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Abstract

In this paper we compare e¤ort provision and e¢ ciency under incentive schemes
which motivate agents to compete to be �rst, avoid being last, or both. We utilize
a laboratory experiment to test the predictions generated by optimal contracts in a
Lazear-Rosen type model that predicts equal e¤ort and e¢ ciency levels for the three
mechanisms. We �nd that the mechanism incorporating both incentive schemes
induces the highest e¤ort, especially in contests of relatively larger size. Avoiding
being last is shown to produce the lowest variance of e¤ort, be more e¤ective and,
in larger contests, more e¢ cient than competing for the top.
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1 Introduction

Managers in organizations have many motivational tools at their disposal. A popular such

tool is the use of incentive schemes based on ordinal relative performance evaluations, or

rank-order tournaments. A recent Wall Street Journal article states that 60% of Fortune

500 companies currently use some kind of a ranking system for incentive provision.1 Thus,

in these companies employees compete with each other for rewards such as promotions

and bonuses. The popularity of such mechanisms is largely due to an inherent structure

present in most organizations, where only a limited number of promotions or amount of

bonus money exists. With this natural limitation, managers must be selective in whom

to give the reward(s) to.2 The best or highest performing employee(s) will often get the

nod, which gives employees the incentive to work harder.

Given the prevalence of tournament-based incentive systems in organizations, it is

no wonder that this topic has generated a magnitude of economic research (see surveys

in Konrad 2009 and Dechenaux, Kovenock and Sheremeta 2012). However, most of the

literature on rank-order tournaments focuses on understanding how participants compete

for the top prize(s), while relatively little research has been directed into understanding

how incentive schemes motivating participants to avoid being last a¤ect employee e¤ort.

For instance, the aforementioned WSJ article also states that when Country Wide had

to lay o¤ employees, they �rst selected those who were ranked the lowest from prior

evaluations. Though termination is the most severe form of being ranked last, it need not

be the only form. It is often the case that lower ranked employees are demoted, assigned

to less desirable tasks, have bonuses withheld, etc.

A clean identi�cation of the incentive e¤ects of tournaments is quite di¢ cult, since

data collected in the �eld usually allow one to observe only outcomes (i.e., total output).

This is problematic since in most instances outcomes are a function of luck, noise, ability,

endogenous selection as well as e¤ort. Due to the di¢ culties in isolating the incentive

e¤ects, laboratory experiments have often been utilized as a way of giving more control

to the researcher. A brief review of these experiments is given in Section 2. At this point,

we note that the focus of experimental research has been centered mainly on competition

for the top prize(s).

1The article was titled ��Rank and Yank� Retains Vocal Fans� which was
published on January 31, 2012 and can be accessed via the following link.
http://online.wsj.com/article/SB10001424052970203363504577186970064375222.html

2As pointed out in Lazear and Rosen (1981), one further reason for the popularity of rank-order
tournaments has to do with complications inherent in organizations, which inhibit a manager from forming
contracts on e¤ort directly due to common productivity shocks or the di¢ culties in measuring actual
output in a quanti�able way.

2



This paper aims to complement the existing literature by adding to it an empirical

comparison of tournament mechanisms involving competition for the top, competition to

avoid the bottom, or both in a principal-agent setting. Using the prominent theory of

Lazear and Rosen (1981), we examine the following three tournament mechanisms where

agents compete for various prizes: A winner tournament is a mechanism where the agents

compete to be �rst, and one top prize is awarded to the agent with the highest output.

Likewise, in a loser tournament the agents compete to avoid being last, and one bottom

prize is given to the agent with the lowest output. Finally, a winner&loser tournament

is a combination of the two. We �rst use the theory of Lazear and Rosen (1981) to

calculate the optimal principal-agent contracts for each of these mechanisms. The model

predicts that all three mechanisms are e¢ cient contracts and that the same e¢ cient levels

of e¤ort are exerted in each case �as noted in Lazear and Rosen (1981) and Nalebu¤

and Stiglitz (1983). We then parameterize the theoretical model and directly test the

hypotheses derived from it in a laboratory experiment, in which subjects in the role of

employees choose e¤ort levels (tied to a convex cost structure) and compete in one of the

three mechanisms de�ned above.

In our design, not only is employee e¤ort predicted to be the same in all three mech-

anisms, but the employer�s per-employee cost is also the same. Hence, theory predicts

no di¤erence between mechanisms. Our experiment allows us to test this prediction, as

well as to study the properties of each mechanism in isolation. In addition to these three

mechanisms, we also vary the size of the tournament, considering tournaments of size

three and of size six. Varying the size of the tournament serves two primary purposes.

First, tournaments in organizations vary in size. Understanding how the di¤erent mecha-

nisms interact with the size of the tournament is highly relevant to forming generalizable

recommendations. Second, varying the number of contestants in the tournament will help

us to disentangle the underlying causes of the di¤erences observed between mechanisms,

and will also provide robustness to our results.

Our �ndings show that, in contests of size three, the winner tournament is inferior

to the other two in terms of employee e¤ort, while there is no clear distinction between

the mechanisms in terms of aggregate e¢ ciency (measured as the combined gains to

the principal and the agents). The existence of a top prize in the winner tournament

encourages some subjects to choose very high e¤ort, but on the other hand a large number

of subjects choose extremely low e¤ort due to the sti¤ competition for the top prize. By

contrast, the mechanism which only includes a single bottom prize practically eliminates

the subjects�e¤ort choices in the lowest range, although it also weakens the incentive for

subjects to provide high e¤ort. In contests of size six, the winner and loser tournaments
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(the ones with a single top or single bottom prize respectively) turn out to produce

statistically indistinguishable results. Using a mechanism that combines both a top prize

and a bottom prize brings out the best of both mechanisms, and this turns out to be

the most e¢ cient mechanism regardless of contest size. Under this scheme, competition

away from the bottom reduces the number of subjects who choose low e¤ort, while the

competition for the top provides continuous encouragement for some subjects to choose

very high e¤ort.

In terms of a direct comparison of winner and loser tournaments, we �nd that the

loser tournament is overall a better motivator than the winner tournement. This leads to

the �nding that when the tournament size is small, the loser tournament approaches the

outcome attained in the winner&loser tournament. This result is largely in line with the

predictions generated by basic learning theory. Note, in smaller contests the probability

of being the lowest performing employee is higher and thus being the lowest performer

will be experienced more often. Over time, this e¤ect leads to similar outcomes for loser

tournaments and winner&loser tournements when the number of contestants is small.

The strong learning e¤ect we �nd also implies that a manager using a rank-order pay

scheme must use the mechanism regularly as the increases in work e¤ort will decline if

the incentives are absent.

2 Brief review of the related literature

Extensive theoretical work has been undertaken to understand rank-order tournaments in

an organizational setting. This literature has mainly focused on winner tournaments (see

reviews by McLaughlin 1988; Lazear 1995 and Konrad 2009).3 Loser tournaments were

�rst mentioned byMirrlees (1975), while Nalebu¤and Stiglitz (1983) prove the equivalence

of the two schemes in the more general symmetric setting. Loser tournaments have more

recently started to attract theoretical examinations by authors looking at heterogeneity

in some aspect (e.g. Kräkel 2000, Gürtler and Kräkel 2011, Moldovanu, Sela and Shi 2012

and Balafoutas et al. 2012) or risk-aversion (Akerlof and Holden 2012).

Many experiments have also been conducted on tournaments (see a review by Dechenaux,

Kovenock and Sheremeta 2012). The �rst study to examine rank-order tournaments, con-

ducted by Bull, Schotter and Weigelt (1987), found that tournament and piece-rate pay

3Our main interest is in the static principal-agent models of tournaments à la Lazear and Rosen
(1981). Dynamic tournaments which involve sequential elimination of employees has also been explored
(see, e.g., Rosen 1986, O�Flaherety and Siow 1995, Gradstein and Konrad 1999, Ryvkin and Ortmann
2008, Casas-Arce and Martinez-Jerez 2009, Sunde 2009, Höchtl et al. 2011). Even though the elimination
mechanism can be thought of as a loser tournament, the focus of these papers is not on this aspect, but
on the e¤ect elimination has on the remaining agents.
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schemes generated the same mean e¤ort, though the tournament pay scheme induced

a higher variance in e¤ort. With the very basic tenant of tournament theory estab-

lished, subsequent papers focused on other topics such as a¢ rmative action (Schotter and

Weigelt 1992), tournament size and prize structure (Harbring and Irlenbusch 2003, Orri-

son, Schotter and Weigelt 2004), sabotage (Harbring and Irlenbusch 2008, Falk, Fehr and

Hu¤man 2008, Carpenter, Matthews and Schirm 2010, Harbring and Irlenbusch 2012),

selection (Camerer and Lovallo 1999, Eriksson, Teyssier and Villeval 2009, Cason, Mas-

ters and Sheremeta 2010, Müller and Schotter 2010), dynamic tournaments (Sheremeta

2010), and gender e¤ects (Gneezy, Niederle and Rustichini 2003) among others. The most

relevant for us are those that vary the number of contestants in a rank-order tournament

as well as the number of winner prizes.

