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Abstract

Virtually all methods aimed at correcting for covariate measurement error

in regressions rely on some form of additional information (e.g., validation data,

known error distributions, repeated measurements or instruments). In contrast,

we establish that the fully nonparametric classical errors-in-variables model is

identifiable from data on the regressor and the dependent variable alone, unless

the model takes a very specific parametric form. This parametric family in-

cludes (but is not limited to) the linear specification with normally distributed

variables as a well-known special case. This result relies on standard primitive

regularity conditions taking the form of smoothness constraints and nonvan-

ishing characteristic functions assumptions. Our approach can handle both

monotone and nonmonotone specifications, provided the latter oscillate a finite

number of times. Given that the very specific unidentified parametric func-

tional form is arguably the exception rather than the rule, this identification

result should have a wide applicability. It leads to a new perspective on han-

dling measurement error in nonlinear and nonparametric models, opening the

way to a novel and practical approach to correct for measurement error in data

sets where it was previously considered impossible (due to the lack of additional

information regarding the measurement error). We suggest an estimator based

on non/semi-parametric maximum likelihood, derive its asymptotic properties

and illustrate the effectiveness of the method with a simulation study and an

application to the relationship between firm investment behavior and market

value, the latter being notoriously mismeasured.

Keywords: Measurement error, errors-in-variables, higher-order moments,

nonparametric, identification.
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1 Introduction

Nonlinear regression models in which both the dependent and independent variables

are measured with error have received considerable attention over the last few decades

(see, e.g., Carroll, Ruppert, Stefanski, and Crainiceanu (2006)). This so-called classi-

cal nonlinear errors-in-variables model takes the following form.

Model 1 Let   ∗∆∆ be scalar real-valued random variables related through

 =  (∗) +∆

 = ∗ +∆

where only  and  are observed while all remaining variables are not and satisfy the

following assumption:

Assumption 1 The variables ∗, ∆, ∆, are mutually independent,  [∆] = 0

and  [∆] = 0 (with  [|∆|] ∞ and  [|∆|] ∞.).

A well-known result is that when the function  (∗) is linear while ∗, ∆ and

∆ are normal, the model is not identified (see, e.g., Fuller (1987)), although the re-

gression coefficients can often be consistently bounded (Klepper and Leamer (1984)).

This lack of point identification for what is perhaps the most natural regression model

has long guided the search for solutions to the errors-in-variables problem towards ap-

proaches that rely on additional information (beyond  and ), such as instruments,

repeated measurements, validation data, known measurement error distribution, etc.

(e.g., Hausman, Newey, Ichimura, and Powell (1991), Newey (2001), Li and Vuong

(1998), Wang and Hsiao (2003), Schennach (2004a), Schennach (2004b), Schennach

(2007), Hu and Schennach (2008), Hu and Ridder (2012), among many others).
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Nevertheless, since the seminal works of Geary (1942) and Reiersol (1950), a

large number of authors (e.g. Kendall and Stuart (1979), Pal (1980), Kapteyn and

Wansbeek (1983), Cardoso and Souloumiac (1993), Hyvärinen and Oja (1997), Cragg

(1997), Lewbel (1997), Dagenais and Dagenais (1997), Erickson and Whited (2000),

Ikeda and Toyama (2000), Erickson and Whited (2002), Beckmann and Smith (2004),

Bonhomme and Robin (2009), Bonhomme and Robin (2010) and the many references

therein) have exploited independence assumptions (as in Assumption 1 above) to

develop alternative methods to identify linear errors-in-variables models and related

linear factor models, typically based on the idea that higher order moments of  and 

provide sufficient information to secure identification in the presence of nonnormally

distributed variables. Extensions to parametric polynomial models by using selected

higher-order moments have also been considered in Chesher (1998) and Kenny and

Judd (1984). Some nonlinear factor models have also been considered in Bauer (2005),

Yalcin and Amemiya (2001) and Jutten and Karhunen (2003), however, this strand

of the literature has largely bypassed the question of identification or has focused

on specific cases (such as nonlinear models that can be reduced to linear ones by

a suitable transformation). In fact, the question of completely characterizing the

set of identifiable models in fully nonparametric settings, while fully exploiting the

information provided by the joint distribution of all the observable variables to avoid

the need for additional information, remains wide open.

We demonstrate that the answer to this long-standing open question turns out to

be surprisingly simple, although proving so is not. Under fairly simple and natural

regularity conditions, a specification of the form  (∗) = + ln
¡


∗
+ 
¢
is the only

functional form that is not guaranteed to be identifiable. Even with this specification,

the distributions of all the variables must have very specific forms in order to evade

identifiability of the model. As expected, this parametric family includes the well-
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known linear case (with  = 0) with normally distributed variables. Given that this

very specific unidentified parametric functional form is arguably the exception rather

than the rule, our identification result should have a wide applicability. This leads

to a new perspective on handling measurement error in nonlinear and nonparametric

models, opening the way to a novel and practical approach to correct for measurement

error in data sets where it was previously considered impossible (due to the lack of

additional information regarding the measurement error).

Based on this identification result, we suggest a corresponding estimator and de-

rive its asymptotic properties. We illustrate the effectiveness of the method via a

simulation study and an application to the relationship between firm investment be-

havior and market value, the latter being notoriously mismeasured. This application

revisits, in general nonlinear settings, the analysis of Erickson and Whited (2000), a

well-known successful example of the use of higher-order moments to address mea-

surement errors issues in linear models.

2 Identification result

Our identification result will rely on the mutual independence of the model error,

the measurement error and the true regressor (Assumption 1 above). While such an

assumption is arguably strong, it already underlies the extensive and still growing lit-

erature on higher-order moments in linear errors-in-variables models (such as Reiersol

(1950), Kendall and Stuart (1979), Pal (1980), Cragg (1997), Lewbel (1997), Erick-

son and Whited (2002), Dagenais and Dagenais (1997), Erickson and Whited (2000),

Bonhomme and Robin (2009), Bonhomme and Robin (2010)). Moreover, even in the

measurement error literature that exploits side information, independence assump-

tions are extremely common (see, for instance, the monograph by Carroll, Ruppert,
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Stefanski, and Crainiceanu (2006) for a review). On a more fundamental level, the

dimensionality of the observables in this problem is only 2 ( and ), while the di-

mensionality of the unobservables is 3 (∆, ∆ and ∗). Hence it is impossible

to construct a well-behaved mapping (i.e., other than “fractal” mappings) between

the observable and the unobservables distributions without introducing some type

of assumption that reduces the dimensionality of the unobservables. Independence

achieves this by letting us factor the joint distribution of ∆, ∆ and ∗ as products

of functions of fewer variables. It is possible that other dimension-reducing assump-

tions could be concocted, but few, if any, would have the transparency and simplicity

of independence assumptions (except perhaps in the case of purely discrete mismea-

sured regressors (Chen, Hu, and Lewbel (2009)), where dimensionality issues can be

assumed away with sufficiently strong rank conditions, because all unknown distri-

butions can be characterized by a finite number of unknowns, unlike the continuous

case treated in the present paper.) Independence is also the most logical extension of

the existing literature on the topic.

Beyond independence, we also need a few basic regularity conditions.

Assumption 2 
£
∆

¤
and 

£
∆

¤
do not vanish for any   ∈ R, where  =

√−1.

The type of assumption regarding the so-called characteristic function has a long

history in the deconvolution literature (see, e.g., Fan (1991) and Schennach (2004a)

and the references therein). The only commonly encountered distributions with a

vanishing characteristic function are the uniform and the triangular distributions.

We also need a slightly weaker but similar assumption on  and :

Assumption 3 (i) 
£


∗¤ 6= 0 for all  in a dense subset of R and (ii)  £(∗)¤ 6=
0 for all  in a dense subset of R (which may be different than in (i)).
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Unlike Assumption 2, this Assumption does allow for these characteristic functions

to vanish at points, although not over intervals. This assumption is only needed if

one wishes to recover the distribution of the errors (∆, ∆). Also note that both

Assumptions 2 and 3 are implied by the Assumption that 
£

¤ 6= 0 and  [] 6= 0

everywhere, an assumption that testable, since it involves observables.

Assumption 4 The distribution of ∗ admits a uniformly bounded density ∗ (
∗)

with respect to the Lebesgue measure that is supported on an interval (which may be

infinite).

Assumption 5 The regression function  (∗) is continuously differentiable over the

interior of the support of ∗.

These are standard smoothness constraints.

Assumption 6 The set  = {∗ : 0 (∗) = 0} has at most a finite number of ele-
ments ∗1     

∗
. If  is nonempty, ∗ (

∗) is continuous and nonvanishing in a

neighborhood of each ∗,  = 1    .

This assumption allows for nonmonotone specifications, but rules out functions

that are constant over an interval (not reduced to a point) or that exhibit an infinite

number of oscillations. This is sufficiently flexible to encompass most specifications of

practical interest. Excluding functions that are constant over an interval parallels the

assumption of nonzero slope made in linear models (Reiersol (1950)) and is therefore

difficult to avoid. Without Assumptions 5 and 6, it is difficult to rule out extremely

complex and pathological joint distributions of  and . In particular, one could

imagine an extremely rapidly oscillating  (∗), where nearly undetectable changes in

∗ yield changes in  that are virtually observationally indistinguishable from genuine

errors in .
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Our main result can then be stated as follows, after we recall the following con-

venient concept.

Definition 1 We say that a random variable  has a  factor if  can be written as

the sum of two independent random variables (which may be degenerate), one of which

has the distribution  . (This is related to the concept of a decomposable characteristic

functions, see Lukacs (1970), Section 5.1. We allow for degenerate factors here to

simplify the statement of the Theorem below.)

Theorem 1 Let Assumptions 1-6 hold. There are three mutually exclusive cases.

1.  (∗) is not of the form

 (∗) = +  ln
¡


∗
+ 
¢

(1)

for some constants     ∈ R. Then, ∗ (∗) and  (∗) (over the support of
∗ (

∗)) and the distributions of ∆ and ∆ in Model 1 are identified.

2.  (∗) is of the form (1) with   0 (A case where   0 can be converted into

a case with   0 by permuting the roles of  and ). Then, neither ∗ (
∗)

nor  (∗) in Model 1 are identified iff ∗ has a density of the form

∗ (
∗) =  exp

¡−∗ + ∗
¢ ¡


∗
+

¢−
(2)

with  ∈ R,   ∈ [0∞) and ∆ has a type I extreme value factor

(whose density has the form  () = 1 exp (2 exp (3) +4) for some

123 4 ∈ R).

3.  (∗) is linear (i.e. of the form (1) with  = 0). Then, neither ∗ (
∗) nor

 (∗) in Model 1 are identified iff ∗ is normally distributed and either ∆ or

∆ has a normal factor.

8



This identification result establishes when the knowledge of the joint distribution

of the observable variables  and  uniquely determines the unobservable quantities

of interest:  (∗) and the distributions of ∗, ∆ and ∆. In other words, it pro-

vides conditions under which there cannot be two different models that generate the

same joint distribution of the observable variables  and . Intuitively, this result is

made possible by the fact that the observable quantity (the joint density of  and

) is a function of two variables while the unobservable quantities ( (∗), and the

marginal distribution of ∗, ∆, ∆) are all functions of one variable. The former

thus “contains” much more information than the latter, so it is intuitively natural

that it should be possible to recover the unobservables from the observables alone.

The phrasing of Cases 2 and 3 should make it clear that the conclusion of the the-

orem remains unchanged if one focuses on identifying  (∗) only and not ∗ (∗),

because the observationally equivalent models ruling out identifiability have different

regression functions in all of the unidentified cases.

The proof of this result (outlined in the Appendix and detailed in Section A of

the Supplementary Material) proceeds in five broad steps:

1. We reduce the identification problem of a model with errors along  and  into

the equivalent problem of finding two observationally equivalent models, one

having errors only along the  axis and one having errors only along the  axis.

2. We rule out a number of pathological cases in which the error distributions do

not admit densities with respect to the Lebesgue measure by showing that such

occurrences would actually imply identification of the model (in essence, any

nonsmooth point gives away the shape of the regression function).

3. We show that any point of nonmonotonicity in the regression function makes it

impossible to find two distinct but observationally equivalent models, because
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any extremum in the regression function introduces a nonsmooth point in the

density of some observable variables and arguments similar to point 2 above

can be invoked.

4. We derive necessary conditions for lack of identification that take the form of

differential equations involving all densities. This establishes that the large class

of models where these equations do not hold are identified.

5. Cases that do satisfy the differential equations are then systematically checked

to see if they yield valid densities for all variables, thus pointing towards the

only cases that are actually not identified and securing necessary and sufficient

conditions for identifiability.

It is somewhat unexpected that in a fully nonparametric setting, the nonidentified

family of regression functions would still be parametric with such a low dimension

(only 4 adjustable parameters). It is perhaps not entirely surprising that in the a

priori difficult case of normally distributed regressors, most nonlinear specifications

are actually identified, since nonlinearity necessarily destroys normality of some of

the variables. While our findings regarding linear regressions (Case 3) coincide with

Reiersol (1950), the functional forms in the other nonidentified models (Case 2) are

hardly trivial and would have been difficult to find without a systematic approach such

as ours. Section B of the Supplementary Material provides independent verification

of Case 2 and shows that the constants      can all be set so as

to yield two distinct but observationally equivalent models with proper densities.

An interesting feature of Case 2 is that there are only two observationally equiva-

lent models in this case and they are disjoint: One has the form (1) with  = 1  0

and the other,  = 2  0 but models with  ∈ ]1 2[ are not observationally equiv-
alent. One cannot smoothly go from one model to another observationally equivalent
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one without going through models that are not observationally equivalent. Hence,

Theorem 1 implies that the model is locally identified in Cases 1 and 2. Moreover,

in Case 2, it is usually easy to rule out one of the two possible models based on

simple considerations regarding the process being studied. One of the two model

(with   0) has a vertical asymptote while the other (with   0) has a horizon-

tal asymptote. The vertical asymptote is usually incompatible with any reasonable

model, since it implies an infinite response to a finite cause. Hence, the only real

situation of practical concern could possibly be the linear specification of Case 3. We

will return to the linear case when discussing estimation.

In summary, Theorem 1 shows that the errors-in-variables model is identified for

virtually all commonly used specifications: exponential, sine, cosine, polynomial (not

reduced to a line), logistic, etc. Theorem 1 can be straightforwardly extended to

include perfectly observed covariates , simply by conditioning all densities (and ex-

pectations) on these covariates. Theorem 1 then establish identification of ∗| (∗|)
and  (∗ ) ≡  [|∗ ] and therefore of ∗ (∗ ) = ∗| (∗|)  ().

