to

the whole future behavior of the economy and the assumed decision-making

mechanism. However, consider two problems with intermittent controls which

are identical except for the fact that in problem 2 the intermittent controls

can not only be optimized in the same periods t. as in problem 1, but also

in supplementary periods t.. Assuming that the controls v are not redun-

dant or degenerate, the total expected minimum welfare loss over t = 1,...,N,

expressed by V , will be smaller for problem 2 than for problem 1 because of

the relaxation of the constraints on v in the former problem in comparison

to the latter. (For a discussion of necessary and sufficient conditions for
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the non-degeneracy of controls see e.g. Garbade [1976], Preston [1977]). The

extra expected loss in problem 1 can conceptually be traced to two sources.

In problem 1.the instruments v can not be adjusted as often as in problem

•2 to control the expected behavior of the economy. Furthermore, they do not,

as often as in problem 2, take into account the deviations of the actual state

of the economy from its expected value. In problem 1, the permanent controls

v are thus more heavily used to both control the dynamics and counteract the

random disturbances of the system.

From a policy-making point of view, it should be interesting to know the

reduction in the value of the welfare loss-function that can be attained by

making possible an optimization of the intermittent controls in supplementary

periods t.. This reduction can be interpreted as an estimate of the social

costs caused e.g. by the "inertia" of fiscal policy or, equivalently, as an

i:

estimate of the increase in economic performance which could be attained by

"speeding up" the fiscal policy-making process. (Of course, any such inter-

pretation would be subject to serious qualifications, which can not be dis-

cussed within the scope of this note.) At least for the general case there

is no useful analytical expression for this reduction of the welfare loss.

However, it is easy enough to compute it numerically as the difference between
* r -i *

V when v is optimized only for tEit.J- (problem 1) and V when v is

optimized for t£{t.}u{t.} (problem 2). An interesting limit case is when one

allows v to be optimized in every t. Very preliminary numerical exper-

iments using a small ad hoc model with the permanent controls discount rate

and the intermittent controls taxes and government spending show that, for

"sensible" values of K and x, the expected minimum welfare loss with

quarterly optimization of the fiscal policy instruments can be less than one

fifth the loss with yearly optimization of the same instruments. This
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relatively large reduction in welfare loss is of course partly a result of

the quadratic form of W, which overproportionally penalizes increasing

deviations from the desires values x • Therefore even relatively small

absolute improvements can yield large reductions in the expected loss.

For simplicity's sake we considered in this note only one vector of

intermittent controls. However, the model can readily be expanded to cover

the case of different vectors v , y , z , ... of intermittent controls which

can be optimized respectively only in t £{t.}, t £{t.}, etc. In practical

applications the number of such vectors should increase with smaller lengths

of the model's time period.

I. CONCLUSIONS

In recent years, much effort has been devoted to the development of

macro-econometric models with short time periods—quarterly, monthly, or even

weekly models. Are these models optimized to help determine the "best" course

of economic policy, it is in general no longer realistic as with models with

longer periods to assume that all instrument variables can be optimally

adjusted in every period. Particularly certain fiscal policy variables neces-

sarily remain fixed over several model periods. In this note, we have shown

how to take into consideration such "intermittent controls" within the usual

linear-quadratic framework. The numerical solution of the extended problem

is similar to and only slightly more complicated than the solution of the basic

linear-quadratic problem with only permanent controls. We expect that the

optimization of econometric models taking into consideration the intermittence

of certain controls in real life will not only result in more justified recom-

mendations to policy-makers, but could also shed light on the economic costs

of the existing institutional and technical constraints on frequent readjust-

ments of some instrument variables.
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