The two prior studies that are most relevant to our study (Orrison, Schotter and

Weigelt 2004, Harbring and Irlenbusch 2008) vary the fraction of winner and loser prizes

in di¤erent sized tournaments. The overall �nding in these papers is that the highest e¤ort

is observed when there is an equal distribution of winner and loser prizes. This is counter

to Harbring and Irlenbusch (2003) who show that in a capped all-pay auction setting, e¤ort

increases with the number of winner prizes. Concerning contest size, Orrison, Schotter

and Weigelt (2004) �nd that e¤ort does not depend on the size of the contest. Harbring

and Irlenbusch (2008) also �nd that there is no discernible trend that relates e¤ort to the

size of the contest. Using non-uniform distributions of noise, List et al. (2010) support

this result for risk-neutral subjects, but �nd that risk-averse subjects�e¤ort declines as

the number of contestants increases.

Although these papers have treatments that are similar in concept to our design, key

di¤erences remain between them and our study due to the disparate research questions.

First, the above studies only implement two levels of prizes. In our design, we will imple-

ment a treatment with a top, middle and bottom prize (the winner&loser tournament).

This is an important variation for several reasons. Since most organizations typically

use incentive schemes which has consequences for the best and the worst workers, it is

important to understand how e¤ort and e¢ ciency may di¤er under this very common pay

scheme which uses three distinct levels of prizes. We will show that including three dis-

tinct prizes is essential since managers who choose this pay scheme can typically expect

higher e¤ort. More importantly, since the above papers were not intended to test the

di¤erences between competition for the top or away from the bottom, they do not use

optimal contracts �a feature which is necessary for a meaningful e¢ ciency comparison

and a potential cause of the partly contradictory results of the papers mentioned above.

More speci�cally, optimal contracts are important since they �x the amount of money
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paid per worker to be equal in every setting while holding constant the predicted e¤ort.

Thus, variations that we observe in our setting can be attributed to the underlying behav-

ioral response to winner and/or loser tournaments, and e¢ ciency concerns can be cleanly

examined.

3 The model

3.1 Three tournament mechanisms

There are n � 2 identical risk-neutral agents indexed by i = 1; : : : ; n.4 Each agent

participates in the tournament by exerting e¤ort ei � 0. The cost of e¤ort ei to agent

i is cg(ei), where c > 0 is the agents�homogeneous cost parameter, and function g(�) is
strictly increasing and strictly convex.

As in Lazear and Rosen (1981), agent i�s output is yi = ei+ui, where ui is a zero-mean

idiosyncratic random shock. It is assumed that shocks u1; : : : ; un are i.i.d. across agents

and drawn from the distribution with support [ul; uh], pdf f(u) and cdf F (u).

In tournament mechanisms, agents are evaluated on the basis of their relative perfor-

mance. E¤ort is not observable and cannot be used for contracting. Moreover, cardinal

output is also not observable. Contracts are based on ordinal comparisons of agents�

output levels. We consider three tournament mechanisms: winner tournaments, loser

tournaments, and winner&loser tournaments.

Winner tournament is de�ned as a tournament in which the winner, i.e., the agent

with the highest output, receives prize V1, and all other agents receive prize V2, with

V2 < V1. The probability of agent i winning the tournament, p(i), is5

p(i)(e) =

Z "Y
j 6=i

F (t+ ei � ej)
#
f(t)dt: (1)

Here, e = (e1; : : : ; en) is the vector of all agents�e¤ort levels. Agent i�s expected payo¤ is

�i(e) = V2 + (V1 � V2)p(i)(e)� cg(ei):

Assuming all agents participate in the tournament with positive e¤orts,6 the vector of

4See Akerlof and Holden (2012) for a theoretical examination of how risk-aversion a¤ects the predic-
tions.

5Integration everywhere is over the support [ul; uh] of the distribution of noise.
6Note that participation in the tournament with zero e¤ort is not equivalent to nonparticipation.

Because of noise, the probability of winning the tournament with zero e¤ort is still positive.
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equilibrium e¤ort levels, e� = (e�1; : : : ; e
�
n), solves the system of �rst-order conditions7

(V1 � V2)
X
j 6=i

Z "Y
k 6=i;j

F (t+ ei � ek)
#
f(t+ ei � ej)f(t)dt = cg0(ei); i = 1; : : : ; n: (2)

Loser tournament is de�ned as a tournament in which the agent with the lowest output

receives prize W2, and all other agents receive W1, with W1 > W2. The probability of

agent i having the lowest output, q(i), is

q(i)(e) =

Z "Y
j 6=i

(1� F (t+ ei � ej))
#
f(t)dt: (3)

Agent i�s expected payo¤ is

�i(e) =W1 � (W1 �W2)q
(i)(e)� cg(ei):

Assuming full participation with positive e¤orts, the vector of equilibrium e¤ort levels

~e� = (~e�1; : : : ; ~e
�
n), solves the system of �rst-order conditions

(W1 �W2)
X
j 6=i

Z "Y
k 6=i;j

(1� F (t+ ei � ek))
#
f(t+ ei � ej)f(t)dt = cg0(ei): i = 1; : : : ; n:

(4)

Winner&loser tournament is de�ned as a tournament in which both the winner and

loser elements are combined: the agent with the highest output receives a prize S1, the

agent with the lowest output receives a prize S3, and all other agents receive S2, with

S1 > S2 > S3. Agent i�s expected payo¤ in this setting can be written as

�i(e) = S2 + (S1 � S2)p(i)(e)� (S2 � S3)q(i)(e)� cg(ei):

Assuming full participation with positive e¤orts, the vector of equilibrium e¤ort levels

ê� = (ê�1; : : : ; ê
�
n), solves the following system of �rst-order conditions that will contain

a sum of the terms from the left-hand sides of Eqs. (2) and (4), multiplied by prize

di¤erentials S1 � S2 and S2 � S3, respectively:
7The �rst-order conditions derived in this section are necessary but not su¢ cient for the equilibrium

to exist. We discuss the corresponding restrictions on parameters in Section 4.3.
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(S1 � S2)
X
j 6=i

Z "Y
k 6=i;j

F (t+ ei � ek)
#
f(t+ ei � ej)f(t)dt

+ (S2 � S3)
X
j 6=i

Z "Y
k 6=i;j

(1� F (t+ ei � ek))
#
f(t+ ei � ej)f(t)dt

= cg0(ei): i = 1; : : : ; n: (5)

There is a risk-neutral principal, whose expected payo¤ (�rm�s pro�t) is de�ned as

the di¤erence between aggregate e¤ort and total prize payments: � =
P

i ei � V1 � (n�
1)V2 for winner tournaments, � =

P
i ei � (n � 1)W1 �W2 for loser tournaments, and

� =
P

i ei � S1 � (n � 2)S2 � S3 for winner&loser tournaments. In the derivation of
optimal contracts, we follow the approach of Lazear and Rosen (1981) and assume that

the principal operates in a (buyer-side) competitive labor market under the zero-pro�t

condition � = 0.

