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Evolutionary Algorithm Replication and Replicator
Dynamics —
An Equivalence Theorem

Thomas Riechmann

Abstract Replicator dynamics and replication as used in evolutionary algorithms are, due to
their most basic forms, structurally the same. This short note will prove this thesis.
Although this finding is clear cut and easy to show, it is of great importance for the not yet
united families of game theorists on the one hand and evolutionary programmers on the other,
meaning that it is perfectly legal and correct to mutually use the tools and findings of each
other.
JEL Classification Numbers:C45, C73

ZusammenfassungReplikatordynamik und die Replikation evolutionärer Algorithmen sind
in ihren einfachsten Formen strukturell equivalent. Diese kurze Bemerkung beweist die obige
Behauptug.
Obwohl die Aussage einfach und leicht zu demonstrieren ist, ist sie nichtsdestoweniger von
größter Bedeutung für die noch nicht vereinten Familien der Spieltheoretiker einerseits und
Evolutionsprogrammierer andererseits. Das Papier besagt, dass es völlig legal und korrekt
ist, sich in der Forschung wechselseitig auf die Methoden und Ergebnisse der jeweils anderen
Gruppe zu stützen.

1 Introduction

In modern dynamic economic theory, there are mainly two branches of sci-
ence claiming to describe evolutionary dynamics, i.e. the process of change
in populations of agents or strategies. One is evolutionary game theory mak-
ing use of various forms of replicator dynamics. The other one is agent
based economics and evolutionary programming, essentially using selec-
tion/reproduction operators. This paper will point out that at least the two
most basic dynamic mechanisms of these branches are exactly the same. It
will be comprehensively shown that, due to their mathematical properties,
there is no difference between discrete non overlapping generations repli-
cator dynamics and the process of selection and reproduction used in the
canonical genetic algorithm.
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Evolutionary algorithms (EAs) have often been applied to economic prob-
lems in order to serve as a metaphor for learning. Since the work of Axelrod
(1987), among these EA models there is a number of models explicitely
dealing with game theoretic settings. Moreover, according to Riechmann
(2001b), a large number of other EA learning models can be shown to rep-
resent evolutionary games, too, even if these models do not look like games
at first sight, since they are presented in a ‘different language’ based on a
different scientific background. Just like evolutionary games, EAs provide
a population based approach to economic modeling. The most basic and at
the same time most often used EA mechanism of transferring one popula-
tion into the next is the operator of selection and reproduction introduced as
a part of the canonical genetic algorithm (CGA, Holland 1975, 1992, Gold-
berg 1989), which has been characterized in clear mathematical terms by
e.g. Davis and Principe (1993) and interpreted as a form of learning by imi-
tation by e.g. Arifovic (1994). And, although the CGA consists of more than
this one operator, it can be stripped down to the so called one operator algo-
rithm, which uses selection/reproduction only. This one operator algorithm
can be seen as an agent based model of pure simulation learning (Riechmann,
1999).

EA models are essentially agent based simulations of the evolution of the
frequencies of agents hosting different strategies in a series of succeeding
populations. The populations are always of finite length and in most models
even comparably small. This is the reason why in these models, replication,
i.e. the selection/reproduction operator, is a biased random process for which
only the expected outcome can be calculated.

Replicator dynamics, which are originally based on biologists’ ideas about
the development of population structures (Maynard Smith, 1982), are the
most widespread form of dynamics underlying models of evolutionary pop-
ulation games.1 The most basic form of replicator dynamics is discrete time
replicator dynamics in non overlapping generations models (cf. Samuelson
1997, pp. 63).

Populations underlying replicator dynamics are assumed to consist of in-
finitely many strategies. (In an alternative interpretation, they are, as Fuden-
berg and Levine (1998, p. 4) put it, ‘continuum populations’.) Thus, although
some authors claim that replicator dynamics characterize a random process,

1 The name of books and articles focusing replicator dynamics is legion. Some very good
ones are Hofbauer and Sigmund (1988, 1998); Weibull (1995); Samuelson (1997); Fuden-
berg and Levine (1998); Hirshleifer and Martinez Coll (1992).
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due to the law of large numbers, the expected outcome is usually seen as
being equal to the actual outcome of the process.
This paper will show, that the mathematical properties of CGA replication
and the discrete time replicator dynamics in non overlapping generations are
structurally equivalent. Although the proof is simple, the result is quite far
reaching: It shows that agent based simulations of learning processes based
on CGA replication are at least a good first approximation of the evolution-
ary replicator dynamics.2 Once the model gets too complex to be treated
analytically, i.e. by means of replicator dynamics, an agent based simulation
is a very good approximation of the replicator process.
Moreover, for the existing work in both fields of research the result means
that it is perfectly justified to compare the outcome of EA simulations and
replicator dynamics models: Due to the finding of this paper, EA results are
free to be used more or less immediately for further research in evolutionary
game theory and vice versa.

