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Abstract

The standard optimal control solutions of the macroeconomic

stabilization problem - i.e. essentially: the open- and

closed-loop solution - are not necessarily implementable

or optimal in real-life situations. This is because they

do not take into account the time necessary to measure

the economy's state and to realize the policy measures

physically. In this paper, Dynamic Programming is used to

derive, the "best implementable" solution to the optimisation

\of a quadratic welfare loss-functional subject to a linear

econometric model when there are such delays. Two cases

are considered:

a) Perfect, but delayed state measurements are possible;

b) Only imperfect, delayed measurements are available.

In both cases, the analytical characterization of the

solution immediately suggests practical schemes for the

numerical computation of the optimal policy sequence.
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I. Introduction

One of the foremost tasks in quantitative macro-economic

policy-making is the determination of the values of the monetary

and fiscal policy-variables (such as tax rates, government ex-

penditures, discount rates . . . ) , which ensures that some bundle

of macroeconomic goals (like low inflation and unemployment rates,

equilibrated trade balance, etc) is optimised, not only in single

periods, but dynamically over time. In order to provide a metho-

dological basis to help answer these and similar questions,

several authors have addressed themselves in recent years to

the problem of minimising a quadratic welfare loss-functional

r rf 1 — T — 1 min
(1) " = ' [ ^ 2(Xt " Xt] K t ( x t - X t ) j "* V " U N

subject to a linear or linearised econometric model in state-

variable form

( ? = •) v = A x + R n + P 7 + p 1- = 1 N

(2b) xQ = x,

see e.g. PINDYCK [1973], CHOW [1975]. This problem is known as

the linear-quadratic-Gaussian tracking problem (short: LQG).

In the above equations as in the remainder of this article

E-[ • ] is the expectation operator and • denotes transposition.

E[ •>/•"] is the expectation of • conditional on ••. The (nx1 )

vector x describes the state of the economy at period t ,

x being an exogenously specified target vector of desired



values for x , and x being the given initial state. (This

approach can easily be extended to the case when x is known

only probabilistically, see section IV.). The matrix K , which

weights the squared and cross-termed deviations of x from its

desired value x , is non-negative definite, u is a (mx1)

vector of policy or control variables whose value is freely set

by the policy-maker. z is a (px1) vector of exogeneous

variables. e, is a (nx1) vector of stochastic disturbance which

are normal-distributed with mean 0 and known covariance matrix

and which are serially uncorrelated. The parameter matrices

A , B and C. are assumed to be known exactly.

In general it is appropriate to define (2a) so that x

includes u, as a subvector, thus making u, an argument of W

without complicating the notation unnecessarily, see CHOW [1975]

(The weighting of u in W can express the technical or

political costs of using macroeconomic instruments. It may also

be used to keep the fluctuation of u within reasonable bounds

without explicitly introducing restrictions on these fluctuation

For every initial state x, (2a) describes the possible

behaviour of the economy over time as a function of the policy

variables u, , of the uncontrollable events z, and of the

random phenomena e. . Because of the disturbances e , this

behaviour is only probabilistically known. The optimal policy

problem is to determine the control sequence u?,...,u* which

minimizes the expected welfare loss (1) subj.ect to the economic

constraints (2).



In the formulation (1)-(2) of the macroeconomic policy-

making problem, neither the time needed to measure the economy's

state x (i.e.,the measurement 1ag) nor the time needed to

decide upon and physically realise a control u, (i.e., the

realisation lag) are taken into consideration. However, it will

be shown in section II that when the control lag as sum of

measurement and realisation lag is longer than one period,

failure to take it into account explicitly in the problem

constraints results in a solution which cannot be implemented.

Thus the_^o-called closed-loop solution of LQG, which traditionally

has been used in the optimisation of econometric models, may be

meaningless in. numerous real-life situations.

In this paper we derive the "best implementable" solution to

the macroeconomic policy-making problem when there is a control

lag. First, in section II, we present the "classical" solutions

of LQG, i.e., the closed-loop and the open-loop solutions. As

previously stated, we show that these solutions are not

implementable or optimal when there is a non-trivial control lag.

