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∗
, Johannes Kern

†

August 7, 2013

Abstrat

This paper presents a lass of �nite two-player normal-form n ×
n games we oin irulant games. In irulant games, eah player's

payo� matrix is a irulant matrix, i.e. eah row vetor is rotated

by one element relative to the preeding row vetor. We show that

when the payo�s in the �rst row of eah payo� matrix are stritly

ordered, a single parameter fully determines the exat number and the

struture of all Nash equilibria in these games. The parameter itself

only depends on the position of the largest payo� in the �rst row of

player 2's payo� matrix. The lass of irulant games ontains well-

known games suh as Mathing Pennies, Rok-Paper-Sissors, as well

as sublasses of oordination and ommon interest games.

1 Introdution

The multipliity of Nash equilibrium outomes for a given game has moti-

vated many sholars to analyze the struture of Nash equilibria in general

as well as for speial sublasses of games. Consider for example the ase

of �nite two-player normal-form n × n games. Provided that suh a game

is non-degenerate the number of Nash equilibria is �nite and odd (see e.g.

Shapley, 1974). Quint and Shubik (1997) have shown that for any odd inte-

ger number y between 1 and 2n − 1, there exist a game with exatly y Nash
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equilibria. Moreover, they onjetured that 2n − 1 is the tight upper bound

on the ardinality of the set of Nash equilibria.

This onjeture an be onsidered as the starting point of the ative searh

for the upper bound on the number of Nash equilibria (mixed or pure) in suh

games. Quint and Shubik (1997) showed that the onjeture holds for n = 3,
Keiding (1997) and MLennan and Park (1999) proved it for n = 4. The

onjeture was refuted by von Stengel (1997) who gave a ounterexample for

n = 6 with a total number of 75 Nash equilibria whereas 26 − 1 = 63.1 New

upper bounds on the number of distint Nash equilibria were established in

Keiding (1998) and von Stengel (1999). However, speial lasses of games

exist for whih the onjeture is true as shown by Quint and Shubik (2002)

for the lass of oordination games.

In this paper, we investigate a lass of �nite two-player normal-form n×n
games we oin irulant games. As any �nite game an be fully represented

by the assoiated players' payo� matries, our onepts and ideas are ex-

pressed in terms of properties the payo� matries have to ful�ll. In irulant

games, the players' payo� matries are irulant, i.e. eah row vetor is ro-

tated by one element relative to the preeding row vetor. It is easy to

show that all suh games have a Nash equilibrium where players random-

ize between all pure strategies with equal probability (uniformly ompletely

mixed Nash equilibrium). Our main theorems establish the exat number of

(pure strategy) Nash equilibria when the �rst row of eah payo� matrix is

stritly ordered. We also provide neessary and su�ient onditions for the

uniqueness of the uniformly ompletely mixed Nash equilibrium and for the

existene of pure strategy Nash equilibria. As a onsequene of our main

results we obtain that the maximal number of Nash equilibria in these games

is exatly 2n − 1. The number of pure strategy Nash equilibria is either 0, 1,

2, or n, and for a spei� sublass a pure strategy Nash equilibrium always

exists. Further, the best response orrespondenes indue an equivalene re-

lation on eah player's set of pure strategies. In any Nash equilibrium all

strategies within one equivalene lass are either played with stritly posi-

tive or with zero probability. Our proofs provide a reipe on how to derive

the equivalene lasses and allow us to haraterize the support of all Nash

equilibrium strategies.

1

The game is onstruted using pairs of dual yli polytopes with 2n suitably labeled

faets in n-spae. Suh games were oined `hard to solve'. The Lemke-Howson algorithm,

the lassial method for �nding one Nash equilibrium of a two-player normal-form game,

takes a number of steps exponential in the dimension n (see Savani and von Stengel, 2006).
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The lass of irulant games ontains well-known games suh as Mathing

Pennies, Rok-Paper-Sissors, and sublasses of ommon-interest and oordi-

nation games.

2

Reently, several other artiles analyzed sublasses of games

with a speial fous on di�erent notions of yliity. Duersh et al. (2012)

onsider symmetri two-player zero-sum normal-form games and de�ne gen-

eralized rok-paper-sissors matries (gRPS ) in terms of best response yles.

In their setting, a game has a pure strategy Nash equilibrium if and only if it

is not a gRPS. Bahel (2012) and Bahel and Haller (2013) examine zero-sum

games that are based on yli preferene relations on the set of ations and

haraterize the set of Nash equilibria. In the former paper, ations are dis-

tinguishable, i.e. one spei� ations is the beginning of the yli relation,

and there exists a unique Nash equilibrium. In the latter, the ations are

anonymous, i.e. eah ation an be seen as the beginning of the yle with-

out a�eting the relation, and depending on the number of ations the Nash

equilibrium is unique or there exists an in�nite number of Nash equilibria.

To the best of our knowledge, games with irulant payo� matries have not

been studied so far.

The remainder of this paper is strutured as follows. Setion 2 introdues

the lass of (ordered) irulant games. In Setion 3.2, we present the main

theorems on the number and struture of Nash equilibria in ordered irulant

games. Setion 4 presents irulant games whih are not ordered but exhibit

similar properties as ordered irulant games. Setion 5 onludes. All proofs

are relegated to the appendix.

2 Cirulant Games

Let Γ = ((S1, S2), (π1, π2)) be a �nite two-player normal-form game where

Si = {0, 1, . . . , ni − 1} denotes player i's set of pure strategies and πi :
S1 × S2 → R denotes player i's payo� funtion for i = 1, 2.3 We will write

player i's payo� funtion as an n1 × n2 matrix. Player i's payo� matrix

Ai = (aikl)k∈S1,l∈S2
is then given by aikl = πi(k, l). Thus in both matries eah

row orresponds to a pure strategy of player 1 and eah olumn to a pure

2

As Quint and Shubik (2002) re-established the upper bound of 2
n − 1 for the lass of

oordination games, we would like to point out that the lass of irulant games is di�erent

from this lass. The two lasses do, however, have a non-empty intersetion.

3

We hoose to label players' strategies from 0 to ni−1 as this will later simplify notation

signi�antly.
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strategy of player 2. Following the notation in e.g. Alós-Ferrer and Kuzmis

(2013), we will also write πi(s|s
′) for player i's payo� if he hooses a strategy

s and player −i hooses strategy s′. The set of mixed strategies for player i
is denoted by Σi. For σi ∈ Σi, σi(s) denotes the probability that σi plaes on

the pure strategy s ∈ Si. The set of all pure strategies played with stritly

positive probability is denoted by supp(σi). Payo� funtions are extended to

the sets of mixed strategies by expeted payo�s. Given a mixed strategy σ−i

of player −i, a best response for player i against σ−i is a strategy σi suh that

πi(σi|σ−i) ≥ πi(σ
′
i|σ−i) for all σ

′
i ∈ Σi. The set of best responses for player i

against a strategy σ−i of the other player is denoted by BRi(σ−i). A �nite

two-player normal-form game is non-degenerate if for any mixed strategy

σi of player i with supp(σi) = m, player −i has at most m best responses

against σi. In what follows Γn denotes a �nite two-player normal-form game

in whih S1 = S2 = Sn = {0, . . . , n− 1}.
The following two results are well-known and will be used throughout the

paper.

Proposition 1 (Best Response Condition Nash, 1951). Let Γ be a �nite

two-player normal-form game. Let σ1 ∈ Σ1 and σ2 ∈ Σ2. Then σi is a best

response to σ−i if and only if for all si ∈ Si

σi(si) > 0 ⇒ πi(si|σ−i) = max
s∈Si

πi(s|σ−i).