2 Equivalence

2.1 The Basics

Imagine a game theoretic population (or a population in an EA) in periodt,
Pt , which is of lengthNt . This means thatPt consists ofNt agents completely
characterized by their individual pure strategiesi they plan to play in period
t. The set of all possible pure strategies isS .
An example might be

P̃t = (A, A, B,C) ; A, B,C ∈ S = {A, B . . . Z} . (1)

P̃t has four members, two of them playing strategyA, while one playsB and
oneC.
Let i abbreviate the strategies (A, B, andC in the example) andπt (i) denote
the expected payoff to strategyi in period t.3 In GA theory, the payoff is
often calledabsolute fitness.
In the example, let us assume the payoffs as follows:

πt (A) = 2; πt (B) = 3; πt (C) = 3. (2)

2 Sadly, there is one clear restriction to this result: The similarity does not hold in the ultra
long run. For the ultra long run, the one operator algorithm can be shown to always lock
in into a state of a homogenous population (Riechmann, 1999), which is not generally the
case for replicator dynamics.

3 In this context, it does not matter,how the payoff is gained, i.e. how the game in focus is
actually played. For the main question of this paper it is sufficient to know the payoffs.
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The absolute frequency of a strategyi in populationPt or the number of
agents playingi in t is given byNt (i).
For the example, this means

Nt (A) = 2; Nt (B) = 1; Nt (C) = 1. (3)

The relative frequency of strategyi is given as

xt (i) =
Nt (i)

Nt
. (4)

In the example:

xt (A) =
1
2

; xt (B) =
1
4

; xt (C) =
1
4
. (5)

Total fitness or aggregate (expected) payoffπt to the population is the sum
of all the individual expected payoffs, i.e.

πt = ∑
i∈S

Nt (i) πt (i) . (6)

For the example:

πt =
Z

∑
i=A

Nt (i) πi = 2·2+1·3+1·3 = 10. (7)

The average expected payoff is given as

πt = ∑
i∈S

xt (i) πt (i) . (8)

For the exemplary case, the average expected payoff is5
2.

It can easily be seen that

πt

Nt
= πt . (9)
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2.2 Evolutionary Algorithm Replication

The replication process most often applied in EAs is the operator of selec-
tion/reproduction stemming from the CGA. This is a process ofNt+1 times
drawing with replacement an agent from populationPt and copying it into
the next population,Pt+1. Each agent’s probability of being selected in one
of the draws equals its relative fitness, which is given by the relation between
the agent’s fitness and the total fitness of the population, i.e.πt(i)

πt
. Accord-

ingly, the expected number of agents using strategyi in populationPt+1,
Nt+1(i) is given by the respective agent’s relative fitness times the number
of agents playing strategyi in the current population times the number of
draws, which is the same as the total number of agents inPt+1, Nt+1:

Nt+1(i) =
πt (i)

πt
Nt (i) Nt+1 . (10)

For the example, this means that4

Nt+1(A) =
2
10
·2·4 =

16
10
, Nt+1(B) =

12
10

; Nt+1(C) =
12
10
. (11)

Equation (10) is the basic difference equation giving the development of
genetic populations in an evolutionary algorithm, consisting of the selec-
tion/reproduction operator only. This algorithm has been characterized as
modeling a certain form of learning by imitation (Birchenhall, 1995; Riech-
mann, 1999).