In the following sections, two cases of macroeconomic policy-

making with control lag are considered:

a) The state of the economy is measured exactly (section I I I ) ;

b) Only a linear transformation of the state is measured,

corrupted by additive stochastic disturbances (section I V ) .

In both cases analytical expressions for the solution of the

delayed control problem, for the state variance/covariance and

for the minimum expected welfare loss are given, which define

easily realisable numerical solution schemes. Finally, section V

is devoted to some conclusions.



II. Closed-loop and open-loop solutions

In optimal stochastic control there exists a well-defined

correspondence between some characteristics of the optimal

solution and the problem's assumptions on which information is

used for determining the optimal control in any period. It is

therefore usual to speak of the different solutions of a problem

- meaning the solutions of the different problems derived one fro

the other by varying only the constraints on information

availability. Two different solutions of LQG are generally con-

sidered in the literature:

- The closed-loop solution defines the optimal control in any

period t as a function of the current state and of time,

i.e. in the form

(3) u* = u*(xfc_1,t) , t = 1 , . . . , N .

- The open-loop solution defines the optimal control as a

function of the initial state and of time alone,

(4) u** = u**(xQ,t) , t = 1 , . . . , N .

The other major types of solution discussed in the literature

for the general stochastic control problem, see e.g. BAR-SHALOM

and TSE [1976], reduce to these two types in the special case

of LQG.

Whatever assumptions are made, on .informatipn__.availabilit}'

the corresponding solution of LQG can be derived using Dynamic

Programming, see CHOW [1975]. According to Bellman:'s Principle



of Optimality . (BELLMAN [1957]), the optimal control for the

period t , u* , t = 1,...,N , can be obtained as the solution

of the one-period optimisation problem:

(5) V = E[1(X^ - x j V t x , - x j / c j , + V* • m i n
4 - 1 9 t" +• +• i- - +~ +• T + 1 n '

where V*+1 = min V .. and a. describes the information

available on the past process behaviour when determining u* .

Thus, r*sosely speaking, a = {x ,u.. ,. . . ,u .. } in the open-loop

case and a = {x , . • . ,xt_. , u.. , . . . ,u. _.. } in the closed-loop

case. It can easily be shown that V* = V*(x _ 1 , T ) is the

minimum expected welfare loss over t = T,...,N .

Since the e are serially uncorrelated and independent

of x and u , x = 1 , . . . , N ,

(5) can be rewritten in the closed-loop case in the form

1 T* *"P — 1 rp __
f £L \ T 7 ^— ir XT' -tr ^ v "V v -J_ , _̂ r "V •\r -L.

t+1 '

This last equation is the starting point for deriving the

closed-loop solution of LQG and will be referred to in later

parts of this paper. The derivation of the optimal solution

of LQG starting with (6) can be found in CHOW [1975] and will

not be presented here.

The closed-loop solution of LQG always exists. It is

unique and given by the deterministic, linear feedback rule

(7) u* = Gtxt_1 + gt , t = 1,...,N ,

with



(8a)

(8b)

(9a)

(9b)

Tprovided B.H.B is not singular. When this matrix is singular,

the solution is no longer unique. However, a well defined optim;

feedback rule (out of several possible) is easily obtained by

T -1replacing (B H B ) in (8) with the corresponding Moore-

Penrose generalised inverse, which is always uniquely defined.

See GARBADE [1976], PRESTON [1977] for details.

The system (7)-(9) not only analytically characterises

the optimal solution of (1)-(2), but offers computational

schemes for numerical solutions as well. Using alternatively

(8) and (9) for t = N,N-1,...,1 together with the initial

condition H = K , h = K^x , the matrices and vectors

GN' gN ; HN-1 ' hN-1 ; GN-1 ' gN-1 ; •*•' G 1 ' g 1 ' c a n b e d e~

termihed backward in time. As previously noted, the feedback

matrices G and forcing vectors g are independent of the valv

taken by x and u over t = 0,.. . . ,N ; therefore, they can be

predetermined before even x is known. Given G. and g, ,

the optimal control u* is determined by (7) as a linear,

deterministic function of the current state of the economy, x.