3 Estimation

Assumption 1 implies that the observable density  ( ) is related to the unob-

servable regression function of interest  (∗) and the densities of the unobserved

variables: ∗ (
∗), ∆ (∆), ∆ (∆) via the following integral equation:

 ( ) =

Z
∆ ( −  (∗)) ∆ (− ∗) ∗ (

∗) ∗ (3)

Since our identification result provides conditions under which this equation admits

a unique (functional) solution ( ∗ ∆ ∆), this suggests an analogue estimator

maximizing the likelihood associated with the density  ( ), in which the shape

of all unknown functions on the right-hand side of (3) are jointly optimized. To
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implement this idea in practice, for a given an i.i.d. sample ( )


=1, we employ a

sieve maximum likelihood estimator (Shen (1997)) based on the following equation:

 = argmax


sup
(123)

1



X
=1

ln

Z
1 ( − (∗)) 2 ( − ∗) 3 (

∗) ∗ (4)

where the max and sup are taken over suitably restricted sets of functions and 

is regression function of interest while 1,2 and 3 respectively denote the densities

of the model error, the measurement error and the true regressor. The restrictions

include (i) constraints that the densities integrate to one, (ii) zero-mean constraints

on the error densities. Also, all four unknown functions  1 2 and 3 are represented

by truncated series, with the number of terms in the series increasing with sample

size. In our simulations and application below, we rely on a Hermite orthogonal series,

which offers the advantage that all required integrals (e.g. in (4)) can be carried out

analytically. As is well known in the theory of nonparametric likelihoods, such sample-

size-dependent restrictions on the number of terms in the series approximations are

necessary to regularize the behavior of the estimator and achieve consistency. These

restrictions are detailed in the asymptotic analysis. As an alternative to truncated

series, one is free to employ flexible functional forms or even parametric models. Our

identification result guarantees that the solution is (asymptotically) unique regardless

of the choice of approximation scheme. Given this guarantee of a unique solution,

it is not surprizing that our likelihood function turns out to be rather well-behaved,

thus enabling us to employ a standard numerical optimization routine to maximize

it: a L-BFGS quasi-Newton algorithm (Nocedal (1980)).

In our examples below, we consider the estimation of a parametric regression

model, i.e. Model 1 with  (∗) =  (∗; ), where the function  (∗; ) is known up

to a parameter vector . However, the densities of the unobserved variables ∆∆

and ∗ are treated nonparametrically. The rationale for this approach is that the
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convergence rate of a fully nonparametric measurement error model can be very slow,

while our semiparametric approach enables root  consistency for the parameter vec-

tor of interest, making the approach practical for typically available sample sizes.

The use of a parametric regression specification also parallels the focus of the vast

majority of the empirical literature, while the nonparametric treatment of the distri-

butions of ∆∆ and ∗ frees researchers from having to assume specify parametric

forms for quantities that do not need to be specified in traditional, measurement

error-free, regressions. Hence, the proposed method offers a direct substitute to con-

ventional regression analysis when measurement error is suspected. Our asymptotic

theory can be adapted to other semiparametric context, for instance, leaving  (∗)

fully nonparametric but focussing on semiparametric functionals of it (such as average

derivatives).

Even though  (∗) and the densities of the errors are unknown a priori, in practice,

there is no real need to worry about checking the functional form restrictions of

Theorem 1. First, as explained in Section 2, as soon as a vertical asymptote in  (∗)

can be ruled out, the nonlinear nonidentified case is of little concern and only the

linear case remains a potential issue. Next, we observe that if the true model were

“too close” to the linear unidentified case for the method to be useful, the likelihood

function in (4) would be very flat near its maximum, resulting in very large standard

errors. Theorem 1 is nevertheless practically useful: It indicates that the approach is

certainly worth trying, since the cases leading to lack of identification are so special

and rare. But ultimately, what determines whether this approach leads to useful

inference in practice in a given application is the magnitude of the estimated standard

errors on the parameters of interest.

Section C of the Supplementary Material presents a formal asymptotic analysis

of this estimator with suitable regularity conditions for consistency as well as root
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 consistency and asymptotic normality of an estimator of . See Newey (2001),

Mahajan (2006), Hu and Schennach (2008) and Carroll, Chen, and Hu (2010a), among

others, for other examples of the use of sieve maximum likelihood in measurement

error models and Schennach (2009) and Carroll, Chen, and Hu (2010b) for further

details, and an extensive discussion of the practical use of sieves in this context. It

should be noted that root  consistency and asymptotic normality should not be

taken for granted in this context – this ideal can only be reached under smoothness,

moment existence and dominance conditions that imply that the estimator admits an

asymptotically linear representation in a neighborhood of the truth. Such conditions

may be difficult to ascertain formally in applications, because the data generating

process is not exactly known. If in doubt, practitioners could try the estimator at a

few sample sizes to check if the variances estimates indeed scale as −1, which would

be a good indication that the asymptotic regime has been reached and that it behaves

as expected by the theory.

The practical implementation of the method requires the selection of suitable

smoothing parameters: The number of terms in each of the truncated series approx-

imations. The construction of a general data-driven smoothing parameter selection

procedure and a formal proof of its asymptotic validity is beyond the scope of this

paper. Nevertheless, our asymptotic theory provides very useful guidance regarding

the choice of the smoothing parameters in practice. In a semiparametric context, our

asymptotic theory implies that the limiting distribution of the estimator is identical

for a wide range of rates of change of the smoothing parameters with sample size

(since our assumptions do not require a specific rate but instead take the form of up-

per and lower bounds on these rates). In fact, not only are the limiting distributions

identical, but the difference between two estimators obtained with different choices of

smoothing parameters that satisfy our assumptions is asymptotically negligible (rel-
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ative to the −12 leading term of their asymptotic expansion). This suggests that

a very direct way to check if a choice of smoothing parameter is appropriate is to

simply check the sensitivity of the results to variations in the smoothing parame-

ters. The region, in smoothing parameter space, yielding estimates that are the least

sensitive to given small changes in smoothing parameter values very likely points to

valid smoothing parameter choices. Choices outside of that region will tend to either

exhibit marked randomness if too many terms in the series are kept (due to increased

variance) or exhibit a marked systematic trend if too few terms in the series are kept

(due to an increased bias). Insensitivity to smoothing parameter selection (near the

optimal choice) represents another advantage of the use of a semiparametric model

(instead of fully nonparametric one) and we rely on it in our simulations and empirical

application below.

4 Simulations

We consider a nonlinear regression model as follows:

 = (∗; ) +∆

 = ∗ +∆

The latent variable ∗ is drawn from amixture of two normal distributions 06(0 1)+

04(02 025) and the regression error ∆ has a normal distribution (0 09).

The measurement error ∆ has a de-meaned extreme value distribution ∆(∆) =

1 − exp(− exp(2∆ − ∆)) with ∆ = 05772. Moreover, the right-hand side vari-

ables (∆∆ ∗) are mutually independent. In the simulation, we draw a random

sample {  ∗ }=1 based on this model for  = 3000.
We use the Hermite orthogonal series as our sieve basis functions. Let  (·) be
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the Hermite orthogonal series. We have

() =

s
1√

!2
()

−2

2 

where 0() = 1 1() = 2 and +1() = 2() − 2−1() The sieve

expression of the nonparametric densities are

1(∆) =

⎡⎣∆X
=0


∆
 (∆)

⎤⎦2  2(∆) =

"
∆X
=0

∆
 (∆)

#2
 3(

∗) =

"
X
=0

 (
∗)

#2


The smoothing parameters are ∆ ∆, and . One can show that the restrictionR
1(∆)∆ = 1 implies

P∆
=0

h

∆


i2
= 1, and similarly for ∆

 and  . Further-

more, the zero mean assumption
R
∆(∆)∆ = 0 implies that

P∆−1
=0

p
2 (+ 1)

∆
 

∆
+1 =

0, and similarly for ∆
 .

In addition, we consider three related estimators. One is the infeasible nonlinear

regression of  on ∗:

b = argmax


X
=1

− [ −(∗ ; )]
2


which would be the best estimator, under homoskedasticity, if ∗ were hypothetically

available in the sample. Another estimator is naive NLS, which ignores the measure-

ment error, as follows:

b = argmax


X
=1

− [ −(; )]
2


This estimator should give us the largest bias. Finally, we consider the sieve-based

instrumental variable estimator of Hu and Schennach (2008), denoted b, which

is consistent in the presence of measurement error, but requires the availability of

an instrument. To ensure a meaningful comparison, we specialized b to the case

where all the error terms and ∗ are mutually independent (as assumed for b), for
otherwise, allowing for general form of heteroskedasticity in b would have caused an
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efficiency penalty relative to b. We would expect b to have properties roughly

similar to b, but probably with smaller standard errors, since it exploits additional
information (the instrument). In this case, we use, as an instrument, a repeated

measurement with a normally distributed measurement error of variance 04. (Note

that the variance of the first measurement error is 041, so both measurement are

about equally informative.)

We consider six specifications of the regression function

case 1: (; ) = 1+ 2


case 2: (; ) = 1+ 2
2

case 3: (; ) = 1+ 2(1 + 2)

case 4: (; ) =
¡
2 + 1

¢
(+ 2) 

case 5: (; ) = ln
¡
1 + 1+ 2

2
¢


case 6: (; ) = 1+ 2 ln
¡
1 + 2

¢


For each specification, we estimate the model using the three estimators with 400

randomly generated samples of 3000 observations. We report the mean, standard

deviations (std.dev.) and squared root of mean square error (RMSE) of the four esti-

mators b, b, b and b. The smoothing parameters are chosen, as motivated
in the previous Section, by identifying a region where the estimates are not very sen-

sitive to variations in the smoothing parameter (i.e. when changes in the means of the

point estimates are small relative to their standard deviations, where both quantities

are estimated via averages over the randomly generated samples). The smoothing

parameters are kept constant across the randomly generated samples. (Section D.1

of the Supplementary Material reports smoothing parameter sweeps that illustrate

this procedure.)

As shown in Table 1, the biases of b, b and b are small compared with
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Table 1: Simulation results. For each estimator, we report the mean, the standard

deviation (std. dev.) and the square root of the mean squared error (RMSE) of the

estimators averaged over all 400 replications. The sample size is 3000. The selected

smoothing parameters are ∆ = 5, ∆ = 5,  = 6.

Case 1: (; ) = 1+ 2


Parameter (=true value) 1 = 1 2 = 1

mean std. dev. RMSE mean std. dev. RMSE

Ignoring meas.error 0.415 0.081 0.590 0.739 0.053 0.267

Accurate data 1.001 0.028 0.028 1.000 0.010 0.010

Hu &Schennach (2008) 0.883 0.115 0.164 1.037 0.097 0.104

Sieve MLE 1.059 0.213 0.221 0.925 0.145 0.163

Case 2: (; ) = 1+ 2
2

Parameter (=true value) 1 = 1 2 = 1

mean std. dev. RMSE mean std. dev. RMSE

Ignoring meas.error 0.755 0.031 0.246 0.537 0.028 0.463

Accurate data 1.001 0.021 0.021 1.002 0.011 0.012

Hu &Schennach (2008) 0.942 0.082 0.100 0.926 0.089 0.116

Sieve MLE 0.961 0.062 0.073 0.937 0.060 0.087

Case 3: (; ) = 1+ 2(1 + 2)

Parameter (=true value) 1 = 1 2 = 1

mean std. dev. RMSE mean std. dev. RMSE

Ignoring meas.error 0.631 0.022 0.370 1.037 0.028 0.046

Accurate data 1.000 0.020 0.020 1.000 0.023 0.023

Hu &Schennach (2008) 1.008 0.032 0.033 1.015 0.027 0.031

Sieve MLE 0.959 0.080 0.089 1.053 0.038 0.065

Case 4: (; ) =
¡
2 + 1

¢
(+ 2)

Parameter (=true value) 1 = 1 2 = 1

mean std. dev. RMSE mean std. dev. RMSE

Ignoring meas.error -0.302 0.079 1.305 1.625 0.284 0.687

Accurate data 1.000 0.017 0.017 1.000 0.012 0.012

Hu &Schennach (2008) 1.055 0.115 0.127 1.077 0.166 0.183

Sieve MLE 1.080 0.145 0.166 1.089 0.150 0.174

Case 5: (; ) = ln
¡
1 + 1+ 2

2
¢

Parameter (=true value) 1 = 1 2 = 1

mean std. dev. RMSE mean std. dev. RMSE

Ignoring meas.error 0.512 0.033 0.489 0.456 0.028 0.545

Accurate data 1.001 0.048 0.048 1.000 0.045 0.045

Hu &Schennach (2008) 1.092 0.083 0.125 1.123 0.130 0.179

Sieve MLE 0.844 0.120 0.197 0.966 0.067 0.075

Case 6: (; ) = 1+ 2 ln
¡
1 + 2

¢
Parameter (=true value) 1 = 1 2 = 1

mean std. dev. RMSE mean std. dev. RMSE

Ignoring meas.error 0.662 0.019 0.339 0.722 0.029 0.279

Accurate data 1.000 0.020 0.020 0.997 0.029 0.029

Hu &Schennach (2008) 0.988 0.061 0.062 0.791 0.171 0.270

Sieve MLE 0.915 0.059 0.104 0.979 0.054 0.05818



Table 2: Study of the behavior of the estimator near a nonidentified case. We use

the specification (∗ ) = 1
∗ + 2(

∗)2 with ∗ ∼ (008 04), ∆ ∼ (0 041),

∆ ∼ (0 09) and 1 = 1. We consider a range of values of 2 and calculate

the corresponding standard errors of estimates of 1. Note how the latter increase

drastically as we reach the nonidentified case (2 = 0). The sample size is 3000 while

the number of replications used to compute the standard errors is 400.
2 Std Dev 1
2.0 0.11

1.5 0.10

1.0 0.09

0.5 0.12

0.0 0.30

b, because they are consistent. The variances of b and b should be the largest

of the four due to the nonparametric approximation. Nevertheless, the sieve estimatorb is preferable over the naive estimator in terms of mean squared errors. The
comparison between b and b is instructive, as it reveals that, although b is
generally less efficient than b (as expected), it is often able to approach the RMSE

of b, even though it relies on less information (no instrument). This indicates

that our approach offers a very practical alternative to instrumental variable-based

methods. Section D.2 of the Supplementary Material reports similar results for a

smaller sample of only 500 observations that indicate that the bias-reducing power of

the method remains down to such sample sizes (although the variance of all estimators

obviously increases).