2.3 Replicator Dynamics

In contrast to EA replication dynamics, replicator dynamics are generally
characterized in terms of population shares of the strategies in focus. Fol-
lowing Samuelson (1997), the evolution of population shares in discrete non
overlapping generations replicator dynamics can be described by

xt+1(i) = xt (i)
πt (i)

πt
. (12)

4 Note that the resultingabsolute frequenciesare real numbers which will have to be rounded
in agent based simulations. The process of rounding, in turn, will cause deviations from
the ‘true’ evolutionary time path of the system modeled. This is the reasons why popula-
tions have to be sufficiently large in order to provide a satisfactory approximation of the
replicator dynamics process.
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For the example, this means that

xt+1(A) =
1
2
· 2
5/2

=
4
10

; xt+1(B) =
3
10

; xt+1(C) =
3
10
. (13)

Making use of (4), (12) can be transferred into a notation explicitely showing
the dynamics in terms ofabsolutefrequencies:

Nt+1(i)
Nt+1

=
Nt (i)

Nt

πt (i)
πt

(14)

⇔ Nt+1(i) =
πt (i)

πt

Nt (i)
Nt

Nt+1 . (15)

Finally, using (9), this results in

Nt+1(i) =
πt (i)

πt
Nt (i) Nt+1 . (16)

Note, that (16) is structurally the same as (10). This means that for popula-
tion sizes going to infinity, basic EA replication and discrete time replicator
dynamics in non overlapping generations models become the same process.
Put in other words: EA replication is a good first approximation for replicator
dynamics if population sizes are finite.

3 Summary

As this paper is a short one, the summary will be short as well: The only
result is the finding that the process of replication in evolutionary algo-
rithms, if modeled by the operator of selection/reproduction from canonical
genetic algorithms, and the discrete time replicator dynamics in models of
non overlapping generations are, due to their mathematical characteristics,
structurally the same. This finding provides a hint for game theorists and GA
modelers to mutually take notice of each other and, moreover, to make use
of each other’s tools and findings.
The equivalence derived in this paper can be extended to cover more than
just replication. Processes of noisy replication (as used in form of replicator
equations by e.g. Binmore and Samuelson 1994 and Binmore et al. 1995),
for example, can be easily ‘translated’ into EA dynamics and are thus open
for further analysis with the help of agent based models.5

5 For a first step into this direction, see Riechmann (2001a).



Generating Cycles —
A Note on the Use of Elitist Selection Schemes
in State Dependent Problems

Thomas Riechmann

Abstract In evolutionary programming, a family of selection schemes, namely elitist selec-
tion might possibly lead to results which are stable cycles even if these results are no sensible
solutions to the underlying economic processes. This artefact of elitist selection appears if
elitist selection is used in connection with state dependent problems. This note demonstrates
this with the help of an example and some generalizations.
JEL Classification Numbers:C45, C73

Zusammenfassung In der evolutionären Programmierung existiert eine Gruppe von Selek-
tionsverfahren, die Verfahren der elitistischen Selektion, die zur Entstehung stabiler Zyklen
führen, obwohl solche Zyklen keine „vernünftigen“ Lösungen des zugrunde liegenden öko-
nomischen Modells darstellen. Solche Artefakte elitistischer Selektion entstehen, wenn sol-
che Selektionsverfahren im Zusammenhang mit zustandsabhängigen Problemen angewandt
werden. Dieses kurze Papier zeigt dies mit Hilfe eines einfachen Beispiels und einiger Ver-
allgemeinerungen.

1 Introduction

Evolutionary programming deals with the development of a set of micro en-
tities, normally called agents, or genetic individuals, or strategies, in time.
These sets of entities are usually called populations. Thus, evolutionary pro-
gramming is the simulation of the development of populations in time. This
development includes a number of ‘operators’ changing the composition of
the population from period to period.
A core operator in every evolutionary program, including a large number of
agent based economic models, is the operator of selection. Selection is the
part of the evolutionary process which decides on life or death of strategies
within populations. In the field of evolutionary programming, there is a num-
ber of different such selection schemes. One way of grouping these schemes
is differentiating between probabilistic and elitist selection. The main dif-
ference between these two families of selection operators is the following:
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In elitist selection, the best (i.e. the fittest) member of a number of succes-
sive populations is sure to become the member of the new population, i.e.
the population of the next period. In probabilistic selection, this is different.
Although fitter strategies have a higher probability to become a member of
the next generation, every member of a population has a positive (though
possibly very small) chance to survive.
In an economic context, especially applied to the problem of boundedly ra-
tional agents trying to learn a good solution to an economic problem, both
types of selection are often interpreted as a form of learning by imitation.
Most economic problems have another common feature, which is a charac-
teristic of all game theoretic problems. This feature is the state dependency
of individual fitness. State dependency means that the fitness of an agent (or
strategy, or individual) does not only depend on her own action, but also on
what the other members of the population do.
In this note, it will be shown that the use of elitist selection schemes in state
dependent problems can result in continuous cycles of macro data, even if the
data is far from representing an optimal solution to the underlying economic
problem.