3.2 Symmetric optimal contracts

We restrict the analysis to the symmetric case in which all agents exert the same e¤ort

in equilibrium. For winner tournaments, the �rst-order condition, Eq. (2), for agents�

equilibrium e¤ort, �e, is

(V1 � V2)�n = cg0(�e); �n = (n� 1)
Z
F (t)n�2f(t)2dt: (6)

If Eq. (6) has a solution �e > 0 (which is the case provided (V1 � V2)�n > cg0(0)), it is

unique. The principal�s pro�t is �� = n�e� V1 � (n� 1)V2, which implies, under the zero-
pro�t condition, �e = V1=n+(n�1)V2=n, and the agents�expected payo¤s are �� = �e�cg(�e).
As in Lazear and Rosen (1981), we assume that the principal chooses prizes V1 and V2 to

maximize ��, implying (1 � cg0(�e))@�e=@Vk = 0, k = 1; 2. This gives the following system
of equations for the optimal contract:

(V1 � V2)�n = cg0(�e); n�e = V1 + (n� 1)V2; cg0(�e) = 1: (7)

For loser tournaments, the symmetric �rst-order condition for agents� equilibrium

e¤ort, ~e, is

(W1 �W2)~�n = cg
0(~e); ~�n = (n� 1)

Z
[1� F (t)]n�2f(t)2dt: (8)
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If Eq. (8) has a solution ~e > 0 (which is the case provided (W1 �W2)~�n > cg
0(0)), it is

unique. The principal�s pro�t is ~� = n~e � (n � 1)W1 �W2. Similar to winner contests,

the zero-pro�t condition and maximization of agents�expected payo¤ leads to the system

of equations for optimal contracts (W1;W2):

(W1 �W2)~�n = cg
0(~e); n~e = (n� 1)W1 +W2; cg0(~e) = 1: (9)

For winner&loser tournaments, the symmetric �rst-order condition for agents�equi-

librium e¤ort, ê, is

(S1 � S2)�n + (S2 � S3)~�n = cg0(ê): (10)

The principal�s pro�t is �̂ = nê� S1� (n� 2)S2� S3. Similar to the other two incentive
schemes, the zero-pro�t condition and maximization of agents�expected payo¤ leads to

the system of equations for optimal contract (S1; S2; S3):

(S1 � S2)�n + (S2 � S3)~�n = cg0(ê); nê = S1 + (n� 2)S2 + S3; cg0(ê) = 1: (11)

By comparing Eqs. (7), (9) and (11), it is seen that the equilibrium e¤ort is the same

under the optimal contracts for all three mechanisms: �e = ~e = ê. All three optimal

contracts are socially e¢ cient. Individual e¤ort �e is determined by condition cg0(�e) = 1,

and the optimal prizes can be expressed in terms of �e.

For winner tournaments, the optimal contract is

�V1 = �e+
n� 1
n�n

; �V2 = �e�
1

n�n
: (12)

For loser tournaments, the optimal contract is

�W1 = �e+
1

n~�n
; �W2 = �e�

n� 1
n~�n

: (13)

For winner&loser tournaments, the number of independent equations for the optimal

contract is the same as for the other two mechanisms, but there are three prizes to be

determined. This is a manifestation of the more general result, mentioned by Lazear and

Rosen (1981), that a tournament mechanism involving any number of prizes between 2 and

n can be implemented with only two distinct prizes under symmetry and risk neutrality.

Any S2 between S3 and S1 can be implemented as the intermediate prize. For convenience,
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we choose S2 = (S1 + S3)=2. Equations in (11) then give the following optimal contract:

�S1 = �e+
1

2�̂n
; �S2 = �e; �S3 = �e�

1

2�̂n
; �̂n =

�n + ~�n
2

: (14)

4 Experimental design and hypotheses

4.1 Basics

Using ORSEE (Greiner 2004), we recruited 216 subjects in total. All experiments were

conducted at the University of Innsbruck using z-tree (Fischbacher 2007). Subjects earned

on average e12.25 for an experiment that lasted about an hour. Subjects were recruited

from the standard subject pool at the University. In our sample, 57% of them were female.

Subjects participated in one of 12 sessions, where each session comprised 18 subjects.

4.2 Treatments

The experiment follows a 3�2 between-subjects design covering three tournament mecha-
nisms: winner (WIN), loser (LOS) and winner&loser (W&L); and two group sizes: n = 3

and n = 6. The resulting six treatments will be referred to as WIN3, WIN6, LOS3, LOS6,

W&L3 and W&L6. The procedure used for all 6 treatments was the same. Once subjects

were seated in the lab, they were handed instructions which were read aloud to ensure

common knowledge of the rules of the game.8 The �rst part of the experiment consisted

of 20 rounds, and in each round subjects were randomly and anonymously matched in a

group with other participants in the session.9 Each round the subjects participated in a

chosen e¤ort task, during which they were asked to choose a number between 1 and 100.

Each number had a cost associated with it, with a convex structure.10

Following the theory, a random number was added to (or subtracted from) each agent�s

chosen number, resulting in their �total number.�11 Their total number was then compared

to the total number of the other agents in their group to determine their rank within the

group. In WIN3 and WIN6, the agent with the highest rank received the top prize while

all others received the bottom prize. In LOS3 and LOS6, the agent with the lowest rank

received the bottom prize while all others received the top prize. In W&L3 and W&L6

8Sample instructions for WIN6 are given in the Appendix.
9Random rematching was implemented to reduce reputation e¤ects. Since our main interest lies

in understanding how people compete to avoid being last compared to how they compete to be �rst,
including reputation in this design would cloud the main interest of the paper.
10At the end of the instruction sheet there was a table showing the cost associated with each number.

The cost table is given in the appendix.
11The random number was chosen randomly and independently for every agent in each round.
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the agent with the highest rank received the top prize, the agent with the lowest rank

received the bottom prize, and all others received the middle prize. The total payo¤ in a

period was calculated by subtracting the cost of the chosen number from the prize gained.

E¤ort costs and prizes were denominated in tokens, where 2000 tokens equalled e1. Once

all subjects in the session had chosen their number (e¤ort), they were informed of their

random number, their total number and whether their total number was the highest (in

WIN3, WIN6, W&L3 and W&L6) or the lowest (in LOS3, LOS6, W&L3 and W&L6).

Additionally, they were informed of their payment for that round if it would be randomly

selected for payment. Four rounds were chosen at random for payment at the conclusion

of the experiment.

Before receiving feedback in the last round, subjects were given a Holt-Laury risk

aversion task (Holt and Laury 2002), as it is important to control for risk attitudes in our

setting given that our theory assumes risk-neutral agents. Subjects were also administered

a loss aversion task (Gächter, Johnson and Herrmann 2010), which is meant to control

for preferences in the loss domain. The experiment concluded with a short demographic

questionnaire.

4.3 Calibration of parameters

In the experiment, we use the uniform distribution of noise on the interval [�b; b]. In
this case, �n = ~�n = �̂n = 1=(2b). The optimal contracts for the winner, loser and

winner&loser tournaments are

�V1 = �e+
2b(n� 1)

n
; �V2 = �e�

2b

n
;

�W1 = �e+
2b

n
; �W2 = �e�

2b(n� 1)
n

;

�S1 = �e+ b; �S2 = �e; �S3 = �e� b:

For the cost function of e¤ort, we use g(e) = (A � e)�r � A�r, with A; r > 0. The

optimal e¤ort �e solves cr(A� e)�r�1 = 1, which gives �e = A� (rc)1=(r+1). We impose the
following three restrictions on parameters.

(a) An agent�s payo¤ �� must be positive, which gives

�� = A� (rc)1=(r+1) � c[(cr)�r=(r+1) � A�r] = A+ cA�r � (rc)1=(r+1)(1 + r�1) > 0

11



(b) The lowest prize across all the mechanisms,W2, must be non-negative, which gives

A� (rc)1=(r+1) � 2b(n� 1)
n

� 0:

(c) One more restriction on parameters is imposed by the existence of the symmetric

equilibrium in all treatments. This issue is discussed in detail by Akerlof and Holden

(2012) and amounts to veri�cation of the second-order condition for the agent�s payo¤

function at the symmetric equilibrium e¤ort �e. Let wr denote the prize the rth ranked

agent receives, and let �(r)(e; �e) denote the probability for an agent exerting e¤ort e to

be ranked r given that all other agents exert e¤ort �e. The second-order condition for the

agent then takes the form X
r


rwr � �cg00(�e) < 0; (15)

where 
r = [@
2�(r)(e; �e)=@e2]e=�e. The expression for 
r is provided in Akerlof and Holden

(2012) for an arbitrary distribution of noise. It is shown that
Pn

r=1 
r = 0 and, if the

distribution of noise is symmetric, 
r = 
n�r+1. For winner tournaments, the prize

structure is such that w1 = �V1 and wr = �V2 for r � 2. Equation (15) then gives


1( �V1 � �V2)� �cg00(�e) < 0:

For loser tournaments, we have wr = �W1 for r � n � 1 and wn = �W2. This leads to the

second-order condition

�
1( �W1 � �W2)� �cg00(�e) < 0:

Finally, for winner&loser we have w1 = �S1, wn = �S3 and wr = �S2 for 2 � r � n� 1. This
gives


1( �S1 � 2 �S2 + �S3)� �cg00(�e) < 0:

Using the equation for 
r from the proof of Lemma 2 by Akerlof and Holden (2012),

for the uniform distribution of noise on [�b; b], we obtain 
1 = (n � 1)=(4b2).12 This

implies that the second-order conditions for the loser and winner&loser tournaments hold

automatically as long as g(�) is strictly convex, and the only restriction is imposed by the
second-order condition for the winner tournament. The latter gives

(rc)1=(r+1) <
2b(r + 1)

n� 1 :

12The complete expression is 
1 = (n� 1)(n� 2)
R b
�b F (t)

n�3f(t)3dt, where f(t) = 1=(2b) and F (t) =
(b+ t)=(2b) for the uniform distribution.
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Mechanism n b c A r Prizes �e ��

Winner 3 44 3074 106 1.4 V1 = 132; V2 = 44 73.33 54.49
Loser 3 44 3074 106 1.4 W1 = 102:67;W2 = 14:67 73.33 54.49
Winner&Loser 3 44 3074 106 1.4 S1 = 117:33; S2 = 73:33; S3 = 29:33 73.33 54.49
Winner 6 44 3074 106 1.4 V1 = 146:67; V2 = 58:67 73.33 54.49
Loser 6 44 3074 106 1.4 W1 = 88;W2 = 0 73.33 54.49
Winner&Loser 6 44 3074 106 1.4 S1 = 117:33; S2 = 73:33; S3 = 29:33 73.33 54.49

Table 1: Treatments and parameters of the experiment.

Table 1 shows parameters of the experiment that satisfy the constraints with the

above cost function.13

4.4 Hypotheses

Based on the above theory and parameterization, we can formulate the following main

hypotheses, which our experiment aims to test:

Hypothesis 1: Subjects�e¤ort is equal in all treatments.

Hypothesis 1 makes predictions about the comparison between treatments, without

the numerical restriction that e¤ort be equal to 73 (as equilibrium predicts). Notice that

this prediction about equality of e¤orts does not depend upon the size of the tournament

or the mechanism employed.

Hypothesis 2: All treatments are equally e¢ cient.

E¢ ciency is de�ned as the combined gains to the principal and the agents. Hypothesis

2 also follows directly from the theory and parameterization. By design, prizes, expected

e¤ort and e¤ort costs are the same in each treatment; therefore, e¢ ciency can also be

expected to be the same.

5 Results

5.1 E¤ort

We begin our analysis with an overview of the data. Figure 1 displays the average e¤ort

in each period by treatment, in contests of size three (panel a) and size six (panel b).

There are 36 observations per treatment per period, so each point in the �gure repre-

sents the average of these 36 observations. This means that our sample consists of 4,320

13There are minor discrepancies in Table 1 due to rounding. In the experiment, all the prizes and costs
have been multiplied by 100 to avoid the decimals.
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Figure 1: Mean e¤ort over time. Panel (a): E¤ort in contests of size three. Panel (b):
E¤ort in contests of size six.

Size of contest WIN LOS p� value
WIN vs. LOS

W&L p� value
W&L vs. WIN

p� value
W&L vs. LOS

n = 3 58:28 65:88 0:03 68:04 < 0:01 0:46
n = 6 51:86 51:49 0:40 62:25 0:03 < 0:01
p� value
n=3 vs. n=6

0:28 < 0:01 0:06

Table 2: Average e¤ort by treatment. Reported p-values are from a Mann-Whitney test.

observations in total. Looking �rst at panel (a), we can see that the average e¤ort in

WIN3 is much lower than that in LOS3 or W&L3, especially from round 10 onwards,

while similar average e¤ort is observed in LOS3 and W&L3. The picture is to a certain

extent di¤erent for contests of size six: panel (b) shows that the average e¤ort in W&L6

is higher than that in LOS6 or WIN6, while the winner-only and loser-only contests lead

to similar e¤ort levels throughout the course of the experiment. Notice that the mean

e¤ort in all six treatments is below the predicted value of 73.14

Table 2 shows the mean e¤ort for each treatment and the results of pair-wise compar-

isons using Mann-Whitney tests. Because each subject played the game for 20 rounds, we

treat each subject�s average e¤ort choice as one observation, resulting in 36 observations

per treatment. The results in Table 2 con�rm what is already seen in Figure 1. More

speci�cally, in contests of size three there is no signi�cant di¤erence between LOS3 and

W&L3, but e¤ort in WIN3 is signi�cantly lower than in either LOS3 or W&L3. In the

14The hypothesis of average e¤ort being equal to 73 is rejected in all treatments (p < 0:01, two-sided
t� test with standard errors clustered by subject).
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E¤ort (1)
n = 3

(2)
n = 6

(3)
Pooled

Constant 40:56�
(22:65)

60:74���
(22:78)

56:99���
(16:44)

LOS 7:77��
(3:40)

�0:53
(4:06)

7:49��
(3:39)

W&L 9:59���
(3:32)

10:73���
(4:06)

9:21���
(3:31)

Age 0:31
(0:48)

0:35
(0:58)

0:29
(0:38)

Size Six �7:14
(4:58)

Size Six�LOS �8:07
(5:30)

Size Six�W&L 1:59
(5:31)

Risk Aversion 0:76
(0:84)

�0:69
(0:65)

�0:08
(0:51)

Loss Aversion 0:21
(0:85)

0:05
(1:03)

0:20
(0:68)

Female �1:44
(2:73)

�3:52
(3:28)

�2:76
(2:16)

Round �0:02
(0:13)

�0:21
(0:13)

�0:11
(0:09)

# of observations 2160 2160 4320
# of clusters 108 108 216
R-squared 0:04 0:05 0:07

Table 3: Individual random e¤ects panel regressions on e¤ort. Robust standard errors
(in parentheses) are clustered at the individual level. Three and two stars represent
signi�cance at the one and �ve percent levels respectively.

contests of size six, no di¤erence is detected between WIN6 and LOS6, but there is sta-

tistical support for a signi�cantly higher e¤ort in the W&L6 treatment than in the other

two treatments. Finally, when we compare the same mechanism by contest size, average

e¤ort in contests of size three is found to be higher in the LOS and W&L treatments,

compared to the same treatments in contests of size six. However, there is no size e¤ect

in the WIN treatment.

Table 3 reports the results of individual random e¤ects regressions. The dependent

variable in our regression is individual e¤ort, while the main explanatory variables are

dummy variables for the LOS and the W&L treatments (which implies that the reference

group for the regressions is the WIN treatment). Additionally, controls for gender, age,

round, a subject�s risk preferences and the degree of aversion to losses are also included.

To correct for the fact that there are 20 observations per subject, standard errors are

clustered at the individual level. Column (1) examines contests of size three, column (2)

contests of size six, and column (3) combines contests of both sizes, adding an additional

dummy variable for contests of size six as well as interactions of size with LOS and W&L.
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The model in column (1) from Table 3 con�rms that in contests of size three, e¤ort

in LOS3 and in W&L3 contests is higher than in the baseline WIN3 contest. A Wald test

also con�rms that there is no di¤erence between e¤ort in LOS3 and W&L3 (p = 0:47).

Column (2) shows that, in contests of size six, there is a sizeable di¤erence between

WIN6 and W&L6, as well as a di¤erence between LOS6 and W&L6 (p < :001); hence,

the combination of a separate top and bottom prize gives rise to the highest output. No

di¤erence is detected between WIN6 and LOS6. The results from columns (1) and (2) are

thus consistent with the non-parametric tests reported above, while column (3) also leads

to the same main results using the entire sample.15 Column (3) also shows that there is

no di¤erence in the treatment e¤ects based on the size of the contest, something which

is evidenced by the insigni�cant interaction terms of contest size with the mechanism

dummies. As for the e¤ect of size per se, joint signi�cance tests reveal that average e¤ort

in contests of size six is lower than in contests of size three in the cases of LOS (Wald test,

p < 0:01) and W&L (p < :001). Thus, after accounting for the level e¤ects of the contest

size, the basic mechanism driving behavior is the same in both contests of size three and

six. This analysis leads to our �rst three results.