While the nonlinear ( 6= 0) nonidentified case poses little problem in practice (as
explained at the end of Section 2), it is instructive to investigate how the sieve esti-

mator behaves as one approaches the linear ( = 0) unidentified case. Table 2 shows

that failure of identification is readily detected via the associated sharp increases in

the standard errors, as expected from the fact that, for a locally unidentified model,

the likelihood function is locally flat.
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5 Application

Many studies have followed the seminal works by Brainard and Tobin (1968) and

Tobin (1969) on firm investment and the so-called  theory. The theory simply states

that a firm will invest if the ratio of the market values of the firm’s capital stock to

its replacement value, the Tobin’s , is larger than one. The intuition behind the 

theory is that a firm should invest when it expects investment to be profitable based

on an efficient asset markets’ valuation of the firm (Grunfeld (1960)). Despite its

strong theoretical footing, the Tobin’s  theory largely appeared to fail to explain

both cross-section and time-series data, until Erickson and Whited (2000) observed

that the  theory has, in fact, good explanatory power regarding investments once

one allows for the presence of measurement error in . Our application builds upon

Erickson and Whited’s notable result, by establishing that the applicability of their

finding extends beyond the linear regression model they used. Allowing for nonlinear

specifications is an important extension, for two reasons. First, there is clear evidence

of nonlinear response of firm investment to  (e.g., Barnett and Sakellaris (1998)).

Second, measurement error and nonlinearity (and the associated risk of model mis-

specification) often manifest themselves in similar ways (Chesher (1991)), so that only

a method robust to both aspects can disentangle them.

Erickson and Whited (2000) argue that instruments are difficult to find in this ap-

plication and therefore employ a “higher-order moment” approach in a linear setting.

The present paper generalizes this approach, thus making it possible to consider  the-

ory in a nonlinear setting with measurement errors. Adopting a nonlinear version of

Erickson and Whited’s specification, we describe the relationship between investment
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and Tobin’s  as

 = (∗  ) + 0+∆ (5)

 = ∗ + 

where  is investment divided by replacement value of the capital stock,  is the

mismeasured version of Tobin’s  (denoted by ∗ ) and ∆  are disturbances. The

variable  contains the covariates, specifically,  = (1 1   × 1)

, where 1 is

cash flow divided by replacement value of the capital stock and  is a 0-1 indicator

of whether firm  is financially constrained.  is the parameter of interest, while  is

the nuisance parameter associated with the covariates. As in Erickson and Whited

(2000), the three variables∆,  and (
∗
  ) are assumed mutually independent with

∆  having zero mean. In this generalized model, only   and  are observed

and the regression function  (· ·) is assumed known up to the parameter  to be
estimated. Although our identification theory is fully nonparametric, a parametric

estimation strategy is used here, given the size of the available sample. We use the

specification

(∗; ) = 1
∗ + 2 ln (1 + 3

∗)  (6)

as it nests the linear case and and provides flexibility regarding the curvature while

maintaining monotonicity, an economically plausible characteristic (unlike a polyno-

mial with the same number of parameters). Specification (6) is also in good agreement

with a local nonparametric regression of  on  (the mismeasured Tobin ) based on

the flexible specification  = 1+2
2
 +3

3
 +4

4
 + 0 +∆, which is highly

suggestive. Of course, using the mismeasured Tobin  in this preliminary specification

analysis assumes that the measurement error is not sufficiently severe to completely

alter the shape of the specification (in particular, the presence of a logarithmic tail).

We consider four estimators (see Table 3): The naive linear least squares, Erickson
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and Whited’s “minimum distance GMM4” estimator, naive nonlinear least squares

and the proposed sieve MLE. For the sieve MLE, we use the Hermite polynomial-

based sieve described in Section 4, with ∆ = 5 ∆ = 6  = 6. These settings were

found by gradually increasing the number of terms in the each series until we found

a choice of truncation where the point estimates were the least sensitive to changes

of ±1 in the number of terms in the series. To carry out the search, we initially
increased all truncations parameters simultaneously until a preliminary optimum was

found. From this preliminary result, we then increased one parameter at the time to

find the optimal parameter choice reported here. To save space and avoid confusion,

we do not report here the alternative estimates obtained with suboptimal truncation

choices.

Standard deviations (std. dev.) of all the estimators, as well as the 5th, 50th and

95th percentiles of their sampling distributions, were obtained using the bootstrap in

the usual way: 400 bootstrap samples of a size equal to the original sample ( = 2948)

were drawn (with replacement) from the original sample. Each bootstrap sample was

used to obtain a point estimate and the resulting 400 point estimates were used to

compute the relevant statistics (std. dev. and appropriate percentiles). We expect the

bootstrap to be applicable in this context, since our semiparametric asymptotic theory

establishes that our estimator is asymptotically equivalent to a sample average with

finite variance under suitable regularity conditions. The validity of the bootstrap for

nonlinear functionals that satisfy this condition has been established previously under

quite general conditions (see, e.g., Politis, Romano, and Wolf (1999), Chapter 1.6 and

Bickel and Freedman (1981)). In fact, the use of the bootstrap for semiparametric

Sieve Maximum Likelihood estimators has precedents in the literature (Chen and

Ibrahim (2007)).

To account for the presence of covariates, we condition the densities in the sieve
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Figure 1: Investment (normalized by replacement value of capital stock) as a function

of Tobin’s q, as estimated by various techniques.

on the covariate . By independence, the sieves describing the distributions of the

disturbances are unaffected by this conditioning. The distribution of ∗ conditional

on  is modeled as

∗ (
∗
 |) =  (

∗
 − 0)

where  is a parameter vector and  (·) a univariate density represented by a Her-
mite polynomial-based sieve. The role of  as a Tobin’s  shifter parallels its role

as an investment shifter in (5). Note that the parameter  can be straightforwardly

estimated via a linear regression on the model

 = 0+  +∆

where  is disturbance (whose density is ) and  + ∆ has zero mean and is

independent from .
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Figure 1 shows that both the naive linear and nonlinear regression considerably

underestimate the magnitude of the effect of Tobin’s  on investments, relative to

the two measurement error-corrected estimators (Erickson and Whited’s “minimum

distance GMM4” linear estimator and our nonlinear Sieve estimator described above).

The magnitude of the effect of Tobin’s  according to our nonlinear estimator

is broadly comparable to Erickson and Whited’s result. Our analysis therefore cor-

roborates their main result under more general conditions. This is an important

robustness check, because a nonlinear regression that neglects measurement errors

exhibits significant “saturation” at high values of Tobin’s , which seems to indi-

cate that the explanatory power of Tobin’s  is not as large as a linear model would

suggest. However, our analysis in fact clearly shows that this saturation is not large

enough to invalidate Erickson and Whited’s result, once we correct for measurement

error. Interestingly, the linear and nonlinear result differ more sharply in level before

measurement error correction than after. This fact is consistent with the observation

by Chesher (1991) that not properly accounting for measurement error can often lead

to spurious nonlinearities.

Although accounting for nonlinearity turns out to not affect broad features of

the model, such as the explanatory power of Tobin’s , it significantly affects some

specific aspects. For instance, the true elasticity  (ln )  (ln∗) varies from 092

to 066 as ∗ ranges from 1 to 5 (which roughly represents the range of the bulk of

the data). This significant elasticity change cannot be captured with a linear model

(whose elasticity remains 1 at all ∗, by construction).
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Table 3: Investment vs. Tobin’s q; 400 bootstrap replications used; sample size is

2948. “pctl” denotes percentiles.
(; ) = 1+ 2 ln (1 + 3)

Parameter 1
point est. std. dev. median 5th pctl 95th pctl

Naive OLS 0.015 0.0015 0.015 0.012 0.017

Erickson & Whited 0.034 0.005 N/A N/A N/A

Ignoring meas. error -0.021 0.0039 -0.021 -0.028 -0.015

Sieve MLE -0.031 0.0058 -0.032 -0.042 -0.023

2
point est. std. dev. median 5th pctl 95th pctl

Ignoring meas. error 0.55 0.055 0.54 0.47 0.64

Sieve MLE 0.81 0.081 0.81 0.69 0.96

3
point est. std. dev. median 5th pctl 95th pctl

Ignoring meas. error 0.098 0.00034 0.098 0.097 0.098

Sieve MLE 0.099 0.00059 0.098 0.097 0.099

6 Conclusion

This paper answers the long-standing question of the identifiability of the nonpara-

metric classical errors-in-variables model with a rather encouraging result, namely,

that only a specific 4-parameter parametric family of regression functions may exhibit

lack of identifiability. We show that estimation can be accomplished via a nonpara-

metric maximum likelihood approach and derive a suitable asymptotic theory. The

effectiveness of the method is illustrated with a simulation study and an empirical

application. We revisit Erickson and Whited’s important finding that “Tobin’s ” has

good explanatory power regarding firm investments when one allows for the presence

of measurement error in a linear model. We find that nonlinearities are important

in this application but that Erickson and Whited’s main conclusions are nevertheless

robust to their presence.
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Appendix: Outline of proof of Theorem 1

This Appendix presents a heuristic outline of the arguments leading to Theorem

1. Technical details can be found in the formal proof provided in Section A of the

Supplementary Material.

The joint characteristic function of  and , defined as 
£


¤
, is known to

convey the same information as the joint distribution of  and . Under Model 1, we

have


£


¤
= 

£


∗
(

∗)∆∆
¤


Assumption 1 then implies that


£


¤
= 

£


∗
(

∗)¤ £∆
¤

£
∆

¤
 (7)

To see when the model is not identified from the observed joint distribution of 

and , we seek an alternative observationally equivalent model (denoted with ∼ and
satisfying the same assumptions as the original model) that also satisfies:


£


¤
= 

£
e∗e(e∗)¤ £∆e¤ £∆e¤  (8)

Equating (7) and (8) and rearranging yields


£


∗
(

∗)¤  £∆
¤

 [∆e] = 
£
e∗e(e∗)¤  £∆e¤

 [∆]


where we have used Assumption 2. In the formal proof, we show that, under our as-

sumptions and if [|∆|] ≥  [|∆e|], the ratios £∆
¤

£
∆e¤ and £∆e¤  £∆

¤
form valid characteristic functions that we denote by 

£
∆̄

¤
and 

£
∆̄

¤
, re-

spectively, where ∆̄ and ∆̄ are new, implicitly defined, random variables. (The

requirement  [|∆|] ≥  [|∆e|] can always be met by permuting the two models if
necessary.) The resulting equation


£


∗
(

∗)¤ £∆̄
¤
= 

£
e∗e(e∗)¤ £∆̄

¤
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effectively states the observational equivalence between two models, one with inde-

pendent errors along “” only:

̄ =  (∗)

̄ = ∗ +∆̄

and one with independent errors along “” only:

̄ = e (e∗) +∆̄

̄ = e∗
(note that, in general, ̄ and ̄ differ from the original variables  and ).

Next, we impose observational equivalence via the joint density of ̄ and ̄, ex-

pressed in terms of the two alternative models. Denoting densities by  with ap-

propriate subscripts, we have, by independence between ∆̄ and ̄, ē̄ (̄ ̄) =ē∆̄ (̄ ̄ − e (̄)) = e∆̄|̄ (̄ − e (̄) |̄) ē (̄) = e∆̄ (̄ − e (̄)) ̄ (̄). Proceeding
similarly for ̄̄ (̄ ̄), the equality ̄̄ (̄ ̄) = ē̄ (̄ ̄) can be written as:

∆̄ (̄−  (̄)) ̄ (̄) = e∆̄ (̄ − e (̄)) ̄ (̄) (9)

where  (̄) denotes the inverse of  (̄). (In the formal proof, we establish that

this inverse exists and that the above densities with respect to the Lebesgue measure

exist, posses a sufficient number of derivatives and are nonvanishing whenever needed.

Otherwise, either the assumptions of the model are violated or the lack of regularity

actually lead to identification of the model – for instance, a jump in e∆̄ or a point

mass in the distribution of ∆̄ immediately give away the shape of the regression

function.) After rearranging and taking logs, we obtain:

ln e∆̄ (̄ − e (̄))− ln ∆̄ (̄−  (̄)) = ln ̄ (̄)− ln ̄ (̄) 
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Computing the mixed derivative 2̄̄ cancels the right-hand-side and yields:

−e0 (̄) e 00
∆̄ (̄ − e (̄)) + 0 (̄) 00

∆̄ (̄−  (̄)) = 0

or e 00
∆̄ (̄ − e (̄))

 00
∆̄ (̄−  (̄))

=
0 (̄)e0 (̄) (10)

where  ≡ ln  with the corresponding subscripts and arguments while primes denote
univariate derivatives. Taking logs again and noting that the right-hand side can again

be cancelled by applying a mixed derivative, we have:

2

̄̄
ln e 00

∆̄ (̄ − e (̄))− 2

̄̄
ln 00

∆̄ (̄−  (̄)) = 0

(The ln is defined for negative arguments by viewing it as a complex-valued function

and selecting the same branch on each side of the equality.) After rearranging, we

have ³
ln e 00

∆̄ (̄ − e (̄))´00
(ln 00

∆̄ (̄−  (̄)))
00 =

0 (̄)e0 (̄)  (11)

where the notation
³
ln e 00

∆̄ (̄ − e (̄))´00 stands for ³ln e 00
∆̄ ()

´00
|=̄−e(̄). Equating

(10) and (11) and rearranging yields³
ln e 00

∆̄ (̄ − e (̄))´00e 00
∆̄ (̄ − e (̄)) =

(ln 00
∆̄ (̄−  (̄)))

00

 00
∆̄ (̄−  (̄))



Since each side of the equality depend on a different argument (̄ − e (̄) versus
̄−  (̄)) that can be set to arbitrarily different values, each side must be constant,

unless the two models coincide (i.e.  (·) is the inverse of not only  (·) but also e (·)).
This fact can be used to set up separate differential equations for e∆̄ and for ∆̄

that can be solved analytically. The general solution to this differential equation leads

to Case 2 in the Theorem while Case 3 arises as a special case when some quantities

happen to vanish. These solutions can then be used to recover  (·), e0 (·), ̄ (·) and
28



̄ (·) via (10) and (9) and provide the functional forms such that the model is not
identified. Case 1 of the Theorem covers the situation where the above construction

is not possible and there consequently exists no pair of distinct models that are

observationally equivalent, thus showing that the model is then identified.
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A Proofs

A.1 Preliminaries

Throughout this Supplementary Material, references prefixed by a letter (e.g. “As-

sumption C.1”) point to items in the Supplementary material while numbered refer-

ences (e.g. “Assumption 1”) point to the main text.