Proposition 2 (Shapley, 1974; Quint and Shubik, 1997). Let Γ be a �nite

non-degenerate two-player normal-form game with strategy set S1 = S2 = S.
Then

(i) Γ has a �nite and odd number of Nash equilibria.

(ii) if T1, T2 ⊆ S then Γ has at most one Nash equilibrium (σ1, σ2) suh

that supp(σ1) = T1 and supp(σ2) = T2.

Before we an introdue irulant games a ouple of de�nitions are ne-

essary.

Definition 1. A matrix A ∈ Rn×n
is
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irulant if it has the form

A =















a0 a1 a2 · · · an−1

an−1 a0 a1 . . . an−2

an−2 an1
a0 . . . an−3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a1 a2 a3 · · · a0















and anti-irulant if

A =















a0 · · · an−3 an−2 an−1

a1 · · · an−2 an−1 a0
a2 · · · an−1 a0 a1
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

an−1 · · · an−4 an−3 an−2















We are now ready to de�ne a irulant game.

Definition 2. A two-player normal-form game Γn is a irulant game if eah

players' payo� matrix is either irulant or anti-irulant.

Note that if Ai is irulant then aij = aj−i and if Ai is anti-irulant

then aij = ai+j where the indies are to be read modulo n, e.g. −1 =
n − 1, n + 1 = 1, et. In a irulant game, if player 1's payo� matrix is

irulant then π1(s|s
′) = a1s′−s and if player 1's payo� matrix is anti-irulant

then π1(s|s
′) = a1s+s′. Similarly if player 2's payo� matrix is irulant then

π2(s|s
′) = a2s−s′ and if player 2's payo� matrix is anti-irulant then π2(s|s

′) =
a2s+s′. Throughout the paper the sum and di�erene of two strategies in a

irulant game is to be read modulo n. Similarly, the multipliation of a

strategy with an integer is to be read modulo n.
Sine in a irulant game the sum of the payo�s in eah row and eah

olumn is onstant, if one player plays the ompletely uniformly mixed strat-

egy, then all of the others player's pure strategies yield the same payo�. An

immediate onsequene of this is the following

Lemma 1. Let Γn be a irulant game. Then σ∗ = (σ∗
1, σ

∗
2) where σ∗

i (s) =
1/n for all s ∈ Sn

, i = 1, 2, is a Nash equilibrium of Γn.

We an lassify irulant games aording to whether the players' payo�

matries �yle� in the same or in opposite diretions.
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Definition 3. A irulant game is iso-irulant if the players' payo� matri-

es are either both irulant or both anti-irulant matries. It is ounter-

irulant if one player's payo� matrix is irulant and the other player's

payo� matrix is anti-irulant.

For n = 2 every iso-irulant game is also ounter-irulant and vie versa,

as any irulant 2 × 2 matrix is also anti-irulant. For n ≥ 3, however, the
lass of iso-irulant games is disjoint from the lass of ounter-irulant

games.

Example 1 (Mathing Pennies).

The game given by

A1 =

(

1 −1
−1 1

)

, A2 =

(

−1 1
1 −1

)

is the well-know Mathing Pennies game. As both players' payo� matries

are irulant (and anti-irulant), it is an iso-irulant (and also a ounter-

irulant) game and [(1/2, 1/2), (1/2, 1/2)] is a Nash equilibrium of this game.

As we will show later it is the unique one.

Example 2 (Rok-Paper-Sissors).

The game given by

A1 =





2 1 3
3 2 1
1 3 2



 , A2 =





2 3 1
1 2 3
3 1 2





is Rok-Paper-Sissors. Strategies are ordered so that for both players strat-

egy 0 orresponds to �Rok�, strategy 1 orresponds to �Paper�, and strategy

2 orresponds to �Sissors�. This is an iso-irulant game and a Nash equi-

librium of this game is [(1/3, 1/3, 1/3), (1/3, 1/3, 1/3)]. As we will see later

it is the unique one.

Example 3 (4× 4 Coordination Game).

The game given by
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A1 =









5 4 3 2
4 3 2 5
3 2 5 4
2 5 4 3









, A2 =









5 4 3 2
4 3 2 5
3 2 5 4
2 5 4 3









is an iso-irulant game and the uniform probability distribution over all

pure strategies, [(1/4, 1/4, 1/4, 1/4), (1/4, 1/4, 1/4, 1/4)] onstitutes a Nash

equilibrium. It is not the only one. As we will see later this game has 15
Nash equilibria.

The following two games are examples of ounter-irulant games. In

both games player 1's payo� matrix is anti-irulant and player 2's payo�

matrix is irulant.

Example 4.

A1 =









4 3 2 1
3 2 1 4
2 1 4 3
1 4 3 2









, A2 =









1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1









This is a ounter-irulant game. The uniform probability distribution over

all pure strategies [(1/4, 1/4, 1/4, 1/4), (1/4, 1/4, 1/4, 1/4)] is a Nash equilib-

rium of this game. As we will see later this game has 3 Nash equilibria.

Example 5.

A1 =













5 4 3 2 1
4 3 2 1 5
3 2 1 5 4
2 1 5 4 3
1 5 4 3 2













, A2 =













3 2 1 5 4
4 3 2 1 5
5 4 3 2 1
1 5 4 3 2
2 1 5 4 3













This is a ounter-irulant game. The uniform probability distribution over

all pure strategies [(1/5, 1/5, 1/5, 1/5, 1/5), (1/5, 1/5, 1/5, 1/5, 1/5)] is a Nash
equilibrium of this game. As we will see later this game has 7 Nash equilibria.

Definition 4. A irulant game Γn is ordered with shift 1 ≤ k ≤ n if

a10 > a11 > · · · > a1n−1 and either a2n−k > a2n−k+1 > · · · > a2n−1 > a20 > a21 >
· · · > a2n−k−1 or a

2
n−k > a2n−k−1 > · · · > a21 > a20 > a2n−1 > · · · > a2n−k+1.
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In an ordered irulant game the entries in the �rst row of player 1's payo�

matrix derease when moving from left to right. The entries in the �rst row of

player 2's payo� matrix derease either when moving from the largest payo�

to the right, or when moving from the largest payo� to the left. The shift k
is determined by the position of the largest payo� in the �rst row of player

2's payo� matrix. A shift of k = n orresponds to a20 being player 2's largest
payo�. A shift of k = 0 is of ourse possible but for notational onveniene

is formally represented by a shift of k = n. Ordered iso-irulant games

with shift k = n apture the lass of ordered irulant oordination games.

Mathing Pennies (Example 1) is and example of an ordered iso-irulant

(and ounter-irulant) game with shift k = 1 as for player 2 a2n−1 = a21 = 1
is the largest payo�. Relabeling the strategies in Example 2 suh that for

player 1, strategy 0 is `Rok', strategy 1 is `Sissors', and strategy 2 is `Paper'

and for player 2, strategy 0 is `Sissors', strategy 1 is `Rok', and strategy 2

is `Paper' yields the following payo� matries:

A1 =





3 2 1
2 1 3
1 3 2



 , A2 =





1 2 3
2 3 1
3 1 2



 .

It is now easy to see that (this relabeled version of) Rok-Paper-Sissors is

an ordered iso-irulant with shift k = 1, as for player 2 a2n−1 = a22 = 3 is the

largest payo�. The 4 × 4 oordination game (Example 3) is an example of

an ordered iso-irulant game with shift k = 4 as for player 2 a2n−4 = a20 = 5
is the largest payo�.