Result 1: In contests of size three, there is no di¤erence in e¤ort between the LOS

and W&L treatments, but e¤ort in both of these treatments is higher than in the WIN

treatment.

Result 2: In contests of size six, e¤ort is highest in the W&L treatment while there is

no di¤erence in e¤ort between the WIN and LOS treatment.

Result 3: E¤ort in LOS and W&L contests of size six is lower than in the same

contests of size three. Once the level e¤ect from contests of size three is controlled for

however, there is no overall di¤erence between the mechanisms employed depending on

contest size.

The �rst three results are arrived at by examining mean e¤ort by treatment. As

evidenced by Figure 1, this may not capture all important aspects of behavior, so we

proceed with some more nuanced analysis regarding the distribution of e¤ort choices,

shown in Figure 2. This Figure presents the frequencies of chosen e¤ort numbers falling

into the intervals 1-10, 11-20, ..., 91-100 for all 20 rounds in contests of size three (panel

a) and size six (panel b). Focusing �rst on panel (b), we see that even though Table

2 shows no di¤erence in the means between treatments WIN6 and LOS6, the way that

these means are arrived at is quite di¤erent. Looking �rst at the WIN treatment, we see

15Using Wald tests, we con�rm that in contests of size six there is no signi�cant di¤erence between
LOS6 and WIN6 (p = 0:89), but a di¤erence remains between WIN6 and W&L6 (p = 0:01).
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Figure 2: Categories of e¤ort deciles for all 20 periods. Panel (a) is tournaments of size
three and Panel (b) is tournaments of size six.

that the distribution of numbers chosen appears bimodal. There are many subjects who

contribute 1-10 (the lowest category) and many who contribute 81-90 (the penultimate

category). Thus, in line with previous studies (see Dechenaux, Kovenock and Sheremeta

2012), the variance of e¤ort is quite high in the case of winner tournaments, as subjects

either compete too much or not enough. In the LOS treatment, the opposite is true.

There are very few subjects who choose e¤ort at the lower or upper end, with the majority

concentrated at 51-60, close to the mean of 51.5. So the possibility of being last drives

up the lower e¤orts, while the lack of a top prize almost eliminates the higher ones. The

W&L mechanism combines both motivations, resulting in a higher overall mean. More

speci�cally, the possibility of being last in the W&L mechanism reduces the incentive to

choose a low e¤ort, and at the same time the existence of a top prize gives rise to some

higher e¤ort choices.

Not surprisingly, the same basic pattern can be observed in contests of size three.

More speci�cally, the distribution of e¤ort in the winner only treatment appears bimodal

in panel (a), while that in the loser and in the winner&loser treatments appears closer

to a normal distribution (if somewhat right-skewed). In line with Result 3, this is a

further indication that the underlying mechanism driving e¤ort is the same in contests of

size three and of size six. Notice also that e¤ort levels in panel (a) are shifted upwards

compared to panel (b); this is also consistent with the level e¤ect mentioned in Result 3

and it is most evident in the loser tournament.
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5.2 E¢ ciency

Hypothesis 2 states that the e¢ ciency of each mechanism should be the same, since e¤ort

in all 6 treatments is predicted to be identical and the amount of prize money per subject

is the same in all treatments. We will �rst focus on overall e¢ ciency. Table 4 shows

overall e¢ ciency by treatment, de�ned as the combined gains to the principal and the

agents.16 The p-values in the table are from Mann-Whitney tests comparing the gains

from representative groups from each treatment.17

As seen in Table 4, the least e¢ cient mechanism regardless of the size of the tour-

nament is the winner tournament, while there is no statistical di¤erence between the

winner&loser and the loser tournaments. What is also seen in this table is that actual

gains per group are always below expected gains. This is due to the fact that e¤ort is

below the predicted equilibrium level, which was shown to be socially e¢ cient in Section

3.2.

To calculate which mechanism is the most e¢ cient from the agent�s perspective, we

merely need to consider the prize gained and subtract the cost to the agent of attaining

the prize. Table 5 shows the expected and actual gains to the agents in each of the six

treatments. The p-values in the table are from Mann-Whitney tests comparing the gains

from each agent in a given treatment. As evidenced in this table, the most pro�table

mechanism for the agents depends on the size of the tournament. In tournaments of

size six, the loser tournament is the most pro�table option by quite a margin, while in

tournaments of size three there is no clear ranking, although the winner tournament again

appears to be the least pro�table mechanism. The superiority of the LOS mechanism in

tournaments of size six is due to the convex cost structure and the fact that the variance

is lowest under this mechanism. It is somewhat surprising that there is no statistically

signi�cant di¤erence between WIN and the other two mechanisms when n = 3 (given

what appears to be a large di¤erence), and the culprit for this is the large variance in the

winner treatment, seen previously in Figure 2.

16As a reminder, total pro�t to the principal in the winner tournament is �� = n�e � V1 � (n � 1)V2
and payo¤s for all agents in a winner tournament is �� = V1 + (n� 1)V2 � nc(�e). This leads to the total
e¢ ciency of n�e� nc(�e). This calculation also holds true for LOS and for W&L tournaments.
17Due to random rematching of subjects into a di¤erent group each period, a representative group as

used in our analysis is de�ned as follows: in any given period, n sujects are randomly drawn without
replacement from the population of k subjects to form k

n groups. Since there are 20 periods, a single
group is the result of 20 such draws. This exercise was done to arrive at twelve groups in the n = 3
treatments and six groups in the n = 6 treatments reported in Table 4. Other methods we tried con�rm
the robustness of the �ndings in the table, but were less conservative. As an example, if the e¢ ciency of
a single group is analyzed each period in the same manner as in Table 4, the sample size is multiplied by
20 and thus stronger results are obtained. Additionally, the results remain unchanged if regressions are
used where group level controls are used.
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Mechanism n Expected Gains
per group

Actual Gains
per group

p� value
WIN vs. LOS

p� value
W&L vs. WIN

p� value
W&L vs. LOS

Winner 3 328; 920 184; 874
Loser 3 328; 920 260; 038
Winner&Loser 3 328; 920 270; 982 < 0:01 < 0:01 0:64
Winner 6 657; 840 361; 569
Loser 6 657; 840 505; 234
Winner&Loser 6 657; 840 485; 327 < 0:01 < 0:01 0:26

Table 4: Expected and actual e¢ ciency for each treatment. The gains per group are given
where a group consists of one principal and n agents. Thus, in the n=3 treatments, there
were twelve groups in each treatment while in the n=6 treatments, there were six groups
in each treatment. The p-values are based on Mann-Whitney tests.

Mechanism n Expected Gains
per agent

Actual Gains
per agent

p� value
WIN vs. LOS

p� value
W&L vs. WIN

p� value
W&L vs. LOS

Winner 3 109; 640 91; 722
Loser 3 109; 640 101; 600
Winner&Loser 3 109; 640 100; 901 0:12 0:18 0:67
Winner 6 109; 640 103; 221
Loser 6 109; 640 127; 883
Winner&Loser 6 109; 640 103; 042 < 0:01 0:81 < 0:01

Table 5: Expected and actual gains to the agents for each treatment. There were 36
observations per treatment. P-values are the result of Mann-Whitney tests.
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Result 4: The winner tournament is the least e¢ cient for tournaments of size three

and size six, while there is no di¤erence in terms of aggregate e¢ ciency between LOS and

W&L. The loser tournament is the most pro�table mechanism for the agents in tourna-

ments of size six, while there is no clear di¤erence in tournaments of size three.

From the principal�s perspective, the preferred mechanism is of course the one that

generates the highest total e¤ort. We have already dealt with this issue in Section 5.1,

where we saw that the mechanism that combines a separate winner and loser prize is

superior to the other two with respect to total agent e¤ort, especially in contests of size

six.