Definition A.1 Let S denote the support of the random variable  and let  ()

denote its density (and similarly for the multivariate case).

Remark A.1 Since two Lebesgue densities can differ on a set of null Lebesgue mea-

sure and still represent the same distribution, we use the following convention to

prevent countless “almost everywhere” qualifications from obscuring our main argu-

ment.

Definition A.2 Given a random variable  taking value in R with probability mea-

sure  admitting an absolutely continuous density with respect to the Lebesgue mea-

sure, we define the density  () of  at the point  as

 () =

(
 ()

1··· if it exists at 
0 otherwise

(A.1)

1



where  () =  ((−∞ 1]× · · · × (−∞ ]). We adopt the same convention for

measures such that  (R
)  1.

Remark A.2 Note that  () 1 · · ·  exists almost everywhere, since  ad-
mits a density with respect to the Lebesgue measure by assumption. The second of

case of (A.1) applies, for instance, when  () exhibits a kink at a point, so that its

derivative does not have a unique value there. Setting  () to zero on a set of null

Lebesgue measure has no effect on the corresponding probability distribution. This

definition merely selects one of the many possible valid Lebesgue densities defining

the same distribution.

We then define a few convenient concepts related to the divisibility (or decompos-

ability) of characteristic functions (see Lukacs (1970), Section 5.1). “Characteristic

functions” will be abreviated “c.f.” hereafter.

Definition A.3 Let   be random variables. Then,  is called a factor of  if  can

be expressed as  =  +  for some random variable , with  independent from .

Any number of these random variables may be constant. (This definition is analogous

to Definition 1, but without referring to distributions.) For convenience, we also use

the term “factor” for the corresponding distributions or corresponding characteristic

functions (c.f.), e.g., the distribution the distribution  is a factor of the distribution

 or the c.f. 
£

¤
is a factor of the c.f. 

£

¤
.

Definition A.4 A random variable  is decomposable if  can be written as the sum

of two nonconstant independent random variables.

Remark A.3 Note that this definition differs from the notion of factor introduced

in Definitions 1 and A.3, where constant random variables were allowed in the sum.

The identification proof will consider an alternative model that is observationally

equivalent to Model 1 (in the main text), defined as follows.

Model A.2 Let   e∗∆e∆e be scalar real-valued random variables related through
 = e (e∗) +∆e
 = e∗ +∆e

where only  and  are observed (and are equal to the corresponding variables in Model

1) while e∗∆e∆e are unobserved (and may differ from the corresponding variables

∗∆∆ in Model 1). However, e (·)  e∗∆e∆e satisfy the same Assumptions 1-6
as the corresponding entities  (·)  ∗∆∆ in Model 1. (We will invoke Assump-

tions 1-6 for Model A.2 whenever needed without always explicitly mentioning that

the variables have to be replaced by their tilded counterparts in the assumptions.)
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Definition A.5 Two models are observationally equivalent if they generate the same

joint distribution of the observable variables.

Definition A.6 Two models are distinct if their regression functions differ or if the

joint distributions of their corresponding unobserved variables differ.1

We first establish a few basic results that will prove useful. We first reduce the

identification problem to a simpler but equivalent problem involving only one error

term. Consider the following two models:

Model A.3 Let ̄ ̄ ∗∆̄ be scalar real-valued random variables such that

̄ =  (∗)

̄ = ∗ +∆̄

where ̄ and ̄ are observable (and may differ from   in Model 1 and A.2), where

the unobservable ∗ and  (∗) are as in Model 1, and ∆̄ is independent from ∗,
 [∆̄] = 0 and the distribution of ∆̄ is a factor of the distribution of ∆ in Model

1.

Model A.4 Let ̄ ̄ e∗∆̄ be scalar real-valued random variables such that

̄ = e (e∗) +∆̄

̄ = e∗
where the observables ̄ and ̄ are as in Model A.3, where the unobservable e∗ ande (e∗) are as in Model A.2 and where ∆̄ is independent from e∗,  [∆̄] = 0 and ∆̄

is a factor of ∆ in Model A.2.

Lemma A.1 If the random variables ∆e, ∆ and ∆̄ are related trhough ∆e =
∆+∆̄ with ∆̄ independent from ∆, then inf∈R [|∆e − |] ≥ inf∈R [|∆ − |]
(assuming the requisite expectations exist).

Proof. Using, in turn, (i) iterated expectations, (ii) properties of the infimum, (iii)

independence of ∆ from ∆̄ and (iv) the fact that an expectation has no effect on a

constant, we have:

inf
∈R

 [|∆e − |] = inf
∈R

 [|∆ +∆̄ − |] = inf
∈R

 [ [|∆ +∆̄ − | | ∆̄]]

≥ 

∙
inf
∈R

 [|∆ +∆̄ − | | ∆̄]

¸
= 

∙
inf
∈R

 [|∆ − | | ∆̄]

¸
= 

∙
inf
∈R

 [|∆ − |]
¸
= inf

∈R
 [|∆ − |] 

1Note that, since the regression function is assumed continuous, if two regression functions differ

at a point, they also differ on an interval. Equality of two distributions means that they assign the

same probability to measurable sets.
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Lemma A.2 If 
£


¤

£
∆

¤
(where 

£
∆

¤ 6= 0) is a c.f. then  [| = 0] 


£
∆

¤
is a c.f. for any fixed 0 in the support of  (except perhaps for 0 in some

null set under the probability measure of ).

Proof. If 
£


¤

£
∆

¤
is a c.f., Theorem 3.3.1 in Lukacs (1970) implies

that there exists a random variable ∗ such that  = ∗ +∆ with ∆ independent

from (∗ ) and such that 
£


¤

£
∆

¤
= 

£


∗¤
. The associated joint

distribution of ( ∗), admits a conditional distribution of ∗ given  = 0 (except

perhaps for 0 in some null set under the probability measure of ). The c.f. of this

conditional distribution is 
£


∗| = 0
¤
= 

£


∗| = 0
¤

£
∆

¤

£
∆

¤
=


£
(

∗+∆)| = 0
¤

£
∆

¤
=  [| = 0] 

£
∆

¤
(again by Theorem 3.3.1

in Lukacs (1970), applied to a conditional distribution).

Lemma A.3 Under Assumptions 1, 2, 5 and 6, there exist two distinct observation-

ally equivalent Models 1 and A.2 iff there exist two distinct observationally equivalent

models of the form of Models A.3 and A.4.

Proof. The joint c.f. of  and , defined as 
£


¤
, conveys the same information

as the joint distribution of  and  (by Theorem 3.1.1 in Lukacs (1970)). Under Model

1,


£


¤
= 

£


∗
(

∗)∆∆
¤
 (A.2)

Assumption 1 then implies (by Theorem 3.3.1 in Lukacs (1970)) that


£


¤
= 

£


∗
(

∗)¤ £∆
¤

£
∆

¤
 (A.3)

We seek an alternative observationally equivalent model (Model A.2, denoted with

∼) also satisfying:


£


¤
= 

£
e∗e(e∗)¤ £∆e¤ £∆e¤  (A.4)

Equating (A.3) and (A.4) yields


£


∗
(

∗)¤ £∆
¤

£
∆

¤
= 

£
e∗e(e∗)¤ £∆e¤ £∆e¤  (A.5)

Let us assume that inf∈R [|∆e − |] ≥ inf∈R [|∆ − |] (these expectations
exist by the second part of Assumption 1). This is without loss of generality: if this

turns out to be untrue, we will merely arrive at a contradiction in the following

derivation, forcing us to assume the converse or, equivalently, to permute the role of

the observationally equivalent Models 1 and A.2 (as well as Models A.3 and A.4).
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Dividing 
£


¤
by 

£
∆e¤ (which is nonvanishing by assumption 2), we

obtain (by Equation (A.4)):


£


¤
 [∆e] =


£
e∗e(e∗)¤ £∆e¤ £∆e¤

 [∆e] = 
£
e∗e(e∗)¤ £∆e¤ (A.6)

where the right hand side is the c.f. of the vector (e∗e (e∗) +∆e) with ∆e indepen-
dent from e∗ (and e (e∗)). Hence £∆e¤ is a factor of £¤ (see Lukacs (1970),
Section 5.1). Next, dividing 

£


¤
instead by 

£
∆

¤
(which is nonvanishing

by assumption 2), we obtain (by Equation (A.3)):


£


¤
 [∆]

=

£


∗
(

∗)
¤

£
∆

¤

£
∆

¤
 [∆]

= 
£


∗
(

∗)¤ £∆
¤

which is the c.f. of the vector (∗ +∆  (∗)) with ∆ independent of ∗ (and
 (∗)). Hence 

£
∆

¤
is also a factor of 

£


¤
. Since the two factors 

£
∆e¤

and 
£
∆

¤
involve a different variable ( versus ), they cannot have a factor in

common (except for a point mass) and we can conclude that 
£
∆e¤ £∆

¤
is

also a factor of 
£


¤
. It follows that we can divide each side of Equation (A.5)

by 
£
∆e¤ £∆

¤
to obtain:


£


∗
(

∗)
¤

£
∆

¤
 [∆e] =


£
e∗e(e∗)¤ £∆e¤

 [∆]
(A.7)

where each side of the equation is a valid c.f.

Focusing on the right-hand side of (A.7) first, we now show that 
£
∆

¤
is a

factor of 
£
∆e¤. Note that 

£
e∗e(e∗)¤ £∆e¤ = 

£
e∗(e(e∗)+∆e)¤ =


£
e∗¤. By Lemma A.2, the fact that 

£
∆

¤
is a factor of 

£
e∗¤

implies that it is a factor of  [|̃∗ = ̃∗0] for any fixed ̃∗0 in the support of ̃
∗

(except perhaps for 0 in some null set under the probability measure of ̃
∗). But

 [|̃∗ = ̃∗0] = 
£
(e(e∗)+∆e)|̃∗ = ̃∗0

¤
= e(e∗0) £∆e|̃∗ = ̃∗0

¤
= e(e∗0) £∆e¤

and it follows that 
£
∆

¤
is a factor of 

£
∆e¤ (since e(e∗0) is the c.f. of

a point mass at e (e∗0)). This then implies that there exists a random variable

∆̄ independent of ∆ such that ∆e = ∆ + ∆̄. By Lemma A.1, this implies

inf∈R [|∆e − |] ≥ inf∈R [|∆ − |], as assumed (if this had not been the case,
we would have been forced to permute the role of the Models 1 and A.2).

Next, turning to the left-hand side of (A.7), we can also show, using a similar ar-

gument, that 
£
∆e¤ is a factor of  £∆

¤
. We have 

£


∗
(

∗)
¤

£
∆

¤
=


£
(

∗)
¤
and by Lemma A.2, the fact that 

£
∆̃

¤
is a factor of 

£
(

∗)
¤

implies that it is a factor of 
£
| (∗) = ∗0

¤
for almost any fixed ∗0 in the sup-

port of the random variable ∗ ≡  (∗). To proceed as before we must show that
there exists a ∗0 such that  (

∗) = ∗0 has a unique root. If the set of stationary
points  (from Assumption 6) is empty, then the root is always unique and the prob-

lem is solved. If  is nonempty, we note that, by Assumptions 5 and 6, the range
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of values of ∗0 where multiple roots occur must be contained in the finite interval
[min∗∈  (∗) max∗∈  (∗)]. It thus suffice to show that one can find a ∗0 suffi-
ciently large to be outside of that interval, that is, the range of  (∗) is sufficiently
large. In fact, we can show by contradiction that the range of  (∗) must be R. Con-
sider the inverse Fourier transform of Equation (A.7) with respect to the variables

  and denote it by ̄̄. This quantity is a well-defined probability measure since

we had shown that the right-hand side of (A.7) is a c.f.. If the range of  (∗) were
not R, the left-hand side of Equation (A.7) implies that the support of ̄̄ would
exhibit at least some boundaries that are horizontal (i.e. of constant ̄ for a range

of values of ̄). On the other hand, the right-hand side of (A.7) and the fact that


£
∆e¤  £∆

¤
is a c.f. implies that horizontal boundaries in the support of ̄̄

are only possible if e (̃∗) were constant over some interval, which violates Assumption
6. Hence the range of  (∗) must be R and we can pick ∗0 sufficiently large so that
 (∗) = ∗0 has a unique root 

∗ = ∗0. If 
£
∆e¤ is a factor of  £| (∗) = ∗0

¤
=


£


∗+∆| (∗) = ∗0
¤
= 

∗
0
£
∆| (∗) = ∗0

¤
= 

∗
0
£
∆

¤
then it is also a

factor of 
£
∆

¤
since 

∗
0 is the c.f. of a point mass.

In summary, since 
£
∆e¤ is a factor of  £∆

¤
and 

£
∆

¤
is a factor of


£
∆e¤, we have just shown that there exist random variables ∆̄ and ∆̄ such that


£
∆

¤

£
∆e¤ = 

£
∆̄

¤
and 

£
∆e¤  £∆

¤
= 

£
∆̄

¤
, implying that

Equation (A.7) can be written as


£


∗
(

∗)¤ £∆̄
¤
= 

£
e∗e(e∗)¤ £∆̄

¤


thus indicating the observational equivalence of two models of the form Model A.3

and A.4.

Lemma A.4 Let Assumptions 4-6 hold. If Models A.3 and A.4 are distinct but obser-

vationally equivalent, then the distributions of ∆̄ and ∆̄ both admit an absolutely

continuous density with respect to the Lebesgue measure on R that never vanishes.

Moreover, ̄ and ̄ are also supported on R.

Proof. By the Lebesgue decomposition theorem (see Theorem 8.1.A in Loève (1977)),

the probability measure of (̄ ̄) can be decomposed into the sum of a measure  that

is absolutely continuous with respect to the Lebesgue measure and a singular measure

 supported on a set S of Lebesgue measure zero. For simplicity of discussion we define
̄̄ (̄ ̄) for (̄ ̄) ∈ R2\S to be equal to the density with respect to the Lebesgue
measure associated with  (as defined via Equation (A.1)).2 In a slight abuse of

notation, we say that “̄̄ (̄ ̄) is infinite” when (̄ ̄) ∈ S. Clearly, the statement
“̄̄ (̄ ̄) is infinite” is not detailed enough to fully characterize the distribution of

(̄ ̄) over S, but it will be sufficient for our purposes, because our proof only relies

2Since we compute the density from , not the original probability measure, the singular compo-

nent of the measure does not affect Equation (A.1).
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on the location of the points in S and not on their exact probability measure. We
adopt similar conventions for the distributions of ∆̄, ∆̄, ̄ and ̄.