2 The Model

The following model will only serve as a simple example and will thus be
only briefly described. It is in fact a simple standard cobweb model which
is extensively discussed in many other places like Henderson and Quandt
(1986). The only special feature of this model is the fact that it is a model
with state dependent fitness (i.e. in this case, profit) of the agents involved.
This section will point out this feature.
Consider a number ofn different firms producing the same perishable good
which they have to sell the same period it is produced. The quantity of the
good produced by firmi in period t will be denoted bysi,t . Every firm i
uses the same technology, resulting in cost function (1), whereC denotes
total production costs. The production function is assumed to have positive
marginal costs.

C = C(si,t) with
∂C
∂si,t

> 0. (1)

Each firm’s fitness is equal to its profitπi,t , i.e.

πi,t = si,t pt −C(si,t) . (2)
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Total demand in periodt, Dt is given as

Dt = max(γ−σ pt , 0) , (3)

whereγ andσ are positive parameters.
With St denoting total supply int,

St =
n−1

∑
i=0

si,t , (4)

the periodt equilibrium pricep?t results as

p?t =
1
σ

(γ−St) for Dt > 0. (5)

Let S−i,t denote the periodt aggregate supply of the population except of
agenti

S−i,t :=
n−1

∑
j=0
j 6=i

sj,t . (6)

This makes it easy to recognize that the equilibrium price depends (among
others) on this rest–of–the–population supplyS−i,t :

p?t =
1
σ

(γ−S−i,t −si,t) . (7)

Consequently, the profit of each individuali also depends onS−i,t .

πi,t = si,t

[
1
σ

(γ−S−i,t −si,t)
]
−C(si,t) . (8)

The fact thatS−i,t appears in the individual profit function (8) proves that the
problem is a problem of state dependent fitness. Fitness (i.e. profit) of each
individual i depends among others on the sum of individual supplies of all
the other members of the population.1

For the further course of the paper, one more remark is of some importance:
The greater the supply of the rest of the population,S−i,t becomes, the lower
is individual i’s profit πi,t :

∂πi,t

∂S−i,t
=−si,t

σ
≤ 0. (9)

1 In fact, as the problem is ann–person Cournot game, it is perfectly clear that it is a state
dependent problem, because state dependency is known to be the defining characteristic of
games (Riechmann, 2001b).
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Evolutionary learning models of the above type, using probabilistic selection
methods, have been shown to converge to a stable and at least near optimal
solution regardless of the question if the underlying parameterization de-
scribes a cobweb stable or cobweb unstable setting. (See e.g. Arifovic 1994;
Dawid 1996; Franke 1997.)

3 Elitist Selection

It is known that in absence of disturbing forces such as mutation probabilistic
selection in the long run inevitably leads to the arise of homogenous popula-
tions (Riechmann, 1999). This, in contrast, is not necessarily true for elitist
selection.2

One type of elitist selection which is used rather often, is the ‘+’–selection
scheme (Michalewicz, 1996). The basic idea is the following: The population
in periodt, Pt consisting ofn members, is produced by picking then fittest
members of the joint pool of members of the latest two populations, i.e. the
populationsPt−1 andPt−2.
In order to get a more formalized notation of this operation, let operator◦
stand for the process of elitist reproduction described above.
Thus, the basic law of building a population due to ‘+’–selection can be
written as

Pt = Pt−1◦Pt−2 . (10)

In addition, the operator◦ is commutative, i.e.

PA◦PB = PB◦PA . (11)

In order to illustrate the finding that this type of selection used in state depen-
dent problems can lead to endlessly ongoing cycles, consider the following
populations, which result from an experiment with the cobweb model de-
scribed above, making use of elitist selection.3

The population in period 2 looks as follows (the first column gives the index
of the member, the second the quantity produced and the third the fitness).