The closed-loop solution (7)-(9) is the optimal solution

of (1)-(2) in the absence of any restriction on information



availability. Accordingly, it makes "maximal" use of information.

(In fact, (7)-(9) shows that this "maximal use" of information

consists in using the actual value of x4-_-i ~ an<3 this value

alone - to determine u* . This reflects the independence and

Markovian properties of the different sequences defined by LQG).

No other solution to LQG yields a smaller expected minimum

welfare loss. For these and other reasons, systematic use of

the closed-loop solution has been advocated for use within the

macroeconomic policy-making framework, see e.g. CHOW [1972].

>v However, practical implementation of the closed-loop

solution puts stringent requirements on the length of the

measurement and realisation lags. Although the optimal decision-

rule (7) can be predetermined, the corresponding optimal controls

u* cannot be computed before the state X4__-i is known.

By (2a) x - is a random variable. Its value can therefore

only be determined by measuring it after it has been realised,

i.e., at the earliest in t-1 . Thus the closed-loop solution

(7)-(9) can only be implemented if x4-_-i is measured without

delay ("on line" or "real time" measurement). Furthermore,

this solution requires that the control u* can be physically

realised immediately after its value has been computed. To put

it more precisely: implementation of the closed-loop solution

is impossible if the control lag as the sum of measurement lag

and of realisation lag is longer than one time period.

In actual macroeconomic policy-making, measurement

lag and control lag are indeed far from trivial. (The measure-

ment lag corresponds largely to the recognition lag of the

theory of economic policy. The realisation lag covers,among



others, the so-called legislative and administrative lags.

For a detailed discussion of the different kinds of delay in

macroeconomic policy-making and of their relative and absolute

importance, see e.g. FRIEDMAN [1948].) These lags will often

amount to more than one period, particularly if the econometric

model used has short sampling intervals (quarterly, monthly,

or weekly models). If so, the solution (7)-(9) has no practical

significance and cannot be used as a decision-help.

The open-loop solution, on the other hand, is the

solution of the problem (1)-(2) augmented with the constraint

(4) which excludes any use of state measurements for t > 0 .

It is given by (7)-(9) with x
t_-i replaced in (7) with,its

minimum variance prediction conditional on x . (This result

can be obtained by trivially modifying the analysis of

section III). Although in attenuated form, real-life implemen-

tations of this solution are still restricted by eventual

measurement and realisation lags: the initial state x
o

(or, in the case of a random x , its distribution) must be

known at t = 0 ; the realisation lag for u** cannot be

longer than t periods. Within the context of macroeconomic

policy-making, however, it is another characteristic of the

open-loop solution which appears to be its major shortcoming.

This solution disregards any measurement of the economy's

state in periods t > 0 which might (and as a rule will)

become available between t- = 0 and t = N .- This -results

in an unnecessarily large uncertainty about the real economy's

state in t > 0 and in an accordingly unnecessarily large



minimum expected welfare loss. In other words, the open-loop

solution as a rule is not the best implementable solution

to the concrete macroeconomic problem. Note, however, that

for the deterministic linear-quadratic problem, knowledge of

the deterministic equivalent-of (2) is sufficient to make a

perfect, costless prediction of x, , t = 1 , . . . ,N . Therefore,

there is no advantage in using direct state measurements and

both the open-loop and closed-loop solution determine the

isame optimal control sequence and the same minimum loss.

Summarising it can be said that both closed-loop

and open-loop solutions are attractively clear-cut. They

permit adequate treatment of the kind of problems most often

encountered in engineering, see BRYSON and HO [1975] . However,

they do not appear to be generally appropriate as solutions of

the optimisation of econometric models for macroeconomic

policy-making. The closed-loop solution will often not be

implementable. The open-loop solution, too, may not be

implementable; in any case, it unnecessarily restricts the

use of the delayed measurements of the economy's state which

are continuously available in policy-making. The purpose of

section III is thus to derive the solution to LQG which will

make the best possible use of available information while

remaining implementable despite the given control delays.