Observational equivalence between Models A.3 and A.4 can be written as3X


∆̄ (̄−  (̄)) ̄ (̄) = e∆̄ (̄ − e (̄)) ̄ (̄)  (A.8)

where the summation is over the branches  (̄) of the inverse of  (
∗). The number

of branches may vary with ̄, although this is not explicit in the notation. There are

at most a finite number  + 1 of such branches because  (the number of points

where 0 (∗) = 0) is finite and 0 (∗) is continuous.
Consider any point ̄0 ∈ S̄ such that ̄ (̄0)  0 and any point ̄0 ∈ S̄ such

that ̄ (̄0)  0. Note that such points are dense in S̄ and S̄, respectively, by
the very definition of the support. Suppose that we have that e∆̄ (̄0 − e (̄0)) be-
comes zero or infinite at the point (̄0 ̄0). Since ̄ (̄0) is finite by Assumption 4,

it follows that e∆̄ (̄0 − e (̄0)) ̄ (̄0) becomes zero or infinite at the same points ase∆̄ (̄0 − e (̄0)). By Equation (A.8), P ∆̄ (̄−  (̄)) ̄ (̄) also becomes zero or

infinite at the same point(s).

Now, ̄0 is such that ̄ (̄0)  0. If ̄ (̄0)were infinite, then
P

 ∆̄ (̄−  (̄)) ̄ (̄)

would be infinite along a the line ̄ = ̄0. But it would then be impossible for it to

be equal to the function e∆̄ (̄ − e (̄)) ̄ (̄), which could only be infinite along a
curve of constant ̄ − e (̄). The two statements are compatible only if e (̄) is also
constant, which is ruled out by Assumption 6. We are left with the possibility that

̄ (̄0) is nonzero and finite. Hence, the fact that
P

 ∆̄ (̄0 −  (̄0)) ̄ (̄0) is zero

or infinite must be due to
P

 ∆̄ (̄0 −  (̄0)) being zero or infinite. We have just

shown that whenever e∆̄ (̄0 − e (̄0)) is zero or infinite, the same behavior occurs
for
P

 ∆̄ (̄0 −  (̄0)).

First consider the case where e∆̄ (̄0 − e (̄0)) is infinite at a point. The same
behavior would also occur along the whole curve V0 containing points (̄ ̄) giving
the same value of 0 ≡ ̄0 − e (̄0) = ̄ − e (̄) and along the set U∗ of values of
(̄ ̄) giving the same value of 0 ≡ ̄0 −  (̄0) = ̄− 0 (̄) for some  

0 (because
it suffices that one term in the sum

P
 ∆̄ (̄0 −  (̄0)) is infinite for this sum of

positive quantities to be infinite). These two sets contain, respectively, the curves V0
and U0, where

V = {(e∗e (e∗) + ) : e∗ ∈ Se∗} and U = {(∗ +   (∗)) : ∗ ∈ S∗}  (A.9)

3We consider the statement∞ =∞ to indicate that both sides fail to admit a Lebesgue density at

the same points. Also, away from these singular points, the equality holds pointwise if the densities

are defined as in Equation (A.1).
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If V0 and U0did not coincide, then it would be possible to recursively construct the
following sequence of sets

V0 ≡ V0
U0 ≡ U0

V+1 =
[

:V∩U 6=∅
V

U+1 =
[

:U∩V+1 6=∅
U

that is such that4 V → S̄̄ and U → S̄̄. This implies that ∆̄ and e∆̄ are

everywhere infinite, in contradiction to Lebesgue’s decomposition theorem, which

states that these divergences could only occur on a set of null measure. Therefore,

the curves V0 and U0have to coincide:
(e∗e (e∗) + 0) = (

∗ + 0  (
∗)) 

implying that e (∗ + 0) + 0 =  (∗) 

i.e., e (·) and  (·) are just horizontally and vertically shifted versions of each other.
But any nonzero shift would imply that either one of the models is violating one of

the zero mean assumptions on the disturbances.5 Hence, for any pair of valid models

A.3 and A.4, we must have e (∗) =  (∗).
Now consider the case where e∆̄ (̄0 − e (̄0)) is zero at some point. Then,e∆̄ (̄0 − e (̄0)) would have to be zero along the whole curve V0 containing points

(̄ ̄) giving the same value of 0 ≡ ̄0−e (̄0) = ̄−e (̄). Furthermore, the quantityP
 ∆̄ (̄−  (̄)) must also vanish at those points. This means that ∆̄ (0) = 0

for 0 = ̄−  (̄) for all  and all (̄ ̄) ∈ V0.
If the  (·) do not constitute the inverse of e (·), it is then possible to recursively

construct the following sequence of sets

V0 ≡ V0 (A.10)

U0 ≡ {(̄ ̄) : (̄−  (̄)) = (̄0 − 0 (̄0)) for some  
0 for some (̄0 ̄0) ∈ V0}

V+1 =
[

:V∩U 6=∅
V

U+1 =
©
(̄ ̄) : (̄−  (̄)) = (̄0 − 0 (̄0)) for some  

0 for some (̄0 ̄0) ∈ V+1


ª
that is such that V → S̄̄ and U → S̄̄. Hence, e∆̄ () and ∆̄ () would have

to vanish everywhere, which is impossible. This contradiction leads to the conclusion

that, in fact, the  (·) do constitute the inverse of e (·), i.e.  (∗) = e (∗).
4Convergence of sets is in the Hausdorff metric.
5The only exception in the linear specification, where two nonzero shifts along each axes may

cancel each other. But in this case, the shifted curve is identical to the original one.
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We have just shown that if the densities of∆̄ or∆̄ either vanish or are infinite at

some point, then  (∗) = e (∗). The density of ∗ could then be determined (up to
a multiplicative constant determined by the normalization of unit total probability)

from the density ̄̄ (̄ ̄) along the line ̄ =  (̄) +  for some  ∈ S∆̄.

This means that if there are any points where e∆̄ or ∆̄ become zero or infinite,

then Model A.3 and A.4 are such that e (∗) =  (∗) and ee∗ (∗) = ∗ (
∗). So any

pair of distinct but observationally equivalent models must be such that e∆̄ and ∆̄

are well-defined densities with respect to the Lebesgue measure that are nonzero and

finite. Since e∆̄ and ∆̄ are supported on R, so must ̄ and ̄, in light of Equation
(A.8).

Lemma A.5 Under Assumptions 4-6, Model A.3 with a specification  (∗) that is
not strictly monotone cannot be observationally equivalent to Model A.4 (whether its

specification is strictly monotone or not).

Proof. If  (∗) is not strictly monotone, we have

∗ (
∗) =

X


∗ ( (
∗))

|0 ( (∗))|

where  (·) denotes one of the branches of the inverse of  (·). There are at most a
finite number+1 of such branches because 0 (∗) is continuous and vanishes a finite
number  of times (by Assumption 6). Since ∗ (

∗) 6= 0 for ∗ in a neighborhood
of any one of the ∗ where 

0 (∗) = 0, the density of ∗ diverges as ∗ →  (∗).
In the model with errors along ̄ only, ∗ = ̄, so the observed density of ̄ exhibits

divergences whenever ̄ →  (∗) for some .
In Model A.4, with errors only along ̄, the observable joint density of ̄ and ̄ ise∗ (̄) e∆̄ (̄ − e (̄))

where none of the quantities can diverge either by Assumption 4 or by Lemma A.4

and hence the marginal

̄ (̄) =

Z e∗ (̄) e∆̄ (̄ − e (̄)) ̄
cannot diverge either since

̄ (̄) ≤ sup


e∆̄ ()

Z e∗ (̄) ̄ = sup


e∆̄ () 

where sup
e∆̄ ()  ∞ by Lemma A.4. Hence Models A.3 and A.4 cannot be

observationally equivalent.
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Lemma A.6 Under Assumptions 4-5, Model A.3 with a strictly monotone specifi-

cation  (∗) cannot be observationally equivalent to Model A.4 with a nonmonotone
specification e (e∗).
Proof. If Model A.3 is monotone, the inverse of  (∗) has a unique branch  (̄) and
Equation (A.8) reduces to

∆̄ (̄−  (̄)) ̄ (̄) = e∆̄ (̄ − e (̄)) ̄ (̄) 
By Lemma A.4 the existence of two observationally equivalent models implies that

all densities are strictly positive and we can take logs on each side:

ln ∆̄ (̄−  (̄)) + ln ̄ (̄) = ln e∆̄ (̄ − e (̄)) + ln ̄ (̄)  (A.11)

Taking the mixed derivative of each side with respect to ̄ and ̄ yields:6

 00
∆̄ (̄−  (̄))0 (̄) = e 00

∆̄ (̄ − e (̄)) e0 (̄) (A.12)

where

∆̄ () ≡ ln ∆̄ () (A.13)e∆̄ () ≡ ln e∆̄ ()  (A.14)

Note that 0 (̄) and e0 (̄) exist by Assumption 5 and the assumed strict monotonicity
of  (∗). We may assume second differentiability of ∆̄ and e∆̄ using an argument

similar to Lemma A.4. As soon as  00
∆̄ fails to exist, it also fails to exist along a

whole curve of constant ̄ −  (̄) and similarly for e 00
∆̄ along a curve of constant

̄ − e (̄). If these two curves coincide, then  (∗) = e (∗) and both models would
have to be identical and monotone. If these curves do not coincide, then we could

recursively show that ∆̄ () and e∆̄ () are nowhere twice differentiable (using the

same argument as in the proof of Lemma A.4, Equation (A.10)). This is impossible

because if one considers the following differential of the right-hand side of (A.11):







̄

µh
ln e∆̄ (̄ − e (̄)) + ln ̄ (̄)i

̄=e(̄)+
¶

=






̄

³
ln e∆̄ () + ln ̄ (̄)

´
=



̄




ln ̄ (̄) = 0

but evaluating the same differential using the left-hand side of (A.11) yields:







̄

³
[ln ∆̄ (̄−  (̄)) + ln ̄ (̄)]̄=e(̄)+

´
=







̄
(ln ∆̄ (̄−  (e (̄) + )) + ln ̄ (e (̄) + )) 

6Note that the mixed derivative of a function of only one variable (say,  ()) must be zero

regardless of its differentiability: lim→0 lim→0 1
³
(+)−()


− (+)−()



´
= lim→0 lim→0 0 =

0
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But if ln ∆̄ is indeed everywhere not twice differentiable, the second expression

cannot give 0 (the two terms on the right cannot cancel each other everywhere per-

fectly since they depend differently on the arguments). Hence, we may indeed assume

second differentiability of ∆̄ (and e∆̄, by a similar argument).

Next, we note that neither  00
∆̄ () nor

e 00
∆̄ () can ever change sign, because

changes in sign in the expression (A.12) can only occur on curves of constant ̄− (̄)
or constant ̄ on the left and curves of constant ̄ − e (̄) or constant ̄ on the

right. These curves cannot coincide unless  is the inverse of e, making the two
models identical (and both monotone). Hence, for distinct models, e 00

∆̄ (̄ − e (̄))
and  00

∆̄ (̄−  (̄)) never change signs. Rearranging (A.12) yields:

0 (̄) =
e 00
∆̄ (̄ − e (̄))

 00
∆̄ (̄−  (̄))

e0 (̄) 
Hence if e0 (̄) ever changes sign, so must 0 (̄), in contradiction with the assumption
that Model A.3 is monotone.

Lemma A.7 Let Assumption 4 hold,  (·) ≡ −1 (·) and let  (·) and e (·) be as
defined in Models A.3 and A.4, respectively. These models are assumed to be distinct

and both strictly monotone. If two functions  (·) and  (·) are such that  (̄ − e (̄)) =
 (̄−  (̄)) ∀ (̄ ̄) ∈ R2, then  (·) and  (·) are constant functions over R. Similarly
if  (̄ − e (̄)) = 0⇔  (̄−  (̄)) = 0 ∀ (̄ ̄) ∈ R2, then  (·) and  (·) are zero over
R if either one vanishes at a single point.

Proof. Note that, by Lemma A.4, {(̄ − e (̄)  ̄−  (̄)) : ∀ (̄ ̄) ∈ R2} = R2. It
is therefore possible to vary ̄ and ̄ so that ∆̄ = ̄ − e (̄) remains constant while
∆̄ = ̄ −  (̄) varies or vice-versa. Hence, it is possible to vary (̄ ̄) in such a

way such that ∆̄ varies but ∆̄ remains constant. Having  (∆̄) constant implies

that  (∆̄) also is, even though its argument is varying. This shows that  (∆̄)

is constant along a one-dimensional slice of constant ∆̄. Then, varying (̄ ̄) so

that the argument of the  (∆̄) is constant, we can show that the  (∆̄) is constant

along a one-dimensional slice of constant ∆̄. Repeating the process (using the same

argument as in the proof of Lemma A.4, Equation (A.10)) we can show that  (∆̄)

and  (∆̄) are constant for all (∆̄∆̄) ∈ R2 and therefore for all (̄ ̄) ∈ R2. A
similar argument demonstrates the second conclusion of the Lemma.

A.2 Proof of Theorem 1

We now know from Lemmas A.3-A.6 that proving Theorem 1 is equivalent to finding

two distinct but observationally equivalent Models A.3 and A.4 that are both strictly

monotone and involve random variables admitting nonvanishing densities with respect

to the Lebesgue measure.
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Under Model A.3, the joint density of ̄ and ̄ can be written as:

̄̄ (̄ ̄) = ∆̄ (̄−  (̄)) ̄ (̄) (A.15)

where  () ≡ −1 () (which exists and has a single branch by Lemmas A.5-A.6),
while under Model A.4, we have

̄̄ (̄ ̄) = e∆̄ (̄ − e (̄)) ̄ (̄) (A.16)

where the ∼ on the densities emphasizes the quantities that differ under the alterna-
tive model.

Since the two models must be observationally equivalent, we equate (A.15) and

(A.16):

∆̄ (̄−  (̄)) ̄ (̄) = e∆̄ (̄ − e (̄)) ̄ (̄)  (A.17)

After rearranging (A.17) and taking logs, we obtain:

ln e∆̄ (̄ − e (̄))− ln ∆̄ (̄−  (̄)) = ln ̄ (̄)− ln ̄ (̄)  (A.18)

where these densities are always positive (by Lemma A.4), so that the ln (·) are always
well-defined.