Example 4 is an ordered ounter-irulant game with shift k = 3 as for

player 2 a2n−3 = a21 = 4 is the largest payo�. Example 5 is an ordered ounter-

irulant game with shift k = 2 as for player 2 a2n−2 = a23 = 5 is the largest

payo�.

3 Main Results

In this setion we present the main results on the number and the struture

of Nash equilibria in ordered irulant games. We start by presenting some

preliminary lemmata that we require to state the main results. All proofs

are relegated to the appendix.
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3.1 Preliminaries

Lemma 2. Let Γn be an ordered irulant game with shift k in whih player

1's payo� matrix is anti-irulant and let d = gcd(k, n).

(i) If Γn is iso-irulant, then in any Nash equilibrium (σ1, σ2), for all

s ∈ Sn
, σi(s) = 0 if and only if σi(s+km) = 0 for all m = 0, . . . , n

d
−1,

i = 1, 2.

(ii) If Γn is ounter-irulant, then in any Nash equilibrium (σ1, σ2), for all
s ∈ Sn

, σ1(s) = 0 if and only if σ1(−s + k) = 0 and σ2(s) = 0 if and

only if σ2(−s− k) = 0

Given an ordered iso-irulant game Γn, we an de�ne an equivalene

relation ∼ on the set Sn
by s ∼ s′ if and only if s = s′ + mk for some

0 ≤ m ≤ n
d
− 1, where d = gcd(n, k). Denote the equivalene lass of

s ∈ Sn
by I(s). Note that, s′ + m1k 6= s′ + m2k for all 0 ≤ m1 < m2 ≤

n
d
− 1. Hene I(s) = {s + mk|0 ≤ m ≤ n

d
− 1} ontains n/d elements

and there are d di�erent equivalene lasses. Let I(Sn) = {I(s)|s ∈ Sn}
be the set of equivalene lasses. Suppose player 1's payo� matrix is anti-

irulant. By Lemma 2(i) two strategies are equivalent if and only if in

any Nash equilibrium either both are simultaneously played with positive

probability or both are simultaneously played with zero probability.

For an ordered ounter-irulant game let C1(s) = {s,−s+k} and C2(s) =
{s,−s−k} for all s ∈ Sn

. Note that any lass C1(s) ontains at least one and
at most two elements. It ontains one element if −s+k ≡ s mod n and two

elements if −s+k 6≡ s mod n. The former ours if and only if either 2s = k
or 2s = n + k. Thus there is a singleton lass if and only if either

k
2
∈ Sn

or

(n+k)
2

∈ Sn
, i.e. if either k or (n + k) is an even number. In partiular there

an be at most two singleton lasses. Similarly, any lass C2(s) ontains one
element if −s− k ≡ s mod n and two elements if −s− k 6≡ s mod n. The
former ours if and only if either 2s = n − k or 2s = 2n − k. Thus there

is a singleton lass if and only if either n − k or 2n − k is an even number

whih holds if and only if either k or (n + k) is an even number. We de�ne

Ci(S
n) := {Ci(s)|s ∈ Sn}, i = 1, 2. Suppose player 1's payo� matrix is

anti-irulant. Then, by Lemma 2(ii), s′ ∈ Ci(s) if and only if in any Nash

equilibrium either both are simultaneously played with positive probability

or both are simultaneously played with zero probability.

For an ordered iso-irulant game, the set I(Sn) is a partition of Sn
by

onstrution. It an be shown (Lemma B3 in the appendix) that this is also

9



true in the ase of ordered ounter-irulant games and C1(S
n) and C2(S

n),
respetively.

The following lemma overs the onnetion between the support of a

strategy of player i and the best response of player −i against that strategy.

Lemma 3. Let Γn be an ordered irulant game in whih player 1's payo�

matrix is anti-irulant.

(i) If Γn is iso-irulant then if σi ∈ Σi and I(s) ∈ I(Sn) are suh that

supp(σi) ∩ I(s) = ∅ then BR−i(σi) ∩ I(−s) = ∅.

(ii) If Γn is ounter-irulant then if supp(σ−i) ∩ C−i(s) = ∅ for C−i(s) ∈
C−i(S

n) then BRi(σ−i) ∩ Ci(−s) = ∅.

The next lemma shows that only spei� subsets of Sn
an arise as the

support of a Nash equilibrium strategy of player 1.

Lemma 4. Let Γn be an ordered irulant game in whih player 1's payo�

matrix is anti-irulant.

(i) If Γn is iso-irulant then for any union U =
⋃m

j=1 I(s
j) of elements of

I(Sn) there is a unique Nash equilibrium (σ1, σ2) suh that supp(σ1) =
U . Further, for any Nash Equilibrium (σ1, σ2) there is a union U =
⋃m

j=1 I(s
j) of elements of I(Sn) suh that supp(σ1) = U .

(ii) If Γn is ounter-irulant then for any union U =
⋃m

j=1C1(s
j) of ele-

ments of C1(S
n) there is a unique Nash equilibrium (σ1, σ2) suh that

supp(σ1) = U . Further, for any Nash Equilibrium (σ1, σ2) there is a

union U =
⋃m

j=1C1(s
j) of elements of C1(S

n) suh that supp(σ1) = U .

3.2 The Number of Nash Equilibria

Theorem 1. Let Γn be an ordered iso-irulant game with shift k and let

d = gcd(k, n) denote the greatest ommon divisor of k and n. Then Γn has

2d − 1 Nash equilibria.

Sine by de�nition k ≤ n, neessarily gcd(k, n) ≤ n. It follows that an

ordered iso-irulant game an have at most 2n−1 Nash equilibria. Further,

an ordered iso-irulant game has a unique Nash equilibrium if and only if

gcd(k, n) = 1. Together with Lemma 1, this implies that if gcd(k, n) = 1

10



then the unique Nash equilibrium is the one where both players plae equal

probability on eah pure strategy. Some immediate onsequenes of these

results are the following.

�Mathing Pennies� (Example 1) is an ordered iso-irulant game with

shift k = 1. Hene, [(1/2, 1/2), (1/2, 1/2)] is the unique Nash equilibrium.

�Rok-Paper-Sissors� (Example 2) is an ordered iso-irulant game with shift

k = 1. Hene, the unique Nash equilibrium is [(1/3, 1/3, 1/3), (1/3, 1/3, 1/3)].

Proposition 3. Let Γn be an ordered iso-irulant game with shift k. Γn has

n pure strategy Nash equilibria if and only if k = n. Further, Γn has no pure

strategy Nash equilibrium if and only if k 6= n.

By the last proposition an ordered iso-irulant game Γn has either 0 or

n pure strategy Nash equilibria. The �4×4 oordination � (Example 3) is an

ordered iso-irulant game with shift k = 4. As gcd(4, 4) = 4, by Theorem

1, this game has 24 − 1 = 15 Nash equilibria. By Proposition 3 four of these

are in pure strategies.

Theorem 2. Let Γn be an ordered ounter-irulant game with shift k.

(i) If n is odd, then Γn has exatly 2
n+1

2 − 1 Nash equilibria.

(ii) If both n and k are even, then Γn has exatly 2
n

2
+1 − 1 Nash equilibria.

(iii) If n is even and k is odd, then Γn has exatly 2
n

2 − 1 Nash equilibria.

It follows that an ordered ounter-irulant game an have at most 2
n

2
+1−

1 Nash equilibria. Further, an ordered ounter-irulant game has a unique

Nash equilibrium if and only if n = 2 and k = 1. Example 4 is an ordered

ounter-irulant game with shift k = 3. As n is even and k is odd, by

Theorem 2(iii) the game has 22 − 1 = 3 Nash equilibria. Example 5 is an

ordered ounter-irulant game with shift k = 2. As n is odd, by Theorem

2(i) the game has 23 − 1 = 7 Nash equilibria.