5.3 Analysis of dynamics

Results 1-4 reveal that the mechanisms considered produce quite di¤erent results. This

is counter to our predictions based on the basic model of Section 3. The next step

is to try and �nd a suitable explanation, which �ts our data. Behavior observed in

mechanisms such as ours has been traditionally modeled using reinforcement learning

and/or directional learning. The most fundamental property of reinforcement learning is

that strategies which have led to bad outcomes are less likely to be used in the future

(Roth and Erev 1995). The key feature of the directional learning theory (Selten and

Stoecker 1985) is that subjects respond in the direction of higher pro�ts. If directional

learning is applicable in our setting, then we should observe the following pattern: after

receiving negative reinforcement (i.e., after being last in the loser tournament or after not

winning a winner tournament), a subject should not choose an e¤ort equal to or less than

what led to that outcome, meaning that a higher e¤ort will be chosen. Likewise, if an

agent wins the contest or is not last, this conveys the signal that a lower number could

have potentially led to higher pro�ts; thus, a lower number will be chosen. As suggested

by Grosskopf (2003), we use a combination of reinforcement and directional learning in

a more formal analysis in the Appendix. Below we outline the general conjectures of

reinforcement and directional learning applied to our setting.

(RD1) Following being last or not being �rst, subjects will increase their e¤ort.

(RD2) Following being �rst or not being last, subjects will decrease their e¤ort.

(RD3) These e¤ects will be lessened over time.

Focusing �rst on the treatments that involve loser prizes (treatments LOS and W&L),

a �rst graphical test of conjectures RD1 and RD2 is given in panel (a) of Figure 3, which

examines behavior before and after being last in contests of size three and size six. Panel

(a) shows that, consistent with RD1, subjects increase their e¤ort after being last. The
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di¤erences are statistically signi�cant both in the LOS and in the W&L treatment, and

in tournaments of size three as well as size six (p < 0:01).18

Panel (b) in Figure 3 examines behavior before and after subjects learn that they

were not last. We see here that, upon learning that they were not last in the previous

round, subjects decrease their e¤ort. Again, this result is statistically signi�cant for all

cases, regardless of treatment and tournament size (p < 0:01).

In order to check for the robustness of these �ndings, we present in columns (1) and (2)

of Table 6 the results from two regressions, where the dependent variable is the di¤erence

in chosen e¤ort from round t� 1 to round t. The main explanatory variable is LagLast,
which is a dummy variable equal to 1 if the subject was last in round t� 1. Additionally,
there is a variable accounting for the number of times a subject had already been last at

the start of a given round, which is meant to capture the decreasing e¤ect of reinforcement

over time (see RD3), as well as a control variable for the size of the contest. Column (1)

examines the loser contests and column (2) the winner&loser contests. For succinctness,

we relegate to the Appendix speci�cations that use the pooled sample of LOS and W&L

observations, but we note here that all our results are robust to such a speci�cation.

In line with RD1, we see that the e¤ect of being last in round t� 1 causes subjects to
increase their chosen e¤ort by a sizeable amount, compared to a subject who was not last

(see the large and strongly signi�cant coe¢ cient of LagLast in both speci�cations). In (2)

we see that, in W&L, this e¤ect is inversely related to the number of times a subject was

last, as RD3 predicts. Interestingly, however, the e¤ectiveness of the loser tournament

is not diminished in the LOS treatment.19 Thus, these results are largely in line with

learning theory.

Result 5: In contests involving single loser prizes, the evolution of play is consistent

with basic learning predictions where subjects increase their e¤ort after losing and decrease

their e¤ort following not losing.

Turning now to the e¤ect of a single winner prize, panel (c) of Figure 3 looks at the

response of agents upon winning the contest, and panel (d) examines the response upon

not winning the contest. It is evident in panel (c) that, following a win, a subject decreases

their e¤ort as predicted by RD2. The decrease after winning the contest is statistically

signi�cant in the WIN as well as in the W&L contest (p < 0:01). Panel (d) of Figure 3

18Unless otherwise mentioned, all the p-values reported here are a result of a pairwise regression where
errors are clustered at the subject level.
19This result is intriguing and the explanation for it is not given by learning theory. One explanation

could hinge on what a subject focuses on. In the LOS treatment, they focus solely on whether they were
last or not, while in the W&L treatment, they are also competing for the top prize. Thus, loser prizes
may be more e¤ective over time if it is the sole mechanism.
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Figure 3: The reaction of subjects in tournaments before and after being reinforced. Panel
(a) shows the reaction of subjects before and after being last, Panel (b) shows the reaction
of subjects before and after not being last, Panel (c) shows the reaction of subjects before
and after winning while Panel (d) shows the reaction of subjects before and after not
winning.
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Di¤erence in E¤ort (1)
LOS

(2)
W&L

(3)
WIN

(4)
W&L

Constant �2:33
(2:74)

�9:36��
(3:91)

11:10��
(3:24)

2:33
(3:19)

LagLast 12:38���
(2:51)

14:48���
(2:47)

LagFirst �17:30���
(2:96)

�10:78���
(2:02)

Size Six 0:72
(0:52)

1:60��
(0:50)

�1:00
(0:77)

�0:91��
(0:38)

Number of Times Last �0:48
(0:59)

�0:90��
(0:39)

Number of Times First 1:14��
(0:51)

1:07���
(0:33)

Age 0:04
(0:07)

�0:07
(0:07)

�0:12
(0:11)

�0:13�
(0:07)

Risk Aversion �0:05
(0:10)

0:28��
(0:12)

:05
(0:18)

0:15
(0:10)

Loss Aversion �0:04
(0:10)

0:38��
(0:17)

�0:39�
(0:24)

0:24�
(0:13)

Female �0:15
(0:34)

�0:08
(0:49)

0:17
(0:70)

0:14
(0:41)

Round 0:00
(0:05)

0:02
(0:06)

�0:19��
(0:09)

�0:14���
(0:05)

# of observations 1368 1368 1368 1368
# of clusters 72 72 72 72
R-squared 0:09 0:06 0:03 0:03

Table 6: Individual random e¤ects panel regressions on the di¤erence in e¤ort from period
t� 1 to period t where the main explanatory variable is whether the subject was last or
�rst in period t � 1. Because of this, period 1 is not included in the analysis. Robust
standard errors, which are clustered at the individual level, are in parentheses. Three,
two and one stars represent signi�cance at the one, �ve and ten percent level respectively.
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shows that subjects increase their e¤ort upon not winning the contest. This is consistent

with RD1. Again, the di¤erence is highly signi�cant for both tournament mechanisms

(WIN and W&L), although the magnitude is somewhat smaller than what we saw with

loser mechanisms.

Columns (3) and (4) in Table 6 examine how subjects change their behavior in contests

involving a single winner prize. The dependent variable is once again the di¤erence in

chosen e¤ort from round t� 1 to round t. The main explanatory variable is the dummy
LagFirst, which is equal to one if the subject was �rst in round t� 1 and zero otherwise.
Column (3) examines only the WIN contest and column (4) only the W&L contest.20

Consistent with RD2 and Figure 6, we document a strong and signi�cant negative impact

of winning the contest on e¤ort in the subsequent round. Moreover, this e¤ect is declining

with each subsequent reinforcement, as RD3 suggests.

Result 6: In contests involving single winner prizes, the evolution of play is consistent

with the basic learning predictions where subjects decrease their e¤ort in subsequent rounds

after they have won and increase their e¤ort if they did not win.

Taken together, the six results so far give us an indication of why winner&loser con-

tests are generally more e¤ective than the winner-only or loser-only contests. The W&L

mechanism combines the reinforcing features of both contests. To explore this further,

we use data from the W&L contest in order to disentangle if losing or winning has a

stronger reinforcing e¤ect (since the W&L treatment is the only one where both winning

and losing were possible). Table 7 does this in a regression that includes lags of winning

and losing, along with the usual control variables.21

As it turns out, the e¤ect of being last has a larger impact on a subject�s subsequent

chosen e¤ort, compared to the e¤ect of being �rst (Wald test; p < 0:01). As a reminder,

the variables LagFirst and LagLast are looking at the relative increase or decrease in

e¤ort from a subject who was previously �rst or last. Not only is avoiding being last

statistically more e¤ective than trying to be �rst, but the coe¢ cient on LagLast is more

than three times greater in magnitude than the coe¢ cient on LagFirst. The relatively

more e¤ective motivation of being last indicates why the outcome in the LOS3 approaches

the outcome in the W&L3 contest.
20Once again, all results remain unchanged if we run pooled regressions that include data from treat-

ments WIN and W&L (see Appendix).
21Because we want to clearly isolate the e¤ect of being �rst or being last, we do not include here the

number of times that a subject has been won or lost because these are inherently related to the base
e¤ect.
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Di¤erence in E¤ort (1)
Constant �6:20

(3:16)

LagFirst �3:06���
(1:11)

LagLast 9:80���
(1:78)

Size Six 1:21��
(0:56)

Age �0:10
(0:09)

Risk Aversion 0:28��
(0:40)

Loss Aversion 0:36��
(0:19)

Female �0:24
(0:55)

Period �0:06
(0:05)

# of Observations 1368
# of Clusters 72
R-squared 0:06

Table 7: Individual random e¤ects panel regressions on the di¤erence in e¤ort from period
t�1 to period t in the treatment with both winners and losers where the main explanatory
variables are whether the subject won or lost in period t�1. Because of this, period one is
not included in the analysis. Robust standard errors, which are clustered at the individual
level, are in parentheses. Three stars represent signi�cance at the one percent level.
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6 Discussion and Conclusion

In organizations, managers employ incentive schemes which encourage their employees to

compete to be better than their cohorts and/or to avoid being the worst among them.