It is important to note that we are exclusively

concerned with the delays in determining and realising the

optimal economic measures u* . These delays take place out-
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side of the economic structure described by (2a). They are

not to be confused with the "transmission lags" within the

economy. These express the fact that economic measures

possibly do not influence the economy at once after they

are realised and/or exert an influence over several periods.

Such transmission lags will normally be explicitly taken into

account in the econometric model - although their existence

may be "hidden" in the state variable form (2a), which

expresses the original model as a system of first-order

difference equations.
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III. Delayed controls

For simplicity's sake we assume in this section that

measurement lag and realisation lag are constant and equal to

a and 3 periods respectively, with a+3 = y • At-this point

it is crucial to recognize that the conceptual differentiation

between measurement lag and realisation lag is irrelevant for the

solution of the delayed optimal control problem. According to

®ur previous discussion of the delayed problem, the controls

u. we are concerned with are to be interpreted as "effective

in period t , decided upon in period t-3 , when the most recent

state measurement is x, .". The information that can be used
t-y-1

in the determination of the optimal u, is given by a) the

deterministic knowledge of x. _.. ; b) the deterministic know-

ledge of the previous controls u , x < t ; and c), as we will

show in detail, a probabilistic knowledge (a prediction) of the

states x. ,...,x, . ; this prediction is based on the know-

ledge of the a priori system (2a), of x, _ _1 , and of

u , ...,u,_1 . The information a)-c) does not depend on

when exactly within [t-y-1,€] the value of u is decided

upon. It is already physically available in t-y . Thus the

absolute and relative values of a and 3 are unimportant.

Only the value of y is relevant, i.e. the length of the

control lag.

Summarising, the control problem can be expressed as:

Nr 1 — T — 1
(10) W = E Y ~(x-x.) K, (x -x.) -» „ minL t~y

 2 t t t t tJ u
y / • • •

subject to
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(11a) x t = A t x t - 1 + B f cu t + C t z t + e t / t = 1 , . . . ,N ,

(11b) xQ = x ,

(12a) u* = u * ( u y , u v , t ) , y < t - Y , v < t ,

(12b) u ^ Q . j . , . . . , . u l = u Y _ 1 ,

where u , 0 < t < y , are the known historical values of u .

The constraints (12) express exactly the minimum requirements

necessary to ensure implementability of the solution when

there is a control lag of Y periods. Since by (12b) the

values of u.. , . . . ,u _1 are fixed, the delayed problem is

concerned only with the determination of the optimal controls

over t = y, Y+1,...,N , see (10). (Alternatively one can, for

example, define the problem over t = 1,2,...,N . In this case

(11a) must be extended to cover the periods t = - y,-y+1 , . . . ,N ;

the initial conditions (11b) and (12b) must define x(_y)

instead of x and u, +. . ,...,u instead of u. ,...,uY_. .)

The constraints (11) are identical to the constraints (2) in

the standard LQG problem.

As before, it follows from Bellman's Principle of

Optimality that the optimal control u* can be obtained by

solving the problem

(13) Vfc = E[i(xt-xt)
TKt(xt-xt)/xp , u v, u < t - y , v < tj +

+ v* _»min
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We will show that the optimal solution of (13) can be

expressed in the form of a linear-feedback rule acting on

a minimum variance estimate of x, . We first analyse the

prediction process

(14) ^ , y < t - y ,v < tj .