Proposition 4. Let Γn be an ordered ounter-irulant game with shift k.

(i) Γn has a exatly one pure strategy Nash equilibrium if and only if n is

odd.

(ii) Γn has exatly two pure strategy Nash equilibria if and only if both n
and k are even.
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(iii) Γn has no pure strategy Nash equilibrium if and only if n is even and

k is odd.

In Example 4 n is even and k is odd, and by Proposition 4(iii) none of

its three Nash equilibria are in pure strategies. In Example 5 n is odd, and

by Proposition 4(i) one of its seven Nash equilibria is in pure strategies.

It follows from (i) and (ii) in Proposition 4 that the lass of ordered

ounter-irulant games with even shift is a lass of games for whih a pure

strategy Nash equilibrium always exists.

3.3 The Struture of Nash Equilibria

By Lemma 4, there exists a straightforward way to haraterize the support of

all Nash equilibrium strategies for a given ordered irulant game. Moreover,

one we know what to look for the weights of the strategies in the support

an be easily derived.

Consider �rst the ase of an ordered iso-irulant game with n and k,
and let d = gcd(n, k). By Lemma A1(i) in the appendix we an transform

the game so that player 1's payo� matrix is anti-irulant. The irulant

struture of the payo� matries allows us to de�ne an equivalene relation

on the set of pure strategies S for eah player. For a pure strategy s ∈ Sn
,

the orresponding equivalene lass I(s) = {s+mk|0 ≤ m ≤ n
d
−1} ontains

n/d elements and there are d di�erent equivalene lasses. In any Nash

equilibrium all strategies within one equivalene lass are either played with

stritly positive or with zero probability. It follows from Lemma 4(i) that

in any Nash equilibrium the support of either player's strategy is the union

of lasses in I(Sn) = {I(s)|s ∈ Sn} and further that for any suh union

of lasses in I(Sn) there is a unique Nash equilibrium in whih player 1's

strategy has this union as its support. Further, if the mixed strategy pro�le

(σ1, σ2) is a Nash equilibrium with supp(σ1) =
⋃m

j=1 I(s
j) for some strategies

s1, . . . , sm ∈ Sn
then by Lemma 3(i) it follows that supp(σ2) =

⋃m
j=1 I(−sj).

The atual probabilities put on eah strategy of ourse depend on the atual

payo�s, however, the struture of the supports is the same for all ordered iso-

irulant games with the same shift and the same number of pure strategies.

Let us revisit the �4 × 4 oordination� game from Example 3. Here,

n = k = d = 4 and hene there are four (singleton) lasses: I(0) = {0},
I(1) = {1}, I(2) = {2}, and I(3) = {3}. Eah lass is part of a (pure strat-

egy) Nash equilibrium in whih supp(σ1) = I(s) and supp(σ2) = I(−s), and
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there are four suh ombinations. E.g., in one Nash equilibrium player 1 plays

the strategy s = 1, i.e. plays the equivalene lass I(1) and player 2 plays s =
3, the equivalene lass I(−1) = I(3). Analogously, the three remaining pure

strategy Nash equilibria are given by the pro�les (0, 0), (2, 2), and (3, 1). Fur-
ther, eah union of two lasses is part of a (mixed strategy) Nash equilibrium

in whih supp(σ1) = I(s1)∪I(s2) and supp(σ2) = I(−s1)∪I(−s2). There are
six suh ombinations. E.g., in one Nash equilibrium player 1 puts positive

probability only on I(0) and I(1) and player 2 puts positive probability on

I(−0) = I(0) and I(−1) = I(3). The probabilities are easily derived from the

orresponding indi�erene onditions and the Nash equilibrium strategy pro-

�le is [(1/4, 3/4, 0, 0), (3/4, 0, 0, 1/4)]. The remaining �ve Nash equilibria in

whih the support of player 1's strategy is the union of two lasses are given by

the pro�les [(1/2, 0, 1/2, 0), (1/2, 0, 1/2, 0)], [(3/4, 0, 0, 1/4), (1/4, 3/4, 0, 0)],
[(0, 1/4, 3/4, 0), (0, 0, 1/4, 3/4)], [(0, 1/2, 0, 1/2), (0, 1/2, 0, 1/2)], [(0, 0, 1/4, 3/4),
(0, 1/4, 3/4, )]. Analogously, there are four Nash equilibria in whih the sup-

port of player 1's (and player 2's) strategy is the union of three lasses:

[(1/4, 1/4, 1/2, 0), (1/2, 0, 1/4, 1/4)], [(1/4, 1/2, 0, 1/4), (1/4, 1/2, 0, 1/4)], [(1/2, 0, 1/4, 1/4),
(1/4, 1/4, 1/2, 0)], [(0, 1/4, 1/4, 1/2), (0, 1/4, 1/4, 1/2)]. Finally, there is one

Nash equilibrium where player 1's (and player 2's) strategy is ompletely

mixed: [(1/4, 1/4, 1/4, 1/4), (1/4, 1/4, 1/4, 1/4)].
Consider now the ase of an ordered ounter-irulant game with given n

and k. We an apply Lemma A1(ii) in the appendix to transform this game

so that player 1's payo� matrix is anti-irulant. As in the previous ase, we

an de�ne an equivalene relation on set of pure strategies for eah player.

For all s ∈ S let C1(s) = {s,−s + k} denote the orresponding equivalene

lass of player 1 and C2(s) = {s,−s − k} the one of player 2. Note that

any lass C1(s), C2(s) ontains at least one and at most two elements. It

follows from Lemma 4(ii) that in any Nash equilibrium the support of player

1's strategy is a union of lasses C1(S
n) and that for any union of lasses in

C1(S
n) = {C1(s)|s ∈ Sn} there is a Nash equilibrium in whih the support of

player 1's strategy has this union as its support. Further, if (σ1, σ2) is a Nash
equilibrium with supp(σ1) =

⋃m
j=1C1(s

j) for some strategies s1, . . . , sm ∈ Sn

then by Lemma 3(ii) it follows that supp(σ2) =
⋃m

j=1C2(−sj).
Let us revisit the game in Example 4. Here, n = 4 and k = 3. There

are two lasses for player 1: C1(0) = C1(3) = {0, 3} and C1(1) = C1(2) =
{1, 2}. Correspondingly there are two lasses for player 2: C2(0) = C2(1) =
{0, 1} and C2(2) = C2(3) = {2, 3}. There are two Nash equilibria in whih
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the support of player 1's (and player 2's) strategy onsists of a single lass:

[(1/4, 0, 0, 3/4), (1/4, 3/4, 0, 0)],[(0, 3/4, 1/4, 0), (0, 0, 1/4, 3/4)]. Further there
is one equilibrium in whih player 1 (and player 2) plays a ompletely mixed

strategy: [(1/4, 1/4, 1/4, 1/4), (1/4, 1/4, 1/4, 1/4)].

4 Generalizations

By our de�nition there are games that are not ordered iso-irulant (ounter-

irulant) games, but that an be transformed into one by a simple relabeling

of strategies. We hose to exlude those games from our de�nition for ease of

exposition. However, the results presented above also apply for these games.

It is not neessary to insist on eah row ontaining the same entries. All

our proof go through if payo�s are transformed in a way that preserves the

order of entries in eah row and in eah olumn of the payo� matries.