2 For more details on elitist selection see e.g. Michalewicz (1996); Hoffmeister and Bäck
(1991); Bäck et al. (1991).

3 The parameter values used for the simulation weren = 10, γ = 100,σ = 50,v = 1.1. The
cost function used is

C = C
(
si,t
)

= F +vs2i,t with F, v> 0.
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0 1.8324396068184612 -0.4720862894259463

1 1.8324396068184612 -0.4720862894259463

2 1.4348516579229864 0.2578708819532025

3 1.7619577995937008 -0.31732369164625274

4 1.7619577995937008 -0.31732369164625274

5 1.4348516579229864 0.2578708819532025

6 1.4348516579229864 0.2578708819532025

7 0.20127731904858503 0.30929305682898

8 0.20127731904858503 0.30929305682898

9 0.20127731904858503 0.30929305682898

P2

The third population is given as
0 0.20127731904858503 0.32505925760719134

1 0.20127731904858503 0.32505925760719134

2 0.20127731904858503 0.32505925760719134

3 0.20127731904858503 0.32505925760719134

4 0.20127731904858503 0.32505925760719134

5 1.4348516579229864 0.3702638700588454

6 1.4348516579229864 0.3702638700588454

7 1.4348516579229864 0.3702638700588454

8 1.4348516579229864 0.3702638700588454

9 1.4348516579229864 0.3702638700588454

P3

Due to state dependency, identical strategies yield different fitness values in
P2 andP3. See e.g. strategy 1.43. . . yielding a fitness of∼ 0.26 in t = 2,
but of ∼ 0.37 in t = 3. The reason for this is easy to illustrate: The ag-
gregate supply of populationP2 without strategy no. 6 (1.43. . . ) is S−6,2 =
10.662330086. In the next population,S−6,3 = 6.745793227. This means
that according to (8), because of a decrease in rest–of–the–population supply
(S−6,3 < S−6,2) the profit (and by that: fitness) of strategy 1.43. . . increases:
π6,3 > π6,2.
By the operationP4 = P3◦P2, the next population is won:
0 0.20127731904858503 0.32505925760719134

1 0.20127731904858503 0.32505925760719134

2 0.20127731904858503 0.32505925760719134

3 0.20127731904858503 0.32505925760719134

4 0.20127731904858503 0.32505925760719134

5 1.4348516579229864 0.3702638700588454

6 1.4348516579229864 0.3702638700588454

7 1.4348516579229864 0.3702638700588454

8 1.4348516579229864 0.3702638700588454

9 1.4348516579229864 0.3702638700588454

P4

A closer look reveals thatP4 is exactly the sameasP3. The reason for this is
straightforward: Every member ofP3 is better than any member ofP2, such
that only the members ofP3 are copied intoP4.
From this, it follows thatP5 = P4◦P3 results as
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0 1.4348516579229864 0.1932642515283267

1 1.4348516579229864 0.1932642515283267

2 1.4348516579229864 0.1932642515283267

3 1.4348516579229864 0.1932642515283267

4 1.4348516579229864 0.1932642515283267

5 1.4348516579229864 0.1932642515283267

6 1.4348516579229864 0.1932642515283267

7 1.4348516579229864 0.1932642515283267

8 1.4348516579229864 0.1932642515283267

9 1.4348516579229864 0.1932642515283267

P5

P5 is different fromP4 = P3. In this context, it is important to notice that
— due to state dependency — the fitness of the only type of agent left has
decreased fromP4 to P5. It has even decreased to such a dramatic extent that
again, every member of the population before (i.e. inP4) has greater fitness
than any member of the current population. This certainly means that elitist
reproduction will produce a new populationP6 which is identical toP4:

P6 = P5◦P4 = P4 . (12)

From this point on, we can compute the whole further process by making use
of the basic laws given in (10) and (11):

P7 = P6◦P5 | P6 = P4 (13)

= P4◦P5 (14)

= P5◦P4 (15)

= P6 (16)

P8 results as

P8 = P7◦P6 = P4◦P3 = P5 . (17)

Summarizing the facts thatP6 = P3, P7 = P4(= P3), andP8 = P5, it is easy to
conclude that the process will result in a lasting and never ending repetition
of the sequence of populationsP3,P3,P5.
Thus, it is obvious that an evolutionary process based on an elitist selec-
tion scheme might result in stable cycles which are an artefact of the pro-
gramming techniques and do not have any support from the underlying (eco-
nomic) problem.

4 Summary

Elitist selection schemes used in problems with state dependent fitness can
in some cases lead to stable endless cycles which are not based on sensible
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results of the underlying economic model but are mere artefacts of the type
of selection operator used. This result is based on the co working of elitist
selection on the one hand and state dependency on the other. If one of these
two ingredients is missing, the result will not appear, but if both are present,
cyclic simulation results have to be handled with greatest care.
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