Let k = t-y- 1 . By successively .eliminating x from (2a)

for t = t-1,...,k+1, one sees that x can be decomposed

into a deterministic part x and in a stochastic part nt

(15) x, = (S. , x, + s. / ) + (fi ) := (x.) + (n.)t t/y k t/y t t t

with

Y

S
t/y 11 "t-T '' x=o

Y=1

(16b) st/y = Btut + Ctzt + L Q ( flo At_T\

(Bt-9-iut-e-i +-Ct-e-izt-e-i)

Y-1

nt = et + E (U At_TW-8-1 •
8=O \x=o /

By (17) n, is a linear-combination of normal-distributed

variables with mean 0 . It is also independent of x, and

u, for all t . Therefore

(18) xt = E[X^ + nt] = E[ X?]
 + E[nt] = xt
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i.e., x, is the least mean-squared prediction of x, , with

prediction error n. = x - x = x - x .

Let us now turn back to the optimisation problem (13)

We have

(19) Vfc = E | l (x t -x t )
T K t (x t -x t ) /x y / uv , p<t-T, v<tj + V*+1

, u v , y<t-Y, v<tj + V

riT H dT 1 — T — I" 1 T 1
Ktxt - xt V t + ix K tx t+ E [ i W t J + v

This last expression is of the same type as (6). Since the

derivation of (7)-(9) from (6) together with (2a) is independent

of the particular values taken by x , it follows immediately

that the optimal solution of (13) is given by (7)-(9) with

x
t_-j replaced in (7) by the least mean-squared prediction

x^_1 according to (15)-(17).

Thus, the optimal feedback rule remains the same in the

case of arbitrarily long control lags as in the case of no lags.

However, in the former case the feedback rule in t is acting

on the best prediction x
t_-i °f

 X+--1 available in the period

when u* is to be decided upon, and not, as in the latter

case, on actual deterministic knowledge of XJ-_I • Furthermore,

the minimum expected welfare loss increases with the length

of the control lags. To recognize this, consider first the

problem without delays, (1)-(2). From (6) in conjunction with

(7) one can see that the direct contribution of every period t
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to the expected minimum total welfare loss, V* - V* .. ,

can be interpreted as the sum of the following two components:

a) the minimum period loss in t for the deterministic problem

obtained by neglecting the stochastic disturbances e, in (2);

M T ' 1 1
and b) a "stochastic part" Er--e, K

t e t
 = y trace E K, . The

stochastic part expresses the expected welfare loss which is

caused by the uncertainty over the economy's dynamic behaviour

expressed in the s, . This part is independent of x and of

the target values x .

The same distinction can immediately be made for the

problem with delayed controls (10)-(12). By (19) together with

(15)-(16) it is evident that the deterministic part of the

period loss is the same in the delayed case as in the case

when there is no control lag. However, the stochastic part

fi T 1now takes the value E ~-n. K.n. , i.e. by (17) ,
L ^ t t t j

y-1 9

( 2 0 ) E [ l n * K t n t ] = [ K ] [

1
= -j trace

with $, , the covariance matrix of n, , given by

i:(n^)ML (n v
=o x

T=o
 J J L0=0 vx=o

(Of course $, is also the covariance matrix of the state x .
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FT 1 FT 1

Since K is non-negative definite a) E ntK +-
nt - E etKtet

for all t ; strict inequality will normally hold;
FT • 1b) E nfK,n. is a. non-decreasing, in general increasing,
L t t t J

function of the control lag y . In other words, the larger

the control lag, the lower is the expected level of goal

achievement. An increase in the control lag is exactly

equivalent to an increase in the system's uncertainty. As

previously noted, in the deterministic case (e. = 0 for all t)

future states can be exactly predicated; control lags have no

influence on the minimum loss.
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IV. Optimal delayed controls with imperfect state information

In the real world, perfect measurements of the

economy's state in any given period are not available. The

first ex post estimate of a state is a mixture of imperfect

measurements, complemented and modified by judgemental opinions,

statistical inferences and forecasts. As more or better data

become available, this first estimate is revised until

eventually some "final" estimate is obtained. Even the final

estimate, however, represents only a very imperfect measure-

ment of the state considered.