Example 6. In the 3× 3 with payo� matries

A1 =





3.1 1.9 0.8
1.5 0.9 3.4
0.5 3.2 2.1



 , A2 =





0.7 2.2 3.5
1.8 2.6 0.1
3 0.5 2.8



 .

the order of payo�s in eah row and in eah olumn is the same as in Rok-

Paper-Sissors (Example 2). The proof of Theorem 1 an easily be general-

ized to this ase to show that this game has a unique Nash equilibrium. As

the sum of payo�s in eah row is not onstant, however, the unique Nash equi-

librium is not the strategy pro�le in whih both players play the uniformly

ompletely mixed strategies.

In this sense, our results on the number and the struture of Nash equi-

libria only depend on the order of payo�s in the rows and olumns of the

payo� matries.

Our results further generalize to oordination games in whih players

obtain a stritly positive payo� if and only if they use the same strategy

and a payo� of 0 otherwise i.e., so-alled games of pure oordination. The

resulting payo� matries are of the form

A1 =















a0 0 0 · · · 0
0 a1 0 . . . 0
0 0 a2 . . . 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · an−1















A2 =















a0 0 0 · · · 0
0 a1 0 . . . 0
0 0 a2 . . . 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · an−1
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Proving that suh games have 2n − 1 Nash equilibria works analogously to

the proof of Theorem 1.

5 Conlusion

In this paper we introdue and investigate a lass of two-player normal-form

games we oin irulant games. Cirulant games have a straightforward

representation in form of irulant matries. Eah player's payo� matrix is

fully haraterized by a single row vetor, whih appears as the �rst row of

the matrix. The remaining rows are obtained through yli permutations

of the �rst line suh that a row vetor is rotated by one element relative

to the preeding row vetor. All irulant games have a Nash equilibrium

where players randomize between all pure strategies with equal probability

(uniformly ompletely mixed Nash equilibrium).

If the �rst row of eah payo� matrix is stritly ordered (ordered iru-

lant games), the irulant struture underlying the payo� matries has some

interesting impliations. First, the best response orrespondenes indue a

partition on eah players' set of pure strategies into equivalene lasses. In

any Nash Equilibrium all strategies within one lass are either played with

stritly positive or with zero probability. Seond, there exist a simple one-to-

one orrespondene between the players' equivalene lasses. If some player

puts zero probability on one lass (i.e. plays all pure strategies within one

lass with zero probability), the other has one orresponding equivalene lass

he plays with zero probability. Finally, a single parameter k fully determines

the strategy lasses and the relation between the players' lasses. The param-

eter itself only depends on the position of the largest payo� in the �rst row

of player 2's payo� matrix. For a given ordered irulant game, knowing k
and the number of pure strategies n su�es to alulate the number of Nash

equilibria and to desribe the support of all Nash equilibrium strategies. As

an immediate onsequene of our main results we reestablish 2n − 1 as the

tight upper bound on the number of Nash equilibria in these games.

The lass of ordered irulant games ontains well-known games suh as

Mathing Pennies and Rok-Paper-Sissors. Our approah shifts the fous

of these two games away from their zero-sum property towards the irulant

struture of the orresponding payo� matries. Hereby, we shed new light

on their onnetion. Mathing Pennies is simply the two-strategy variant of

Rok-Paper-Sissors. Within our framework the two games belong to the

15



same sub-lass of ordered irulant games. Both games are haraterized by

k = 1 and the only Nash equilibrium is the uniformly ompletely mixed one.

The ommon denominator that onnets these games is the balaned payo�

struture indued by the irulant matries with a shift of k = 1. Moreover,

this reinterpretation is robust in the sense that only relative payo�s matter.

We an write down Rok-Paper-Sissors in many variants, inluding asym-

metri evaluations of wins or losses, variants that annot be transformed into

zero-sum games. Yet, the balaned struture is preserved and the best players

an do is to randomize between all pure strategies with equal probability.

A di�erent way to interpret our results is from the perspetive of Soial

Choie Theory. As for example in Gibbard (1974), we an deompose soial

states into di�erent omponents representing private spheres of the individ-

uals. If we require a olletive hoie rule to respet liberalism with respet

to private spheres, then individuals should be deisive over their own private

spheres (i.e. hoose their strategies) and should not intervene with private

spheres of the other individuals (i.e. given the other players' strategies). In

this ontext, soial states orrespond to strategy pro�les, and private spheres

to players' strategies. If the there is no pure strategy equilibrium in the or-

responding game, the olletive hoie set is empty (see e.g. Gaertner, 2006,

Chapter 4.4). Hene we an interpret the sublass of ordered irulant games

with pure strategy Nash equilibria as a domain restrition on the olletive

hoie rule suh that the hoie set is not empty.
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A Transformation of Games

Lemma A1. (i) Let Γn be an iso-irulant game in whih both players'

payo� matries are irulant. There is a permutation of row vetors

that �xes the �rst row in both matries and transforms both player's

payo� matries into anti-irulant matries.

(ii) Let Γn be a ounter-irulant game in whih player 1's payo� matrix

is irulant. There is a permutation of row vetors that �xes that �rst

row in both matries and transforms player 1's payo� matrix into an

anti-irulant matrix and player 2's matrix into a irulant matrix.

Proof. (i) A matrix A is anti-irulant if and only if A = PC, where C is a

irulant matrix and

P =



















1 0 · · · 0 0 0
0 0 · · · 0 0 1
0 0 · · · 0 1 0
0 0 · · · 1 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 1 · · · 0 0 0



















(Davis, 1979, p. 162, Corollary). The matrix P swithes rows i and n+1− i
and �xes the �rst row. Using this result, we obtain that PA1 and PA2 are

anti-irulant matries sine both A1 and A2 are irulant matries.

(ii) Using the matrix P de�ned as in (i), we obtain that PA1 is anti-

irulant (Davis, 1979, p. 162, Corollary). As A2 is anti-irulant, A2 = PC
for some irulant matrix C (Davis, 1979, p. 162, Corollary). Hene PA2 =
P (PC) and sine P = P−1

(Davis, 1979, p.28, equ. (2.4.22)), we obtain that

PA2 is a irulant matrix.
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B Proofs

Lemma B2. Let Γn be an ordered irulant game with shift k in whih player

1's payo� matrix is anti-irulant.

(i) For all σ2 ∈ Σ2 and all s ∈ Sn
if σ2(s) = 0 then −s /∈ BR1(σ2) .

(ii) If Γn is iso-irulant, then for all σ1 ∈ Σ1 and all s ∈ Sn
if σ1(s) = 0

then (−s− k) /∈ BR2(σ1) .

(iii) If Γn is ounter-irulant, then for all σ1 ∈ Σ1 and all s ∈ Sn
if σ1(s) =

0 then (s− k) /∈ BR2(σ1) .