We will find necessary conditions for Equation (A.18) to hold, in order to narrow

down the search for possible solutions that would provide distinct but observationally

equivalent models. Next, we will need to check that these solutions actually lead to

proper densities (i.e. with finite area) for all variables in order to obtain necessary

and sufficient condition for identifiability.

Note that differentiability of  (∗) (Assumption 5), combined with 0 (∗) 6= 0 (by
Lemmas A.5-A.6) implies that  (̄) ≡ −1 (̄) is differentiable.
Let  denote the logarithms of the corresponding lowercase density and rewrite

Equation (A.18) as

e∆̄ (̄ − e (̄))− ∆̄ (̄−  (̄)) = ̄ (̄)− ̄ (̄) 

Differentiating with respect to ̄ and ̄, this implies that

2

̄̄
e∆̄ (̄ − e (̄))− 2

̄̄
∆̄ (̄−  (̄)) = 0

e 00
∆̄ (̄ − e (̄)) e0 (̄)−  00

∆̄ (̄−  (̄))0 (̄) = 0 (A.19)

In the above, we may assume twice differentiability of e∆̄ and e∆̄, by the same

argument as in Lemma A.6 (in essence, lack of differentiability would imply that the

two model must be identical). We can rearrange Equation (A.19) to yield

e 00
∆̄ (̄ − e (̄)) = 0 (̄)e0 (̄) 00

∆̄ (̄−  (̄))  (A.20)
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where the ratio 0 (̄) e0 (̄) is nonzero and finite by assumption. Hence if  00
∆̄ (̄−  (̄))

is zero, then so is e 00
∆̄ (̄ − e (̄)) and vice versa. If either of those two functions van-

ishes at a point, by Lemma A.7, they must vanish everywhere. It would follow thate∆̄ (∆̄) and ∆̄ (∆̄) would be linear and that the corresponding densities e∆̄ (∆̄)

and ∆̄ (∆̄) would be exponential over R, which is an improper density. It follows
that our presumption that either  00

∆̄ (̄−  (̄)) or e 00
∆̄ (̄ − e (̄)) vanish at some

point is incorrect.

Hence we may assume that  00
∆̄ (̄−  (̄)) and e 00

∆̄ (̄ − e (̄)) do not vanish.
Since these functions are continuous, this means they never change sign. Also note

that, by assumption, 0 (̄) and e0 (̄) never change sign or vanish either. We can
thus, without loss of generality, rewrite Equation (A.19) as:¯̄̄ e 00

∆̄ (̄ − e (̄))¯̄̄
| 00

∆̄ (̄−  (̄))| =
|0 (̄)|
|e0 (̄)| (A.21)

or

ln
¯̄̄ e 00

∆̄ (̄ − e (̄))¯̄̄− ln | 00
∆̄ (̄−  (̄))| = ln |0 (̄)|− ln |e0 (̄)|

Again, since the right-hand side is a difference of functions of ̄ and of ̄, we must

have7

2


ln
¯̄̄ e 00

∆̄ (̄ − e (̄))¯̄̄− 2


ln | 00

∆̄ (̄−  (̄))| = 0³
ln
¯̄̄ e 00

∆̄ (̄ − e (̄))¯̄̄´00 e0 (̄)− (ln | 00
∆̄ (̄−  (̄))|)00 0 (̄) = 0

By the same argument as before, if
³
ln
¯̄̄ e 00

∆̄ (̄ − e (̄))¯̄̄´00 = 0 or (ln | 00
∆̄ (̄−  (̄))|)00 =

0 at a point then they must vanish everywhere.

Hence there are two mutually exclusive situations, either
³
ln
¯̄̄ e 00

∆̄ (̄ − e (̄))¯̄̄´00
and (ln | 00

∆̄ (̄−  (̄))|)00 never vanish (see Case A below) or they vanish everywhere
(see Case B below). In both cases, we can also re-use the argument that lack of

sufficient continuous differentiability implies identification, as in Lemma A.6, hence,

for the purpose of finding models that are not identified, we can assume sufficient

continuous differentiability.

Case A: If
³
ln
¯̄̄ e 00

∆̄ (̄ − e (̄))¯̄̄´00 and (ln | 00
∆̄ (̄−  (̄))|)00 do not vanish, we may

write ¯̄̄̄³
ln
¯̄̄ e 00

∆̄ (̄ − e (̄))¯̄̄´00 ¯̄̄̄¯̄
(ln | 00

∆̄ (̄−  (̄))|)00
¯̄ = |0 (̄)|

|e0 (̄)|
7The notation

³
ln
¯̄̄ e 00∆̄ (̄ − e (̄))¯̄̄´00 stands for ³ln ¯̄̄ e 00∆̄ ()¯̄̄´00 |=̄−e(̄).
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combined with Equation (A.21) this implies:

¯̄̄ e 00
∆̄ (̄ − e (̄))¯̄̄

| 00
∆̄ (̄−  (̄))| =

¯̄̄̄³
ln
¯̄̄ e 00

∆̄ (̄ − e (̄))¯̄̄´00 ¯̄̄̄¯̄
(ln | 00

∆̄ (̄−  (̄))|)00
¯̄¯̄̄̄³

ln
¯̄̄ e 00

∆̄ (̄ − e (̄))¯̄̄´00 ¯̄̄̄¯̄̄ e 00
∆̄ (̄ − e (̄))¯̄̄ =

¯̄
(ln | 00

∆̄ (̄−  (̄))|)00
¯̄

| 00
∆̄ (̄−  (̄))| (A.22)

By Lemma A.7, each side of this equality must equal a constant, say . Note that

this equality is only a necessary condition for lack of identifiability. For instance, it

does not ensure that
¯̄̄ e 00

∆̄ (̄ − e (̄))¯̄̄  | 00
∆̄ (̄−  (̄))| can actually be written as a

ratio of a function of ̄ and a function of ̄, as required by Equation (A.21). This will

need to be subsequently checked.

We now find densities such that the left-hand (or right-hand) side of Equation

(A.22) is constant. Letting  = ̄−e (̄) and  (·) ≡ e∆̄ (·) (or similarly,  = ̄− (̄)
and  (·) ≡ ∆̄ (·)), we must have that

(ln | 00 ()|)00
 00 ()

= ±

(ln | 00 ()|)00 = ± 00 ()

(ln | 00 ()|)0 = ± 0 () +

ln | 00 ()| = ± () ++ 

 00 () = ± exp (± () ++ )

 00 () = − exp ( () ++ ) (A.23)

where  are some constants and where one of the “±” has been incorporated
into the constant  and the other has been set to “−”, because the “+” solution does
not lead to a proper density.

The solution  () to Equation (A.23) is:

 () = −

− 


+
1


ln

µ
22


 ( (− 0))

¶
(A.24)

where

 () = 1− tanh2 () = 4 (exp () + exp (−))−2

and where  0 are constants. This solution can be verified by substitution

into the differential equation and by noting that any initial conditions in  (0) and

 0 (0) can be accommodated by adjusting the constants0. Note that this solution

is unique (up to the constants  and 0).
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The density corresponding to  () is

 () = 1 exp

µ
−



¶
( ( (− 0)))

1

where 1 is such that the density integrates to 1. To check that this is a valid solution,

we first calculate what the implied forms of e (̄) and  (̄) are. From Equation (A.20),
we know that e 00

∆̄ (̄ − e (̄))
 00
∆̄ (̄−  (̄))

=
0 (̄)e0 (̄) (A.25)

where we can find an expression for  00
∆̄ (·) and e 00

∆̄ (·), generically denoted  00 (·)
using Equations (A.23) and (A.24):

 00 () = − exp
µ


µ
−

− 


+
1


ln

µ
22


 ( (− 0))

¶¶
++ 

¶
= −2

2


 ( (− 0)) 

The constants  and 0 may differ for 
00
∆̄ (·) and e 00

∆̄ (·) and we distinguish them
by subscripts ∆̄ or ∆̄. The constant  is the same, however. Next, we calculate

the ratio:e 00
∆̄ (̄ − e (̄))

 00
∆̄ (̄−  (̄))

=
−2

2
∆̄


 (∆̄ (̄ − e (̄)− 0∆̄))

−22
∆̄


 (∆̄ (̄−  (̄)− 0∆̄))

=
2

∆̄ (exp (∆̄ (̄ − e (̄)− 0∆̄)) + exp (−∆̄ (̄ − e (̄)− 0∆̄)))
−2

2
∆̄ (exp (∆̄ (̄−  (̄)− 0∆̄)) + exp (−∆̄ (̄−  (̄)− 0∆̄)))

−2

=
−2

∆̄ (2 + exp (2∆̄ (̄−  (̄)− 0∆̄)) + exp (−2∆̄ (̄−  (̄)− 0∆̄)))

−2
∆̄ (2 + exp (2∆̄ (̄ − e (̄)− 0∆̄)) + exp (−2∆̄ (̄ − e (̄)− 0∆̄)))

and note that it cannot be written as a ratio of a function of ̄ and a function of ̄

(unless e (̄) or  (̄) are constant, a situation ruled out by Assumptions 5 and 6).
Hence Equation (A.21) cannot possibly hold and this solution is not valid. Hence, ex-

cept possibly when (ln 00 ())00 = 0, there exists no pair of observationally equivalent
models of the forms of Model A.3 and A.4.

Case B: We now consider the (so far excluded) case where (ln | 00 ()|)00 = 0 for

 = ∆̄ and e∆̄. We have

(ln | 00 ()|)00 = 0

| 00 ()| = exp (+) (A.26)

 00 () = ± exp (+)

 0 () = ±−1 exp (+) + 

 () = −−2 exp (+) + + (A.27)
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for some adjustable constants  with  6= 0 (the case  = 0 is covered in

Case C below). We have selected the negative branch of the “±” of since it is the only
one yielding a proper density. The density corresponding to (A.27) is of the form

 () = exp
¡−−2 exp (+) + +

¢
(A.28)

where the constants  are selected so as to satisfy the normalization con-

straint and the zero mean assumption. In the sequel, we will distinguish the constants

 by subscripts ∆̄∆̄ corresponding to the densities of ∆̄ and ∆̄, respec-

tively. We first determine  (̄) and  (̄) through relationship (A.21):

|0 (̄)|
|e0 (̄)| =

¯̄̄ e 00
∆̄ (̄ − e (̄))¯̄̄

| 00
∆̄ (̄−  (̄))| =

exp (∆̄ (̄ − e (̄)) +∆̄)

exp (∆̄ (̄−  (̄)) +∆̄)

=
exp (∆̄ (̄) +∆̄̄ +∆̄)

exp (∆̄e (̄) +∆̄̄+∆̄)

Rearranging, we must have

|0 (̄)|
exp (∆̄ (̄) +∆̄̄ +∆̄)

=
|e0 (̄)|

exp (∆̄e (̄) +∆̄̄+∆̄)

and each side must be equal to the same constant (say, −) since they depend on

different variables. The solution to the differential equation

0 (̄) = ± exp (∆̄ (̄) +∆̄̄ +∆̄) (A.29)

is

 () = −∆̄

∆̄

− 1

∆̄

ln

µ
±∆̄

∆̄

¡
∆̄ ̄ + 1∆̄∆̄

¢¶
 (A.30)

where 1∆̄ is a constant. (This can be shown by substitution of (A.30) into (A.29)

and by noting that any initial condition  (0) can be accommodated by adjusting

1∆̄.) Similarly, e0 (̄) = ± exp (∆̄e (̄) +∆̄̄+∆̄)

and e (̄) = −∆̄

∆̄

− 1

∆̄

ln

µ
±∆̄

∆̄

¡
∆̄̄ + 1∆̄∆̄

¢¶
(A.31)

where 1∆̄ is a constant. From Equations (A.17), (A.28) (A.30) and (A.31), we have

̄ (̄)

̄ (̄)
=
e∆̄ (̄ − e (̄))
∆̄ (̄−  (̄))

=
exp

¡−−2∆̄ exp (∆̄ (̄ − e (̄)) +∆̄) + ∆̄ (̄ − e (̄)) +∆̄

¢
exp

¡−−2∆̄ exp (∆̄ (̄−  (̄)) +∆̄) + ∆̄ (̄−  (̄)) +∆̄

¢
=
exp

³
−2∆̄ exp (∆̄̄ +∆̄ +∆̄)

³
±∆̄

∆̄

¡
∆̄̄ + 1∆̄∆̄

¢´
+ ∆̄ (̄ − e (̄)) +∆̄

´
exp

³
−2∆̄ exp (∆̄̄+∆̄ +∆̄)

³
±∆̄

∆̄
(∆̄ ̄ + 1∆̄∆̄)

´
+ ∆̄ (̄−  (̄)) +∆̄

´
16



=
exp

³
exp (∆̄ +∆̄)

±

∆̄∆̄
exp (∆̄̄) exp (∆̄̄)

´
exp

³
exp (∆̄ +∆̄)

±

∆̄∆̄
exp (∆̄̄) exp (∆̄̄)

´ ×
×
exp

³
−2∆̄ exp (∆̄ +∆̄)

±∆̄

∆̄
exp (∆̄̄) (1∆̄∆̄) + ∆̄ (̄ − e (̄)) +∆̄

´
exp

³
−2∆̄ exp (∆̄ +∆̄)

±∆̄

∆̄
exp (∆̄̄) (1∆̄∆̄) + ∆̄ (̄−  (̄)) +∆̄

´
=

exp
³
exp (∆̄ +∆̄)

±1∆̄
∆̄

exp (∆̄̄) + ∆̄̄ +∆̄

´
exp (∆̄ (̄))

exp
³
exp (∆̄ +∆̄)

±1∆̄
∆̄

exp (∆̄̄) + ∆̄̄+∆̄

´
exp (∆̄e (̄))

=
exp

³
exp (∆̄ +∆̄)

±1∆̄
∆̄

exp (∆̄̄) + ∆̄̄ +∆̄

´
exp

³
exp (∆̄ +∆̄)

±1∆̄
∆̄

exp (∆̄̄) + ∆̄̄+∆̄

´ ×
×
exp

³
−∆̄∆̄

∆̄

´³
±∆̄

∆̄

´−∆̄
∆̄

¡
∆̄ ̄ + 1∆̄∆̄

¢−∆̄
∆̄

exp
³
−∆̄∆̄

∆̄

´³
±∆̄

∆̄

´−∆̄
∆̄ (∆̄̄ + 1∆̄∆̄)

−∆̄
∆̄



implying that

̄ (̄) = ∆̄ exp

µ
exp (∆̄ +∆̄)

±1∆̄

∆̄

exp (∆̄̄) + ∆̄̄

¶¡
∆̄ ̄ + 1∆̄∆̄

¢−∆̄
∆̄

̄ (̄) = ∆̄ exp

µ
exp (∆̄ +∆̄)

±1∆̄

∆̄

exp (∆̄̄) + ∆̄̄

¶¡
∆̄̄ + 1∆̄∆̄

¢−∆̄
∆̄ 

where the constants ∆̄ and ∆̄ incorporate any prefactor that would have can-

celled in the ratio ̄ (̄) ̄ (̄) as well as the constants exp (∆̄) exp (−∆̄∆̄∆̄)

(±∆̄∆̄)
−∆̄
∆̄ and exp (∆̄) exp (−∆̄∆̄∆̄) (±∆̄∆̄)

−∆̄
∆̄ , re-

spectively. The constants ∆̄ and ∆̄ are determined by the fact that these

densities must integrate to 1. It can be readily, albeit tediously, verified that it is

possible to set the signs of all constants so as to obtain valid densities for all variables.