The economic literature up to now has mainly focused on understanding how workers

compete for the top prize(s). The goal of our paper has been to complement the literature

by testing a baseline principal-agent tournament model that allows us to compare how

agents compete for the top or avoid being last. In a laboratory experiment, we have

implemented three main incentive mechanisms: winner tournament, loser tournament,

and winner&loser tournament. We have also varied the size of the tournament. Although

the baseline model predicts that employee e¤ort should be the same in all treatments, our

empirical results have indicated that this is not the case.

In general, no mechanism generates higher e¤ort levels from the agents than the one

which combines winner and loser prizes. We have also found that a loser tournament

produces similar results to the combined mechanism in tournaments of a relatively small

size (three participants), while the winner tournament and loser tournament are equivalent

in terms of e¤ort in tournaments of a relatively large size (six participants). There are

two main drivers of these results. First, we have found that behavior in all mechanisms

is consistent with reinforcement and direction learning (Roth and Erev 1995, Selten and

Stoecker 1985). Those subjects who had previously been last (or not �rst) increase their

e¤ort in subsequent rounds, while those subjects who were �rst (or not last) decrease their

e¤ort. Second, we have found that competition away from the bottom is more e¤ective

than competition for the top at increasing subsequent e¤ort. Taken together these two

�ndings suggest that, as the size of the tournament decreases, the outcome in smaller

contests which only incorporate a single loser prize will begin to look like contests which

incorporate a winner and a loser prize.

Turning to e¢ ciency, we have found that the winner tournament is the least e¢ cient

one from an aggregate point of view, while the e¢ ciency achieved in the two mechanisms

that include a loser prize are very similar. From the agent�s perspective, the loser tour-

nament is the most e¢ cient (i.e., pro�table) mechanism in large contests while there is

no clear ordering of e¢ ciency in the smaller contests. Since the total amount of prize

money to be awarded per agent is the same in all treatments, the calculation of the most

pro�table mechanism for the agents depends on the total cost of expended e¤ort. The

total cost of e¤ort is the lowest in the loser only treatments, especially in contests of size

six. This is due to the much lower variance in e¤ort in this treatment, compared to the

other two. Thus, somewhat surprisingly, agents should prefer the loser tournaments.

Our paper can inform managers and policy makers on several key issues. Negative
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and positive incentives are often used to reinforce good or bad behavior, and our �nd-

ings indicate that they achieve this goal in a tournament setting. In order to elicit the

highest amount of e¤ort from their employees, managers should continue to use both

mechanisms. Additionally, the reinforcing e¤ect works such that the temporary use of

these mechanisms will only lead to the desired outcome in the short term. Our results

(see conjecture RD3) indicate that continuous reinforcement is needed in order to main-

tain high e¤ort.22 Finally, our results can better inform the actions of principals who are

concerned about the high variance in performance obtained from tournaments. There are

several reasons beyond e¢ ciency why a high variance may be troubling to a principal.

First, if workers exerting high e¤ort were able to more easily observe the low e¤ort of their

co-worker(s),their best response may be to lower their e¤ort in the long term which would

result in a drastic decline in a winner tournament. Second, if having predictable quality

is desireable, as is the case in many industries, a high variance in e¤ort which results in

a high variance in quality (assuming e¤ort and quality are positively related) would be

very problematic. In these settings, our results suggest principals should strongly consider

using the loser tournament, as this mechanism generates the lowest variance in e¤ort.
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A Experimental instructions

Instructions for WIN6:
Welcome to an experiment on decision making. We thank you for your participation!

The experiment will be conducted on the computer. All decisions and answers will

remain con�dential and anonymous. Please do not talk to each other during the experi-

ment. If you have any questions, please raise your hand and we will come by and answer

it.

During the experiment, you and the other participants will be asked to make a series

of decisions. Your payment will be determined by your decisions as well as the decisions

of the other participants according to the following rules.

During the experiment you will be earning tokens. At the end of the experiment,

tokens will converted to Euros at a rate of 2000 tokens = 1 Euro. Today�s experiment

consists of several parts. The instructions for the �rst part are given below.

Rounds and Groups:
The �rst part consists of 20 rounds. The computer will choose 4 rounds at random

for which to pay you. You will not be told which rounds will be paid until the conclusion

of all parts of the experiment.

At the beginning of each round you will be randomly matched in a Group with 5 other

participants. This means that in each round the groups are re-matched, so that they will

not be the same (unless by chance). You will never be told the identity of those in your

Group and they will never be told your identity.

Tasks:
Your task in today�s experiment is to choose a number between 1 and 100. You will

enter your chosen number in the blank box on your computer screen labeled �Number

Chosen�and then hit �Continue.�The sheet labeled �Decision Costs�shows you the cost

in tokens associated with each number. Notice that higher the number chosen, the higher

the associated cost. Each member in your Group has the same cost sheet as you. In each

round, all Group members choose his/her numbers simultaneously. You will not know the

number chosen by any of your Group members when you make your choice and likewise,

they will not know the number you chose when they make their choice.

After all group members have made their choice, the computer will draw a random

number between -44 and 44, independently for each member of your group. All numbers

in this range are equally likely and each number drawn does not a¤ect the number drawn

for someone else in your Group. This number will be added (or subtracted) from your

chosen number to make your total number.
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Payo¤s:
The computer will compare your total number with the total number of those in

your Group. The person with the highest total number will receive 14,667 tokens while

the remaining 5 members of the group will receive 5867 tokens. The cost of each chosen

number will be subtracted from this amount to give you the total payment for each round

should that round be chosen for payment.

At the end of each round you will be shown the random number chosen for you, your

resulting total number, and whether your total number is higher than anyone�s in your

Group.

Example:
Let�s go through an example. Suppose you chose the number 50 and the other mem-

bers of your group chose 32, 65, 80, 46 and 18. Also suppose that the random number

drawn for you was 26 and the random number drawn for the other members of your

Group were -12, 41, -32, 13 and 7 respectively. This would mean your total number is

50+26=76. The total numbers of the other group members would be 20, 106, 48, 59 and

25. In this example, you have the second highest number and thus would receive 5900 -

633 = 5267 tokens if this round were randomly chosen for payment. Notice that the 633

tokens corresponds to the cost associated with a chosen number of 50.

If on the other hand, you had chosen 85 and all other chosen numbers and random

draws remained the same, you would have a total number of 85+26=111. This would

mean you would have the highest total number and would receive 14700-3789=10911

tokens if this round were randomly chosen for payment.

As a �nal point, once you have made your decisions or are �nished viewing the results

please hit the continue button. No one can move to the next round until everyone in the

experiment has clicked on this button so make sure to pay attention to the screen to keep

the experiment moving along.