Proof. (i) Let σ2 ∈ Σ2 be suh that σ2(s) = 0 for some s ∈ Sn
. Sine player

1's payo� matrix is anti-irulant πi(s|s
′) = a1s+s′. By de�nition, for player 1

a1s′−s < a1s′−s−1 for all s
′ 6= s. Hene, as σ2(s) = 0,

π1(−s|σ2) =
∑

s′ 6=s

σ2(s
′)a1s′−s

<
∑

s′ 6=s

σ2(s
′)a1s′−s−1 = π1(−s− 1|σ2),

whih implies that −s /∈ BR1(σ2).
(ii) Let σ1 ∈ Σ1 and s ∈ Sn

be suh that σ1(s) = 0. Sine player 2's payo�
matrix is anti-irulant, π2(s|s

′) = a2s′+s for s, s
′ ∈ S. Sine Γn is an ordered

irulant game, either a2n−k > a2n−k+1 > · · · > a2n−1 > a20 > a1 > · · · > a2n−k−1

or a2n−k > a2n−k−1 > · · · > a21 > a20 > an−1 > · · · > a2n−k+1 and hene either

a2s′ < a2s′−1 or a2s′ < a2s′+1 for all s′ 6= n − k. We will only prove the result

for the former ase as the proof for the latter works analogously (by using

the inequality a2s′ < a2s′+1 for all s′ 6= n − k instead of a2s′ < a2s′−1). Sine

a2s′ < a2s′−1 we obtain a2s′−s−k < a2s′−s−k−1 for all s
′ 6= s and hene

π2(−s− k|σ1) =
∑

s′ 6=s

σ1(s
′)a2s′−s−k

<
∑

s′ 6=s

σ1(s
′)a2s′−s−k−1 = π2(−s− k − 1|σ1),

so (−s− k) /∈ BR2(σ1).
(iii) Let σ1 ∈ Σ1 and s ∈ Sn

be suh that σ1(s) = 0. Sine player 2's

payo� matrix is irulant, π2(s|s
′) = a2s′−s for s, s

′ ∈ S. Sine Γn is an ordered
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irulant game, by de�nition either a2n−k > · · · > a2n−1 > a20 > · · · > a2n−k−1

or a2n−k > a2n−k−1 > · · · > a20 > a2n−1 > · · · > a2n−k+1 and hene a2s′ < a2s′−1

or a2s′ < a2s′+1 for all s
′ 6= n− k. We will only prove the result for the former

ase as the proof for the latter works analogously. Sine a2s′ < a2s′−1 we obtain

a2s−k−s′ < a2s−k−1−s′ for all s
′ 6= s and hene

π2(s− k|σ1) =
∑

s′ 6=s

σ1(s
′)a2s−k−s′

<
∑

s′ 6=s

σ1(s
′)a2s−k−1−s′ = π2(s− k − 1|σ1),

so (s− k) /∈ BR2(σ1).

The lemma makes a statement about best responses of player i given that

player −i plays some strategy with zero probability provided that player 1's

payo� matrix is anti-irulant. By (i) if player 2 plays a strategy s with prob-
ability 0 then for player 1 strategy −s annot be a best response. Similarly,

(ii) and (iii) state that if in an iso-irulant (ounter-irulant) game player

1 plaes probability 0 on strategy s then −s − k (s − k) annot be a best

response for player 2. The idea behind the proof is very simple. For player

1 strategy −s − 1 yields a stritly higher payo� than −s against any pure

strategy of player 2 exept s. Hene, if player 2 plaes probability 0 on s then
−s annot be a best response. Analogously, for player 2 strategy −s− k− 1
(s − k − 1) yields a stritly higher payo� than −s − k (s − k) against any
pure strategy of player 1 exept s.

Proof of Lemma 2. (i) The �if� part is trivial. To see the �only if� part let

(σ1, σ2) be a Nash equilibrium of Γn and let s ∈ Sn
be suh that σ1(s) = 0. By

Lemma B2(ii), σ2(−s−k) = 0 and onsequently by Lemma B2(i) σ1(s+k) =
0. Iterating this argument yields σ1(s+mk) = 0 for all m = 0, . . . , n

d
− 1. If

σ2(s) = 0 the argument works analogously.

(ii) By Lemma B2(i) and (iii) for any Nash equilibrium (σ1, σ2) and any

s ∈ Sn
we obtain

σ1(s) = 0 ⇒ σ2(s− k) = 0 ⇒ σ1(−s+ k) = 0

and

σ1(−s + k) = 0 ⇒ σ2(−s) = 0 ⇒ σ1(s) = 0.
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Analogously, for player 2, we obtain

σ2(s) = 0 ⇒ σ1(−s) = 0 ⇒ σ2(−s− k) = 0

and

σ2(−s− k) = 0 ⇒ σ1(s+ k) = 0 ⇒ σ2(s) = 0.

Lemma B3. Let Γn be an ordered ounter-irulant game. For i = 1, 2 the

set Ci(S
n) is a partition of Sn

.

Proof. We will prove the result for i = 1 as the proof for i = 2 works

analogously. Sine s ∈ C1(s) for all s ∈ Sn
, it follows that

⋃

s∈Sn C1(s) = Sn
.

If there is s ∈ C1(s) ∩ C1(s
′) for some s, s′ ∈ Sn

, then then sine s ∈ C1(s)
either s = s or s = −s + k. If s = s then Ci(s) = Ci(s). If s = −s + k
then −s + k = s − k + k = s. In any ase it follows that C1(s) = C1(s).
Using the same argument one obtains C1(s) = C1(s

′) and hene that C1(s) =
C1(s

′).

Proof of Lemma 3. (i) First, let s ∈ Sn
be suh that supp(σ1) ∩ I(s) = ∅.

By Lemma B2(ii), −s − (m + 1)k /∈ BR2(σ1) for all 0 ≤ m ≤ n/d − 1. As

{−s− (m+1)k|0 ≤ m ≤ n/d− 1} = I(−s) we obtain BR2(σ1)∩ I(−s) = ∅.
Next, let s ∈ Sn

be suh that supp(σ2) ∩ I(s) = ∅. By Lemma B2(i),

−s − mk /∈ BR1(σ2) for all 0 ≤ m ≤ n/d − 1. As {−s − mk|0 ≤ m ≤
n/d− 1} = I(−s) we obtain BR1(σ2) ∩ I(−s) = ∅.

(ii) If supp(σ−i) ∩ C−i(s) = ∅ for C−i(s) ∈ C−i(S
n), then, sine C−i(s) =

{s,−s+ (−1)i−1k}, by Lemma B2(i) and (iii), −s, s+ (−1)i−1k /∈ BRi(σ−i).
Hene BRi(σ−i) ∩ Ci(−s) = ∅.

Lemma B4. Let Γn be an ordered iso-irulant game in whih both play-

ers' payo� matries are anti-irulant. For every s ∈ Sn
, there is a Nash

equilibrium (σ1, σ2) suh that supp(σ1) = I(s) and supp(σ2) = I(−s).

Proof. Given s ∈ Sn
, de�ne σ1(s) = d/n for all s ∈ I(s) and σ2(s) = d/n for

all s ∈ I(−s). By onstrution supp(σ1) = I(s) and supp(σ2) = I(−s). By
Lemma 3(i), any strategy outside I(s) annot be a best response for player

1 against σ2 and any strategy outside I(−s) annot be a best response for

player 2 against σ1. Further, π1(s|σ2) =
∑n/d−1

m=0
d
n
as+s+mk = π1(s

′|σ2) for

all s, s′ ∈ I(s) and analogously π2(s|σ1) = π2(s
′|σ1) for all s, s′ ∈ I(−s).

Proposition 1 yields that (σ1, σ2) is a Nash equilibrium of Γn.
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The next lemma establishes a result for ordered ounter-irulant games

whih is analogous to Lemma B4 for ordered iso-irulant games.

Lemma B5. Let Γn be an ordered ounter-irulant game in whih player

1's payo� matrix is anti-irulant and let σ = (σ1, σ2) ∈ Σ1 × Σ2.

(i) Ci(s) is a singleton if and only if C−i(−s) is a singleton.

(ii) For every s ∈ Sn
, there is a Nash equilibrium (σ1, σ2) suh that supp(σ1) =

C1(s) and supp(σ2) = C2(−s).

Proof. (i) Suppose that Ci(s) is a singleton. By onstrution, s ≡ −s +
(−1)i−1k mod n whih is equivalent to −s ≡ s+(−1)ik mod n. This holds
if and only if C−i(−s) is a singleton.