In order to take this into account, we reformulate

the problem (10)-(12) in the form

[ N -i

I l(x -x )TK (x -x. ) U min
^-_Y 4 L. T. t T̂  T. J U , . . . , U.

subject to

;23a) x t = Afcxt_1 + Btut + Cfczfc

(23b) xQ = x + eo , £ Q is N(O,E) ,

(24a) u* = u*(y ,u ,t) , y < t - y, v < t ,

(24b) U1=G-] /•••/ u T-i
= G

T-] '

(25a) yt = Mfcxt + e t , t = 0,...,N ,

(25b) e t is N(0,6) , E[ (efc) (e x)
T I = O , T * t ,

(25c) E| (et)(eT)
Tj = 0 , t,x = 0,...,
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where N(« ,-•) is the normal distribution with mean • and

covariance matrix •• • . That is, we assume that x can be

measured only indirectly through the stochastic vector y.

governed by (25) . This way of modelling imperfect measurements

is standard in engineering literature. For the macro-economic

policy-making problem it should offer a reasonable compromise

between mathematical tractability and realism. The assumption

(23b), that x is not known exactly and is only described

by a Gaussian random variable, follows naturally from assumption

(25a-b). (Note, however, that (23b) includes a deterministic

x = x as special case; alternatively, as previously noted,

the results of the earlier section can be extended trivially

to cover a random, normal—distributed x .) Assumption (25c)

can easily be relaxed to allow for correlated ^z^ an(i ^e^

processes. The measurement lag is now to be understood as the

time needed to obtain the measurement y after x is

realized. As before, we assume a total control lag (measurement

+ realization lag) of Y periods.

The functional equation of Dynamic Programming for

this problem is given by

(26) Vt = E[l(xt-xt)
TKt(xt-xt)/yy,uv, y <t-y , v <t j +V*t+1 '

Again let k = t-Y- 1 . From section III we know that x.

can be expressed as a linear transformation of x, and the

stochastic disturbance - T\ , which is independent-of-all

control and states:

( 2 7 ) Xt = St/yXk + St/y + nt '
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with S.y , s . and n t given by (16)-(17). In the present

case x, is not known. However, Optimal Filtering Theory tells

us that the minimum variance estimate of x, , conditional on

the whole process history,

(28) = E|xk/a , y < kl , k = 0,...,N ,

can be computed recursively as a linear-combination of

a) the current measurement y, ; and b) the minimum variance

estimate of the previous state x, . . The weights of this

linear-combination express the relative importance of the

uncertainty in the measurement y, and of the uncertainty

in a minimum-variance prediction of x, , conditional on x, _.. .

The recursive rule leading to the estimates x, allows also

computation of the corresponding error covariance matrices

I\ = COV(GJ, ) , with GO, := x, - x, , k = 0, . . . ,N . This rule is
' JC K ft. ft. K.

called a Kalman-Filter, the estimates x, are known as

filtered estimates. For details see, for example, ANDERSON

and MOORE [1979] .

The important result for our purpose is that the estimate

error OJ, associated with the estimate x, is normal-

distributed with mean 0 and known covariance r, . Setting

(x, + OJ, ) for x, in (27) , one sees immediately that in the

present case as in the case of section III x, can be

expressed as the sum of a deterministic part x^ and of a

zero-mean normal distributed disturbance 6 :

(29) xfc = x^ + 6t

with
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(30a) x^ = S t / Yx k + s t / y ,

(30b)

the covariance matrix of 6 (i.e., of x ) being given by

Y-1 6 Y-1
,T

' (3D A = S , r S t /

t t/y K t/y L e = o X T = O _ W J ,.T_OXT_.O

= St/Y rk St/Y

By an argument similar to the one of section III it follows

immediately that in the case of delayed controls and imperfect

state measurements:

1) The optimal solution of (26) is given by (7)-(9) with

x 1 replaced in (7) with its minimum variance prediction

conditional on the optimal (Kalman) filtering of x. , .

In other words, here again the optimal feedback rule is

unchanged compared with the basic case (1 )-(2) , except that

it is now acting on the best available state prediction and

not, as previously, on the actual value of the state.