Are there any questions?
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Decision Costs:

Chosen Token Chosen Token Chosen Token Chosen Token

Number Cost Number Cost Number Cost Number Cost

1 6 29 253 57 874 85 3882

2 12 30 266 58 912 86 4188

3 18 31 280 59 953 87 4533

4 24 32 294 60 996 88 4925

5 31 33 308 61 1041 89 5373

6 38 34 323 62 1089 90 5889

7 45 35 338 63 1139 91 6488

8 52 36 354 64 1192 92 7192

9 59 37 370 65 1248 93 8027

10 66 38 387 66 1308 94 9032

11 74 39 404 67 1372 95 10260

12 82 40 422 68 1439 96 11789

13 90 41 441 69 1511 97 13734

14 98 42 461 70 1587 98 16276

15 107 43 481 71 1669 99 19715

16 116 44 502 72 1757 100 24571

17 125 45 524 73 1851

18 134 46 547 74 1953

19 143 47 571 75 2062

20 153 48 595 76 2180

21 163 49 621 77 2307

22 173 50 648 78 2446

23 183 51 676 79 2597

24 194 52 705 80 2763

25 205 53 736 81 2944

26 217 54 768 82 3144

27 229 55 802 83 3364

28 241 56 837 84 3609

B Learning dynamics

In this section, we describe the reinforcement and directional learning mechanisms in

detail. Suppose, more formally, that in time period t = 1, subject i has some initial
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propensity, qij(1), to choose a number j which results in a pro�t equal to �
a
j (1).

23 The

subject chooses number j if they believe that the expected pro�t from doing so is greater

than the pro�t from choosing any other number, or �ej(1) > �e�j(1). We will normalize

expected pro�t in period t, �ej(t); to be zero and let �
r
j(t) = �

a
j (t)� �ej(t) be the relative

pro�t which is more than or less than the expected pro�t. Thus, if actual pro�t is less

than the subject expected (�rj(t) < 0), the outcome will be seen as negative reinforcement.

In our setting, we will assume subjects update the propensities such that in period t+ 1,

qij(t+ 1) = q
i
j(t) + �

r
j(t) while q

i
�j(t+ 1) = q

i
�j(t). Thus, the probability, p

i
j(t), of subject

i choosing a certain number j in round t is given by the following formula.

pij(t) =
qij(t)

100X
h=1

qih(t)

(16)

There are two main implications to this simple model. The �rst is that strategies which

lead to payo¤s which are lower than expected will have a lower probability of being

played in the future. The second implication can be seen by noticing that because of the

summation term in the denominator, reinforcement has a diminishing e¤ect over time.

The above model does a nice job of explaining the dynamics that could lead to the

behavior we observe in the loser treatments when a subject is ranked last. It dictates that

a subject will update their probabilities based solely on the wrong expectations of pro�t

from choosing number j, i.e. the information they receive informs them that a higher

number could have potentially led to a higher pro�t. More speci�cally, we can think

that subjects are updating expectations such that �ej(t + 1) = �aj (t). What is missing

from this analysis is the behavior when a subject realizes they are not last (or are �rst).

Figure 2 hints that the reaction in the two scenarios is not symmetric. This can easily be

inferred by noticing that if the reactions to the two scenarios were symmetric, the average

would approach zero since there are more people not last than are last. The direction of

updating, however, is di¤erent in this scenario. If a subject realizes they are not last, this

does not mean they had wrong expectations about the payo¤ they would receive from

choosing number j; it means they had the wrong expectations about the payo¤s from

the other strategies, i.e., the information they receive informs them that a lower number

could have potentially led to a higher pro�t. More formally, we can say that a subject�s

expected payo¤ from choosing any number is a function of their beliefs about the payo¤s

they can receive from any other number j. In other words, �e�j(t) = �(t)�
e
j(t) where �

23We will assume the initial propensity is �xed and will not explore what may cause a subject to
develop initial propensities.
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is a parameter accounting for the distance between j and other numbers close to j. The

closer the number is to j, � approaches 1 from above or below. Notice that if a player

thinks that choosing number j is optimal, then � < 1.24 In each period then, a subject

updates their expected pro�t from choosing any number and they update how this pro�t

relates to similarly chosen e¤orts.

The implications of a structure where there exists a correlation in pro�ts as de�ned is

obvious and results in the asymmetries observed. This can be explained by noticing that

by choosing a higher number in period t after losing in period t � 1 results in a higher
cost, but these costs are o¤set by the much larger gain attainable if the subject is not

last. This is in contrast to a subject who �nds they are not last. The gain from choosing

a lower number is small since it is only a cost savings, but the potential loss if the subject

is last is quite large. Or, put more simply, the potential payo¤ gain in period t from large

deviations from the number chosen in period t� 1 is much greater if the subject was last
in period t� 1 than if they were not last.

C Robustness checks

Below are regressions run with the full samples which serve as robustness checks for Table

6.

24This is similar in spirit to the �experimentation�parameter in the Roth-Erev Model.
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Di¤erence in E¤ort (1)
LOS

(2)
W&L

(3)
Pooled

(4)
Pooled

Constant �2:33
(2:74)

�9:36��
(3:91)

�5:37��
(2:25)

�5:07��
(2:35)

LagLast 12:38���
(2:51)

14:48���
(2:47)

13:52���
(1:72)

11:94���
(2:60)

W&L �0:01
(:29)

�0:07
(0:66)

Size Six 0:72
(0:52)

1:60��
(0:50)

0:99���
(0:34)

0:42
(0:66)

Number of Times Last �0:48
(0:59)

�0:90��
(0:39)

�0:74��
(0:32)

�0:63�
(0:34)

Lag Last�Size Six 2:65
(2:50)

Lag Last�W&L 0:28
(2:30)

Age 0:04
(0:07)

�0:07
(0:07)

0:01
(0:05)

0:01
(0:05)

Risk Aversion �0:05
(0:10)

0:28��
(0:12)

0:08
(0:07)

0:07
(0:08)

Loss Aversion �0:04
(0:10)

0:38��
(0:17)

0:10
(0:09)

0:12
(0:10)

Female �0:15
(0:34)

�0:08
(0:49)

0:00
(0:29)

0:06
(0:31)

Period 0:00
(0:05)

0:02
(0:06)

0:02
(0:04)

0:00
(0:04)

# of Observations 1368 1368 2736 2736
# of Clusters 72 72 144 144
r-squared 0:09 0:06 0:07 0:07

Table 8: Random e¤ects panel regressions on the di¤erence in e¤ort from period t� 1 to
period t where the main explanatory variable is whether the subject was last in period
t � 1. Because of this, period 1 is not included in the analysis. Robust standard errors,
which are clustered at the individual level, are in parenthesis. Three, two and one stars
represent signi�cance at the one, �ve and ten percent level respectively. Columns (1) and
(2) are given in the text while columns (3) and (4) are used as robustness checks.
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Di¤erence in E¤ort (1)
WIN

(2)
W&L

(3)
Pooled

(4)
Pooled

Constant 11:10��
(3:24)

2:33
(3:19)

6:38��
(3:09)

6:40��
(3:28)

Lag First �17:30���
(2:96)

�10:78���
(2:02)

�13:82���
(1:787)

�16:00���
(2:71)

W&L 0:49
(0:36)

�1:06
(0:71)

Size Six �1:00
(0:77)

�0:91��
(0:38)

�1:10���
(0:42)

�0:66
(0:73)

Number of Times First 1:14��
(0:51)

1:07���
(0:33)

1:04���
(0:31)

1:00���
(0:32)

Lag First�Size Six �2:02
(2:72)

Lag First�W&L 6:19���
(2:40)

Age �0:12
(0:11)

�0:13�
(0:07)

�0:13��
(0:07)

�0:11
(0:07)

Risk Aversion :05
(0:18)

0:15
(0:10)

0:10
(0:09)

0:11
(0:10)

Loss Aversion �0:39�
(0:24)

0:24�
(0:13)

�0:03
(0:12)

�0:05
(0:13)

Female 0:17
(0:70)

0:14
(0:41)

0:02
(0:39)

0:08
(0:41)

Period �0:19��
(0:09)

�0:14���
(0:05)

�0:16���
(0:05)

�0:16���
(0:05)

# of Observations 1368 1368 2736 2736
# of Clusters 72 72 144 144
r-squared 0:03 0:03 0:03 0:03

Table 9: Random e¤ects panel regressions on the di¤erence in e¤ort from period t� 1 to
period t where the main explanatory variable is whether the subject was �rst in period
t � 1. Because of this, period 1 is not included in the analysis. Robust standard errors,
which are clustered at the individual level, are in parenthesis. Three, two and one stars
represent signi�cance at the one, �ve and ten percent level respectively. The models in
columns (1) and (2) are given in the text while the models in columns (3) and (4) are
used as robustness checks.
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