(ii) Note that this follows from (i) and Lemma 3(ii) if C1(s) is a singleton
set. Hene, suppose that C1(s) = {s,−s+ k} ontains two elements. Then,

by (i), C2(−s) = {−s, s − k} ontains two elements and neither 2s = k
nor 2s = n + k. Choose σ1(s) as the solution to xa2−2s + (1 − x)a2−k =
xa2−k + (1− x)a22s−2k, i.e.

σs
1(s) =

a22s−2k − a2n−k

a22s−2k − a2n−k + a2n−2s − a2n−k

.

By de�nition a2n−k is player 2's largest payo� implying that a22s−2k−a2n−k < 0
sine 2s 6= n+k and that a2n−2s−a2n−k < 0 sine 2s 6= k. Hene σ1(s) ∈]0, 1[.

Choose σs
2(−s) as the solution to xa10+(1−x)a12s−k = xa1−2s+k+(1−x)a10,

i.e.

σs
2(−s) =

a10 − a12s−k

a10 − a12s−k + a10 − a1−2s+k

.

By de�nition a10 is player 1's largest payo�. Hene as 2s 6= k a10 − a12s−k > 0
and a10 − a1−2s+k > 0 implying that σ2(−s) ∈]0, 1[. By Lemma 3(ii) and

Proposition 1, (σ1, σ2) is a Nash equilibrium.

The set C1(S) an be viewed as a partition of the strategy set for player

1 while C2(S) is a partition of the strategy set for player 2. By (i) a lass

C1(s) of player 1 �orresponds" to a lass C2(−s) of player 2 in the sense

that if player 1 puts probability 0 on all strategies in C1(s) then none of the

strategies in C2(−s) are a best response for player 2 and vie versa. Part (ii)

states that two �orresponding� lasses ontain the same number of elements.
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By (iii) for every lass C1(s) there is always a Nash Equilibrium suh that

player 1's strategy has this lass as its support while player 2's strategy has

support C2(−s). The equilibrium onstruted to prove (ii) is suh that player

1 hooses his strategy (with support C1(s)) suh that player 2 is indi�erent

between all strategies in C2(−s) (and vie versa). As Γn is a non-degenerate

game, by Proposition 2(ii) this is the unique equilibrium (σ1, σ2) suh that

supp(σ1) = C1(s) and supp(σ2) = C2(−s).
In Example 4 there are 2 lasses C1(s) (and by Lemma B4(i) also C2(s))

in Sn
. The lasses are C1(0) = {0, 3}, C1(1) = {1, 2}, and C2(0) = {0, 1},

C2(2) = {2, 3}. As there are no singleton lasses, there are no pure strategy

equilibria.

In Example 5 there are 3 lasses C1(s) (and by Lemma B4(i) also C2(s))
in Sn

. These are C1(0) = {0, 2}, C1(1) = {1}, C1(3) = {3, 4}, and C2(0) =
{0, 3}, C2(2) = {1, 2}, C2(4) = {4}. The game has one pure-strategy Nash

equilibrium: (1, 4).
Having determined the support of an equilibrium strategy for player 1

Lemmata B4 and B5 an be used to determine the support of player 2's

equilibrium strategy.

Proposition B1. For the two-player normal-form game Γn let S1 = {[s]1|s ∈
Sn} and S2 = {[s]2|s ∈ Sn} be partitions of Sn

suh that |S1| = |S2|. If Γn,

S1, and S2 satisfy

(a) for all Nash equilibria (σ1, σ2), and all s, s′ ∈ S, if s′ ∈ [s]i then σi(s) =
0 if and only if σi(s

′) = 0,

(b) for all σi ∈ Σi, i = 1, 2, supp(σi) ∩ [s]i = ∅ for [s]i ∈ Si implies

BR−i(σi) ∩ [−s]−i = ∅,

() for all s ∈ Sn
, Γn has a Nash equilibrium (σ1, σ2) with supp(σ1) = [s]1

and supp(σ2) = [−s]2,

then

(i) for any M ⊆ S1 Γn has a unique Nash equilibrium (σ1, σ2) with supp(σ1) =
⋃

[s]1∈M
[s]1;

(ii) Γn has exatly 2|S1| − 1 Nash equilibria.
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This proposition is the entral part of the proof of Theorems 1 and 2.

Using the results in the previous setions it follows immediately that its

hypotheses (in partiular properties (a)-()) are satis�ed by ordered iso-

irulant and ordered ounter-irulant games.

Proof. (i) Given ∅ 6= M ⊆ S1 let −M := {[−s]2|[s]1 ∈ M} ⊆ and let ΓM
n be

the redued game where player 1's set of strategies is

⋃

[s]1∈M
[s]1 and player

2's set of strategies is

⋃

[s]1∈M
[−s]2 (and the payo� funtions are restrited

aordingly).

Claim A: Let M ′ ⊆ M ⊆ S1 be a nonempty subset of S1 and let

(σM ′

1 , σM ′

2 ) be a ompletely mixed Nash equilibrium of ΓM ′

n . Then (σM
1 , σM

2 )
de�ned by σM

1 (s) = σM ′

1 (s) if [s]1 ∈ M ′
and σM

1 (s) = 0 otherwise, and

σM
2 (s) = σM ′

2 (s) if [s]2 ∈ −M ′
and σM

2 (s) = 0 otherwise is a Nash equilibrium

in ΓM
n .

Sine (σM ′

1 , σM ′

2 ) is a ompletely mixed Nash equilibrium of ΓM ′

n , all strate-

gies in

⋃

[s]1∈M ′[−s]2 yield the same payo� for player 2 against σM
1 . By hy-

pothesis (b), sine supp(σM
1 ) =

⋃

[s]∈M ′[s], all strategies outside
⋃

[s]1∈M ′ [−s]2
annot be a best response for player 2 against σM

1 . Analogously all strate-

gies in

⋃

[s]1∈M ′[s]1 yield the same payo� for player 1 against σM
2 , and sine

supp(σM
2 ) = −

⋃

[s]1∈M ′[−s]2, strategies outside
⋃

[s]1∈M ′[s]1 annot be a best

response for player 1 against σM
2 . Hene, by Proposition 1, (σM

1 , σM
2 ) is a

Nash equilibrium in ΓM
n . This proves the laim.

Claim B: For any ∅ 6= M ⊆ S1, the redued game ΓM
n has exatly one

ompletely mixed Nash equilibrium.

Let ∅ 6= M ⊆ S1 be suh that |M | = m. We will prove the laim by

indution over m. Note �rst, that by hypothesis (b), in any Nash equilibrium

(σ1, σ2) of Γ
M
n , supp(σ1) is a union of elements of M .

For m = 1, this follows by hypothesis (). For m > 1, by indution

hypothesis we obtain that for all ∅ 6= M ′ ( M the redued game ΓM ′

n has a

unique ompletely mixed Nash equilibrium. By Claim A, for every ∅ 6= M ′ (

M there is a Nash equilibrium (σM
1 , σM

2 ) in ΓM
n with supp(σM

1 ) =
⋃

[s]∈M ′[s].

As by Proposition 2(ii) for any ∅ 6= M ′ ( M there an be at most one

Nash equilibrium (σ1, σ2) in ΓM
n with supp(σ1) = M ′

we obtain that there is

exatly one suh Nash equilibrium. This implies that ΓM
n has at least 2m− 2

Nash equilibria.
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Suppose there is no ompletely mixed Nash equilibrium in ΓM
n . Then ΓM

n

has exatly 2m−2 Nash equilibria. From hypotheses (a) and (b) it follows that

Γn is non-degenerate and hene that ΓM
n is non-degenerate. By Proposition

2(i) ΓM
n must have an odd number of Nash equilibria, whih ontradits the

fat that 2m − 2 is even. Hene there is at least one ompletely mixed Nash

equilibrium and again beause ΓM
n is non-degenerate by Proposition 2(ii)

there is exatly one. This proves the laim.