2) The "stochastic part" of period t's contribution, t = y,...,N,

to the minimum expected welfare loss is increased by

Ttrace S, , r, S, , K, compared with the case with delays but

exact measurements. This stochastic part is now the sum of

the three elements

Y-1 6 Y-1 6

trace EKfc/ trace [L (U \- T )] =[ E ( fl V T ) ] ^ 3 1 " 1 trace

9=O NT=O ' J Lx =O T =O ' J
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corresponding respectively to the irreducible uncertainty in

the economy's behaviour, to the increased uncertainty caused

by the control lag, and to the uncertainty caused by the

measurement's inexactitude. The deterministic part of the loss

is unchanged by the assumption of imperfect measurements.

It should be noted here that the problem with imperfect

measurements and no control lag and its solution have long been

extensively discussed in the literature, see, e.g. CHOW [1975].

The solution of this problem is a special case of the solution

presented in this section and is, of course, given by (7)-(9)

with x replaced in (7) by the corresponding Kalman-Filtering

of x, given the whole process history over o,...,t .

The difference between imperfect measurements and perfect,

lagged measurements is that in the former case it is never possible

to determine the exact values of the states while in the latter

this information eventually becomes available, but too late to

be of use in determining the optimal control.

As previously pointed out, estimates of the economy's

state in any given period are in general revised several times.

The policy-maker is therefore likely to have at his disposal

several imperfect measurements y , y ' ,. . . , of the past state

xT, corresponding to the different revised estimates. If the

statisticians do their job properly, however,(y , y ' ,...)

should not yield any more information about the true state x

than the most recent estimate, y . Thus the y taken into

consideration in the formulation of V , see (26), can be taken
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without loss of generality as the "newest" estimates available

at the moment when u is to be decided upon.

Finally, let us remark that the problems of sections III

and IV can easily be extended to cover the case when different

control variables are associated with different control lags.

This extension allows, for example, the explicit modelling of

the fact that monetary policy measures can in general be

realized faster than fiscal ones, etc.
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V. Conclusions

The preceding sections have revealed that in every case

studied the optimal control in t, u* , is to be determined as

a function of the minimum variance estimate of x
t_-i / con-

ditional on whatever information is available when u. is to

be decided upon. Control lags and imperfect measurements do

reduce the quality of this estimate and, accordingly, do

decrease the expected level of goal"achievement. However,

they have no effect on the linear transformation which ex-

presses u* as a function of the available estimate for x
t _ i *

i.e. on the optimal feedback equation in t . This result,

while hardly surprising considering the given linear-quadratic

framework, is both satisfactory and disappointing. On the one

hand, it shows that numerical optimisations of linear econometric

models remain valid in their most important aspects even if

they neglect considerable control lags. In particular, these

optimisations use the correct feedback decision rules.

On the other hand the extreme simplicity and handiness of our

results demonstrate once again the extreme poverty of the

stochastic structure underlying LQG. In fact, even after the

introduction of delays, the control problem can barely be

called stochastic. (However, stochastic aspects play a con-

siderable role in the filtering problem, which was not ex-

plicitly developed here.)

Thus, in spite of extensive presentation and discussion

of this problem, we only find that it can be easily solved with
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very elementary mathematics, and that the simplest, most

intuitive ideas for dealing with control lags are indeed

optimal. Even more disturbing may be the fact that this

paper's results depend crucially on the linearity assumption.

However, since a proved method to optimise non-linear

econometric models proceeds through successive local

linearisation (see CHOW [1975]), the results retain some

operational validity even in the non-linear case. The Gaussian

assumption is less crucial and can be significantly relaxed.

Finally, our results provide an immediate way of

determining numerically the influence of control lags on .the

minimum expected welfare loss. We believe that a study of this

influence using existing econometric models, although necessarily

subject to serious qualifications, could lead to instructive

insights as to the extent of potential economic costs due to

delays in data gathering, decision-making and policy-implementation.
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