Hence, we have found one special case where Model 1 is not identified. This is Case

2 in the statement of Theorem 1.

Case C: In the special case where  = 0 in Equation (A.26) (not included in Case

B above), we let 2 = exp () and write, for  = ∆ e∆:

 00 () = 2

 () = 2
2 + +

for some constants 2, ,  (that differ for ∆ and e∆) to conclude that  () is a

normal and therefore that ∆̄ and ∆̄ are normally distributed. Since under Model
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A.3 ∆̄ is a factor of ∆ and, under model A.4, ∆̄ is a factor of ∆, we conclude

that either ∆ must have a normal factor or ∆ must have a normal factor. Next,

|0 (̄)|
|e0 (̄)| =

¯̄̄ e 00
∆̄ (̄ − e (̄))¯̄̄

| 00
∆̄ (̄−  (̄))| = 3

where 3 is the ratio of the constants 2 obtained for ∆ and e∆. Rearranging, we

obtain

|0 (̄)| = 3 |e0 (̄)|
and it follows that 0 (̄) and e0 (̄) must be constant, i.e., that  (̄) and e (̄) are
linear. From

̄(̄)

̄(̄)
=

e∆̄(̄−e(̄))
∆̄(̄−(̄)) , we can show that ̄ (̄) and ̄ (̄) must also be

normal. Either Model A.3 or A.4 then implies that ∗ must be normal. So we recover
the more familiar unidentified Case 3 in the statement of Theorem 1.

Cases A, B and C are mutually exclusive and have explored every possible so-

lutions to our differential equations that could have possibly lead to two distinct

observationally equivalent models. We can thus conclude that when the unidentified

Cases B and C do not apply, the model is identified, which corresponds to Case 1

in the statement of Theorem 1. (Case 1 in the statement of Theorem 1 includes not

only the identified Case A above, but also all “dead-ends” where the construction of

two distinct observationally equivalent models failed for a reason or another.)

When ∗ (
∗) and  (∗) are identified the distributions of ∆ and ∆ are also

identified. Indeed, 
£
∆

¤
= 

£

¤

£


∗¤
where 

£


∗¤
is nonzero for all 

in a dense subset of R by Assumption 3. Since 
£
∆

¤
is continuous in , 

£
∆

¤
can be recovered for all  by a limiting process. The distribution of ∆ is then

uniquely determined by its c.f. 
£
∆

¤
. Similarly, identification of the distribution

of ∆ follows from the identity 
£
∆

¤
=  [] 

£
(

∗)
¤
.

B Specific example

This section provides independent verification of Case 2 of Theorem 1 by showing

that a specific density of the stated form can be generated by two different models,

one with only errors along  and one with only errors along . Examples with errors

along both directions can be constructed by simply adding the same error terms in

the two equivalent models.

Consider the joint density:

 ( ) =  exp () exp (−) exp (−) exp ¡−−¢ exp ¡−−¢
where  in a normalization constant equal to (Ei (1))

−1
with Ei () =

R∞


−



(known as the “exponential integral”). In particular,
R∞
1

−

 ≈ 021938. By direct
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substitution, one can verify that  ( ) can be written in two ways:

 ( ) = e∆ ( − e ()) e ()
= ∆ (−  ())  ()

where

e∆ () = exp
¡−−+ −  + 

¢
e () =  + ln ( + 1)e () = 

exp (− + )

1 + 

and

∆ () = exp
¡−− + − 

¢
 () = − − ln ¡− + 1¢

=⇒  () = −1 () = − − ln ¡− − 
¢

 () = 
exp (−− − )

1 + −

where  = − R∞
0
ln () − ≈ 057722 (known as the Euler-Mascheroni constant).

Without performing detailed simulations it is clear how an estimator would behave

in this case. The likelihood function has, in the limit, two disjoint maxima of equal

value. However, for any distribution “close” to this unidentified case, the two maxima

would adopt slightly different values. Hence, the maximum likelihood estimator based

on a finite sample would find either one of these maxima at random and would never

converge to a single value of the parameter asymptotically.

C SieveMaximumLikelihood: Estimation and Asymp-

totics

In this section, we consider the estimation of a parametric regression model:  =

 (∗; 0) +∆, where the function () is known and ∆ is independent of ∗. We
assume 0 ∈ Θ, which is a compact subset of R . Let { ≡ ( )}=1 denote
a random sample of  ≡ ( ), where  = ∗ + ∆ and ∆ is independent of

∗. We have shown that , ∆, , and ∗ are identified from . Let 0 ≡
(0 01 02 03)

 ≡ (0 ∆  ∗)

be the true values of the nuisance parameters.

Our sieve ML estimator b for 0 is based on the following equation
( ;0) =

Z
∆ ( −(∗; 0))  (− ∗) ∗ (

∗) ∗
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We start with imposing some smoothness restrictions on the unknown functions

0 in the Hölder space. Let  = (1  )
 ∈ R,  = (1  )

 be a vector of

non-negative integers, and

∇() ≡ 1+···+(1  )
11 · · · 

denote the (1 + · · ·+ ) -th derivative. Let k·k denote the Euclidean norm. Let
 be the largest integer satisfying   . The Hölder space Λ(V) of order   0

with V ⊆ R is a space of functions  : V 7→ R such that the first  derivatives

are continuous and bounded, and the -th derivative are Hölder continuous with the

exponent  −  ∈ (0 1]. The Hölder norm is defined as:

kkΛ = sup
∈V

|()|+ max
1+···+|=

sup
 6=0∈V

|∇()−∇(0)|
(k − 0k)−



while a Hölder ball is defined as Λ
 (V) ≡ { ∈ Λ(V) : kkΛ ≤  ∞}. We also

define

F∗1 =
½p

1(·) ∈ Λ1
 (R) : 1(·)  0,

Z
R
1(∆)∆ = 1

¾


F∗2 =
½p

2 (·) ∈ Λ2
 (R) : 2(·)  0,

Z
R
2(∆)∆ = 1

¾


F∗3 =
½p

3 (·) ∈ Λ3
 (R) : 3(·)  0,

Z
R
3(

∗)∗ = 1

¾


It is useful to introduce restricted subsets F ⊆ F∗ ,  = 1 2 3 to obtain an asymp-
totic treatment that allows for additional user-specified restrictions on the spaces F∗ .
This extension serves two purposes. First, some applications may suggest plausible

constraints, such as monotonicity, which may help reduce the estimation errors. Sec-

ond, it is possible to find settings in which the semiparametric efficiency bound for

this estimation problem may be degenerate (i.e. root  consistent estimation of a

certain semiparametric functional is not possible) without additional constraints on

the spaces F∗ . Introducing constrained spaces F may restore root  consistency in

such cases if suitable constraints can be found. For instance, in the related context of

measurement error estimation in the presence of repeated measurements (Schennach

(2004)), it is known that root  consistent estimation is only possible under a suitable

balance between smoothness of certain quantities and lack-of-smoothness of others.

It should be noted that our assumptions (in Section C.2 below) securing asymp-

totic normality and root -consistency of a semiparametric estimator are not vacuous:

There must exist cases where the semiparametric efficiency bound for our model is

not infinite. For instance, in a linear model with non-normal regressors, the slope

coefficient is given by
 [2]− [2] []

 [2]− [] [2]
(C.1)
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provided  [2] −  [] [2] 6= 0. Equation (C.1) suggests a natural root -

consistent estimator, upon substitution of the expectations by their sample coun-

terparts, under standard regularity conditions. This method-of-moment estimator is

obviously regular and by Theorem 2.1 in Newey (1990), it follows that its asymptotic

variance places an upper bound on the semiparametric efficiency bound.

We assume that the functions ∆, ∆, and ∗ satisfy the following smoothness

restrictions:

Assumption C.1 (i) Let Assumptions 1-6 hold; (ii) ∆(·) ∈ F1 with 1  12; (iii)
∆(·) ∈ F2 with 2  12; (iv) ∗(·) ∈ F3 with 3  12;

Denote A = Θ × F1 × F2 × F3 and  = ( 1 2 3)

. Let [·] denote the

expectation with respect to the data generating process for . Then,

0 = argmax
∈A



∙
ln

Z
1 ( −(∗; 0)) 2 (− ∗) 3 (

∗) ∗
¸
 (C.2)

Let A = Θ × F
1 × F

2 × F
3 be a sieve space for A, which is a sequence of ap-

proximating spaces that are dense in A under some pseudo-metric. The sieve MLEb =
³ b1 b2 b3´ ∈ A for 0 ∈ A is:

b = arg max
∈A

X
=1

∙
ln

Z
1 ( −(∗; 0)) 2 ( − ∗) 3 (

∗) ∗
¸
 (C.3)

b = argmax∈A

P

=1 (;). Here we present a finite dimensional sieve F
1 ×

F
2 × F

3 . For  = 1 2 3, let 
(·) be a  × 1−vector of known basis functions,

such as Fourier series, power series, splines, etc. Then we denote the sieve space for

F  = 1 2 3 as follows:

F
1 =

np
1(·) = 1(·)1 ∈ F1

o


F
2 =

np
2(·) = 2(·)2 ∈ F2

o


F
3 =

np
3(·) = 3(·)3 ∈ F3

o


Let  = min {1 2 3}. We also define the projection of the true value 0 onto
the space A associated with :

Π ≡  ≡ argmax
=(123)

∈A



µ
ln

∙Z
1 ( −(∗; 0)) 2 ( − ∗) 3 (

∗) ∗
¸¶
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C.1 Consistency

First we define a norm on A as follows:

kk = kk + sup
∆

|1(∆) (∆)|+ sup
∆

|2(∆) (∆)|+ sup
∗
|3(∗) (∗)|

with  () =
¡
1 + 2

¢−2
for some   0. Define

(;) =

Z
1 ( −(∗; )) 2 ( − ∗) 3 (

∗) ∗

We make the following assumptions:

Assumption C.2 i) the data {( )=1} are i.i.d.; ii) the density of  ≡ ( ) 
, satisfies

R
 ()

−2
() ∞.

Assumption C.3 i) 0 ∈ Θ, a compact subset of R ; ii) Assumption C.1 holds for

( 1 2 3) in a neighborhood of 0 (in the norm k·k).

Assumption C.4 (i)  [(;0)
2] is bounded; (ii) there are a finite   0 and a

random variable () with  [{()}2] ∞ such that sup∈A:k−0k≤ |(;)−
(;0)| ≤ ().

Assumption C.5 kΠ0 − 0k =  (1) (as  →∞) and → 0.

As shown in Hu and Schennach (2008), we summarize the consistency result with

its proof omitted.

Lemma C.1 Under assumptions C.1, C.2, C.3, C.4, and C.5, we have kb − 0k =
(1)

Given the consistency, we then need to establish convergence at the rate 
¡
−14

¢
in a suitable norm in order to proceed towards our main semiparametric asymptotic

normality and root  consistency result. In order to achieve this convergence rate

under relatively weak assumptions, we employ a device introduced by Ai and Chen

(2003) and employ a weaker norm k·k, under which 
¡
−14

¢
convergence is easier

to establish.

Consider 1, 2 ∈ A, and assume the existence of a continuous path { () :  ∈ [0 1]}
in A such that  (0) = 1 and  (1) = 2. If ln ( (1− )0+) is continuously

differentiable at  = 0 for almost all  and any  ∈ A, the pathwise derivative of
ln (0) at 0 evaluated at − 0 can be defined as

 ln (0)


[− 0] ≡  ln ( (1− )0 + )



¯̄̄̄
=0

(C.4)
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almost everywhere (under the probability measure of ). In our setting, the pathwise

derivative at 0 is as follows:

 ln (0)


[− 0] (C.5)

=
1

(0)

½Z
 0∆( −(∗; 0))

(∗; 0)


[ − 0] ∆(− ∗)∗(
∗)∗+

+

Z
[1( −(∗; 0))− ∆( −(∗; 0))] ∆(− ∗)∗(

∗)∗ +

+

Z
∆( −(∗; 0)) [2(− ∗)− ∆(− ∗)] ∗(

∗)∗ +

+

Z
∆( −(∗; 0))∆(− ∗) [3(

∗)− ∗(
∗)] ∗

¾


We use the Fisher norm k·k defined as

k1 − 2k ≡
vuut

(µ
 ln (0)


[1 − 2]

¶2)
(C.6)

for any 1, 2 ∈ A. In order to establish the asymptotic normality of b, one typically
needs that b converges to 0 at a rate faster than −14. We need the following
assumptions to obtain this rate of convergence:

Assumption C.6 kΠ0 − 0k = 
³

−2


´
= 

¡
−14

¢
with  ≡ min{1 2

3}  12
Assumption C.7 i) there exists a measurable function () with  {()4}  ∞
such that |ln (;)| ≤ () for all  and  ∈ A; ii) ln (;) ∈ Λ

 (Y ×X ) for
some constant   0 with   2 for all  ∈ A where  is the dimension of .

Assumption C.8 A is convex in 0, and (
∗; ) is pathwise differentiable at 0.

Assumption C.9 For some 1 2  0,

1

µ
ln

(;0)

(;)

¶
≤ k− 0k2 ≤ 2

µ
ln

(;0)

(;)

¶
 (C.7)

holds for all  ∈ A with k− 0k = (1)

Assumption C.10
¡


−12 ln
¢
sup1∈R

°° (1)°°2 =  (1).

Assumption C.11 ln (A) =  ( ln ()) where  (A) is the minimum

number of balls (in the k·k norm) needed to cover the set A.

The discussion of these assumptions can be found in Hu and Schennach (2008). The

following convergence rate theorem is a direct application of Theorem 3.1 in Ai and

Chen (2003).

Theorem 1 Under assumptions C.1-C.11, we have kb − 0k = (
−14).
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C.2 Asymptotic normality

We follow the semiparametric MLE framework of Shen (1997) to show the asymptotic

normality of the estimator b. We define the inner product
h1 2i = 

½µ
 ln (0)


[1]

¶µ
 ln (0)


[2]

¶¾
 (C.8)

Let V denote the closure of the linear span of A− {0} under the norm k·k (i.e.,
V = R ×W with W ≡ F1 ×F2 ×F3 −

n
(∆ ∆ ∗)


o
) and define the Hilbert

space
¡
V h· ·i¢ with its inner product defined in Equation (C.8).

As shown above, we have

 ln (0)


[− 0] =

 ln (0)


[ − 0] +

 ln (0)

1
[1 − ∆] + (C.9)

+
 ln (0)

2
[2 − ∆] +

 ln (0)

3
[3 − ∗ ] 

For each component  of ,  = 1 2  , we define 
∗
 ∈W as follows:

∗ ≡
¡
∗1 

∗
2 

∗
3

¢
(C.10)

= argmin
(123)

∈W


½µ
 ln (0)


−  ln (0)

1
[1] +

− ln (0)

2
[2]−  ln (0)

3
[3]

¶2)


Define ∗ =
¡
∗1 

∗
2  

∗


¢
,

 ln (0)



£
∗
¤
=

 ln (0)

1

£
∗1
¤
+

 ln (0)

2

£
∗2
¤
+ (C.11)

+
 ln (0)

3
[∗3 ] 

 ln (0)


[∗] =

µ
 ln (0)


[∗1]  

 ln (0)



£
∗
¤¶



and the row vector

∗() =
 ln (0)


−  ln (0)


[∗]  (C.12)

We want to show that b has a multivariate normal distribution asymptotically. It
is well known that if  has a normal distribution for all , then  has a multivariate
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normal distribution. Therefore, we consider   as a functional of . Define () ≡
 for  ∈ R and  6= 0. If  £∗()

∗()
¤
is finite positive definite, then the

function () is bounded, and the Riesz representation theorem implies that there

exists a representor ∗ such that

()− (0) ≡  ( − 0) = h∗ − 0i (C.13)

for all  ∈ A. Here, ∗ ≡ ¡∗
∗


¢
, ∗ = −1, ∗ = −∗∗ , with  = 

£
∗()

∗()
¤


Under suitable assumptions made below, the Riesz representor ∗ exists and is bounded.
We denote

 ln ()


[] ≡  ln (+ )



¯̄̄̄
=0

a.s.  for any  ∈ V (C.14)

For a sieve MLE, we have that

h∗ b − 0i = 1



X
=1

 ln ( 0)


[∗] + 

¡
−12

¢
(C.15)

Note that
³
 ln ()


[∗]
´
= ∗()

−1 Thus, by the classical central limit theo-

rem, the asymptotic distribution of
√

³b − 0

´
is  (0 −1). In fact, the matrix 

is the efficient information matrix in this semiparametric estimation, under suitable

regularity conditions given in Shen (1997).

We now present the sufficient conditions for the
√
−normality of b. Define

N0 ≡
©
 ∈ A : k− 0k ≤  k− 0k ≤ 

−14)
ª

(C.16)

with  =  (1) and N0 the same way with A replaced by A. Note that N0 still
depends on . For  ∈ N0 we define a local alternative 

∗ ( ) = (1− ) +

 (
∗ + 0) with  = 

¡
−12

¢
. Let Π

∗ ( ) be the projection of ∗ ( ) onto
A.

Assumption C.12 i) 
£
∗()

∗()
¤
exists, is bounded and is positive-definite;

ii) 0 ∈  (×) 
Assumption C.13 there is a () with {[()]2} ∞ and a non-negative mea-

surable function  with lim→0 () = 0 such that for all  ∈ N0,

sup
∈N0

¯̄̄̄
2 ln (;)


[− 0 

∗
]

¯̄̄̄
≤ ()× (||− 0||)

Assumption C.14 Uniformly over  ∈ N0 and  ∈ N0,



µ
2 ln (;)


[− 0 

∗
]−

2 ln (;0)


[− 0 

∗
]

¶
= 

¡
−12

¢


25



Assumption C.15 There is a ∗ =
¡

∗


−(Π∗)∗

¢ ∈ A− {Π0} such that k∗ − ∗k =
(−14)

A detailed discussion of these assumptions can be found in Shen (1997). By theorem

1 in Shen (1997), we show that the estimator for the parametric component 0 is
√


consistent and asymptotically normally distributed.

Theorem 2 Under assumptions C.1-C.15,
√

³b − 0

´
→  (0 −1) where  =


£
∗()

∗()
¤
for ∗() given in Equation (C.12).

D Additional Simulation Results

D.1 Smoothing parameter selection

This section illustrates that our choice smoothing parameters (∆ = 5 ∆ = 5  =

6) is such that the results are not too sensitive to small changes in the smoothing

parameters. Specifically, in Table D.1, we verify that the changes in smoothing pa-

rameter only affect the mean of the estimator by an amount that is small relative to

its standard deviation (std. dev.). Note that we resisted the temptation to merely

pick the choice that minimizes the RMSE, as the true RMSE is not empirically acces-

sible in applications. We could have obtained even better results by fine-tuning the

smoothing parameters for each model, but did not do so to better emulate real-life

settings, where the smoothing parameters may not always be perfectly optimal.

D.2 Small Sample results

Table D.2 illustrates that, even for small samples, the proposed sieve estimation

still achieve considerable bias reduction, relative to the naive estimate ignoring the

presence of measurement error. As in large samples, the bias reduction is so effective

that the RMSE of the sieve estimator is typically much lower than the RMSE of the

naive estimator, even though the sieve estimator typically exhibit a larger standard

deviation.
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Table D.1: Behavior of ̂ for the same setup as in Table 1, repeated over a range

of possible smoothing parameter values.

Case 1
1 = 1 2 = 1

mean std. dev. RMSE mean std. dev. RMSE Smoothing parameters

1.060 0.189 0.198 0.910 0.131 0.159 ∆ = 5 ∆ = 4  = 6

1.174 0.198 0.263 0.896 0.157 0.188 ∆ = 4 ∆ = 4  = 6

1.058 0.212 0.220 0.924 0.144 0.163 ∆ = 5 ∆ = 5  = 6

0.975 0.204 0.206 0.954 0.137 0.144 ∆ = 5 ∆ = 5  = 7

1.001 0.242 0.242 0.854 0.157 0.213 ∆ = 4 ∆ = 5  = 7

0.904 0.140 0.169 0.925 0.143 0.161 ∆ = 5 ∆ = 5  = 5

1.003 0.293 0.293 0.840 0.127 0.204 ∆ = 6 ∆ = 5  = 4

1.092 0.220 0.238 0.923 0.125 0.146 ∆ = 6 ∆ = 5  = 7

1.047 0.164 0.171 0.917 0.128 0.153 ∆ = 5 ∆ = 6  = 7

Case 2
1 = 1 2 = 1

mean std. dev. RMSE mean std. dev. RMSE Smoothing parameters

0.938 0.060 0.086 0.917 0.056 0.099 ∆ = 5 ∆ = 4  = 6

0.928 0.069 0.099 0.999 0.064 0.064 ∆ = 4 ∆ = 4  = 6

0.961 0.061 0.073 0.937 0.059 0.086 ∆ = 5 ∆ = 5  = 6

0.920 0.065 0.103 0.960 0.057 0.069 ∆ = 5 ∆ = 5  = 7

0.926 0.052 0.090 1.022 0.057 0.061 ∆ = 4 ∆ = 5  = 7

0.894 0.100 0.145 0.928 0.093 0.117 ∆ = 5 ∆ = 5  = 5

0.892 0.081 0.134 0.969 0.081 0.087 ∆ = 6 ∆ = 5  = 4

0.915 0.067 0.107 0.963 0.061 0.071 ∆ = 6 ∆ = 5  = 7

0.922 0.067 0.102 0.959 0.059 0.071 ∆ = 5 ∆ = 6  = 7

Case 3
1 = 1 2 = 1

mean std. dev. RMSE mean std. dev. RMSE Smoothing parameters

0.932 0.049 0.083 1.060 0.030 0.068 ∆ = 5 ∆ = 4  = 6

0.924 0.032 0.082 1.062 0.028 0.069 ∆ = 4 ∆ = 4  = 6

0.959 0.079 0.089 1.053 0.037 0.065 ∆ = 5 ∆ = 5  = 6

1.060 0.054 0.081 1.022 0.026 0.034 ∆ = 5 ∆ = 5  = 7

1.041 0.054 0.068 1.027 0.029 0.040 ∆ = 4 ∆ = 5  = 7

0.977 0.080 0.083 1.053 0.040 0.066 ∆ = 5 ∆ = 5  = 5

1.039 0.048 0.062 0.983 0.027 0.032 ∆ = 6 ∆ = 5  = 4

1.040 0.054 0.067 1.026 0.028 0.038 ∆ = 6 ∆ = 5  = 7

1.072 0.056 0.092 1.016 0.029 0.033 ∆ = 5 ∆ = 6  = 7
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Case 4
1 = 1 2 = 1

mean std. dev. RMSE mean std. dev. RMSE Smoothing parameters

1.103 0.164 0.194 1.094 0.154 0.180 ∆ = 5 ∆ = 4  = 6

1.118 0.192 0.226 1.062 0.165 0.177 ∆ = 4 ∆ = 4  = 6

1.079 0.145 0.165 1.088 0.149 0.173 ∆ = 5 ∆ = 5  = 6

1.095 0.137 0.166 1.026 0.161 0.163 ∆ = 5 ∆ = 5  = 7

1.400 0.357 0.536 0.853 0.206 0.253 ∆ = 4 ∆ = 5  = 7

1.196 0.180 0.266 1.067 0.143 0.158 ∆ = 5 ∆ = 5  = 5

1.039 0.178 0.182 1.061 0.218 0.226 ∆ = 6 ∆ = 5  = 4

0.998 0.129 0.129 1.008 0.165 0.165 ∆ = 6 ∆ = 5  = 7

1.066 0.147 0.161 0.975 0.156 0.157 ∆ = 5 ∆ = 6  = 7

Case 5
1 = 1 2 = 1

mean std. dev. RMSE mean std. dev. RMSE Smoothing parameters

0.824 0.130 0.219 0.942 0.083 0.101 ∆ = 5 ∆ = 4  = 6

0.960 0.239 0.242 0.895 0.210 0.234 ∆ = 4 ∆ = 4  = 6

0.844 0.120 0.196 0.965 0.066 0.074 ∆ = 5 ∆ = 5  = 6

0.866 0.113 0.175 0.968 0.069 0.076 ∆ = 5 ∆ = 5  = 7

1.008 0.208 0.208 0.837 0.227 0.279 ∆ = 4 ∆ = 5  = 7

0.884 0.184 0.217 0.878 0.103 0.159 ∆ = 5 ∆ = 5  = 5

1.110 0.315 0.334 1.019 0.333 0.333 ∆ = 6 ∆ = 5  = 4

0.926 0.144 0.161 0.992 0.081 0.081 ∆ = 6 ∆ = 5  = 7

0.855 0.080 0.165 0.966 0.068 0.076 ∆ = 5 ∆ = 6  = 7

Case 6
1 = 1 2 = 1

mean std. dev. RMSE mean std. dev. RMSE Smoothing parameters

0.886 0.047 0.122 0.958 0.047 0.062 ∆ = 5 ∆ = 4  = 6

1.052 0.140 0.149 1.011 0.097 0.098 ∆ = 4 ∆ = 4  = 6

0.915 0.059 0.103 0.979 0.054 0.057 ∆ = 5 ∆ = 5  = 6

1.039 0.075 0.084 1.067 0.062 0.091 ∆ = 5 ∆ = 5  = 7

1.130 0.105 0.167 1.047 0.084 0.097 ∆ = 4 ∆ = 5  = 7

0.983 0.076 0.078 1.025 0.067 0.072 ∆ = 5 ∆ = 5  = 5

0.929 0.048 0.085 0.943 0.042 0.070 ∆ = 6 ∆ = 5  = 4
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Table D.2: Simulation results as in Table 1, repeated for a sample size of 500.
Case 1: (; ) = 1+ 2



Parameter (=true value) 1= 1 2= 1

mean std. dev. RMSE mean std. dev. RMSE

Ignoring meas.error 0.404 0.135 0.610 0.744 0.093 0.271

Accurate data 1.002 0.065 0.065 1.000 0.025 0.025

Sieve MLE 1.040 0.259 0.262 0.964 0.188 0.191

Case 2: (; ) = 1+ 2
2

Parameter (=true value) 1= 1 2= 1

mean std. dev. RMSE mean std. dev. RMSE

Ignoring meas.error 0.748 0.077 0.262 0.541 0.059 0.462

Accurate data 1.000 0.049 0.049 0.998 0.031 0.031

Sieve MLE 0.873 0.325 0.348 0.919 0.162 0.180

Case 3: (; ) = 1+ 2(1 + 2)

Parameter (=true value) 1= 1 2= 1

mean std. dev. RMSE mean std. dev. RMSE

Ignoring meas.error 0.634 0.051 0.368 1.037 0.065 0.075

Accurate data 1.000 0.047 0.047 0.998 0.051 0.051

Sieve MLE 1.118 0.110 0.161 0.858 0.072 0.158

Case 4: (; ) = (2 + 1) (+ 2)

Parameter (=true value) 1= 1 2= 1

mean std. dev. RMSE mean std. dev. RMSE

Ignoring meas.error -0.268 0.163 1.279 1.542 0.513 0.746

Accurate data 0.999 0.039 0.039 1.001 0.028 0.028

Sieve MLE 1.072 0.177 0.191 1.059 0.177 0.186

Case 5: (; ) = ln (1 + 1+ 2
2)

Parameter (=true value) 1= 1 2= 1

mean std. dev. RMSE mean std. dev. RMSE

Ignoring meas.error 0.514 0.083 0.493 0.459 0.069 0.544

Accurate data 0.995 0.115 0.115 1.000 0.111 0.110

Sieve MLE 0.935 0.262 0.270 0.980 0.202 0.203

Case 6: (; ) = 1+ 2 ln (1 + 2)

Parameter (=true value) 1= 1 2= 1

mean std. dev. RMSE mean std. dev. RMSE

Ignoring meas.error 0.660 0.047 0.342 0.725 0.065 0.282

Accurate data 0.999 0.048 0.048 1.005 0.073 0.073

Sieve MLE 0.922 0.111 0.135 0.984 0.107 0.108
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