By Claim B, for ∅ 6= M ⊆ S1, Γ
M
n has exatly one ompletely mixed

Nash equilibrium (σM
1 , σM

2 ). By Claim A, this indues a Nash equilibrium

(σ1, σ2) in Γn with supp(σ1) =
⋃

[s]1∈M
[s]1. Any Nash equilibrium (σ′

1, σ
′
2) 6=

(σ1, σ2) with supp(σ′
1) =

⋃

[s]1∈M
[s]1 would indue a ompletely mixed Nash

equilibrium in ΓM
n di�erent from (σM

1 , σM
2 ), a ontradition. Hene Γn has

exatly one Nash equilibrium (σ1, σ2) with supp(σ1) =
⋃

[s]1∈M
[s]1.

(ii) From (i) it follows that for any ∅ 6= M ⊆ S1 there is a unique Nash

equilibrium (σ1, σ2) in Γn suh that supp(σ1) =
⋃

[s]1∈M
[s]1. Further, by

hypothesis (a), for any Nash equilibrium (σ1, σ2) of Γn there is ∅ 6= M ⊆ S1

suh that supp(σ1) =
⋃

[s]1∈M
[s]1. As S1 has 2

|S1| − 1 nonempty subsets, Γn

has exatly 2|S1| − 1 Nash equilibria.

Proof of Lemma 4. (i) To see the �rst part, let M =
⋃m

j=1 I(s
j) be a union of

elements of I(Sn). By Lemma 2(i) and Lemma B4, Γn and S1 = S2 = I(Sn)
as de�ned in setion 3.1 then satisfy the hypotheses of Proposition B1. Hene,

there is a unique Nash equilibrium (σ1, σ2) with supp(σ1) = M .

To prove the seond part, let (σ1, σ2) be a Nash equilibrium. By Lemma

2(i), supp(σ1) is a union of elements in I(Sn).
(ii) Too see the �rst part, let M =

⋃m
j=1C1(s

j) be a union of elements

of C1(S
n). By Lemma B3, C1(S

n) and C2(S
n) as de�ned in setion 3.1 are

partitions of Sn
. Further, by Lemma B5(i), |C1(S

n)| = |C2(S
n)| and by

Lemma 2(ii), Lemma 3(ii), and B5(ii), Γn, S1 = C1(S
n), and S2 = C2(S

n)
satisfy properties (a)-() in Proposition B1. It follows that there is a unique

Nash equilibrium (σ1, σ2) with supp(σ1) = M .

To prove the seond part, let (σ1, σ2) be a Nash equilibrium. By Lemma

2(ii), supp(σ1) is a union of elements in C1(S
n).

Proof of Theorem 1. If Γn is an ordered iso-irulant game in whih both

players' payo� matries are anti-irulant then by Lemma 2(i) and Lemma
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B4, Γn and S1 = S2 = I(Sn) as de�ned in setion 3.1 then satisfy the

hypotheses of Proposition B1. As |I(Sn)| = d, it follows that Γn has 2d − 1
Nash equilibria. If Γn is an iso-irulant game in whih both players' payo�

matries are irulant, there is a permutation of row vetors that transforms

both players' payo� matries into anti-irulant matries while �xing the �rst

row in both matries (Lemma A1(i)). This permutation, whih is essentially

a relabeling of the players' strategies, does not a�et the number of equilibria.

Hene, the proof of Theorem 1 is omplete.

Proof of Theorem 2. If Γn is an ordered ounter-irulant game in whih

player 1's payo� matrix is anti-irulant and player 2's payo� matrix is ir-

ulant then by Lemma B3, C1(S
n) and C2(S

n) as de�ned in setion 3.1 are

partitions of Sn
. Further, by Lemma B5(i), |C1(S

n)| = |C2(S
n)| and by

Lemma 2(ii), Lemma 3(ii), and B5(ii), Γn, S1 = C1(S
n), and S2 = C2(S

n)
satisfy properties (a)-() in Proposition B1 and hene Γn has 2|C1(Sn)| − 1
Nash equilibria.

To prove (i)-(iii) it hene su�es to determine |C1(S
n)|. Note that any

lass C1(s) ontains either one or two elements. It ontains one element if

and only if −s+k ≡ s whih ours if and only if either 2s = k or 2s = n+k.
Further, there are at most two singleton lasses.

(i) If n is odd, then either n− k is odd (if k is even) or 2n− k is odd (if

k is odd). Hene there is one singleton lass in C1(S
n) and sine all other

elements of C1(S
n) ontain two elements, |C1(S

n)| = (n−1)/2+1 = (n+1)/2.
(ii) If both n and k are even, then both k and n+k are even and k/2, (n+

k)/2 ∈ Sn
. Hene there are two singleton lasses in C1(S

n) and sine all other
elements of C1(S

n) ontain two elements, |C1(S
n)| = (n−2)/2+2 = (n+2)/2.

(iii) If n is even and k is odd, then n+k is odd and hene neither k/2 ∈ Sn

nor (n+ k)/2 ∈ Sn
. Hene there is no singleton lass and hene all elements

of C1(S
n) ontain 2 elements, implying that |C1(S

n)| = n/2 = n/2.
If Γn is a ount-irulant game in whih player 1's payo� matrix is ir-

ulant and player 2's payo� matrix is anti-irulant, there is a permutation

of row vetors that transforms player 1's payo� matrix into an anti-irulant

matrix. Applying the same permutation of row vetors to player 2's payo�

matrix yields a di�erent version of the same game in whih strategies are

di�erently labeled and player 1's payo� matrix is anti-irulant and player

2's payo� matrix is irulant (Lemma A1(ii)). This permutation does not

a�et the number of Nash equilibria and hene the proof of Theorem 2 is

omplete.
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Proof of Proposition 3. Note �rst that if both players' payo� matries are

irulant then by Lemma A1(i) the game an be transformed into a di�erent

version of the same game in whih both players' payo� matries are anti-

irulant by a permutation of row vetors. Sine suh a permutation does

not a�et the number of pure strategy Nash equilibria, we assume wlog that

both players' payo� matries are anti-irulant.

To see the �if� part suppose k = n. Then by onstrution, eah lass I(s)
is a singleton set and there are n disjoint lasses. Hene by Lemma B4, Γn

has at least n pure strategy Nash equilibria. By Lemma 2(i), in any pure

strategy Nash equilibrium (σ1, σ2), supp(σ1) = I(s) for some s ∈ S and hene

Γn has exatly n pure strategy Nash equilibria.

To prove the �only if� part let Γn have n pure strategy Nash equilibria

and let (s1, s2) be one of them. By Lemma 2(i), I(s1) must be a singleton

set. By onstrution, I(s1) is a singleton set if and only if k = n.
This proves the �rst part of the theorem.

To see the seond part, note that by onstrution of the lasses I(s) is
a singleton set if and only if k = n for any s ∈ S. Further by Lemma 2(i)

and Lemma B4, Γn has a pure strategy Nash equilibrium if and only if there

is a singleton equivalene lass I(s). Hene, Γn has no pure strategy Nash

equilibrium if and only if k 6= n.

Proof of Proposition 4. Note �rst that if player 1's payo� matrix is irulant

then by Lemma A1(i) the game an be transformed into a di�erent version

of the same game in whih player 1's payo� matrix is anti-irulant by a

permutation of row vetors. Sine suh a permutation does not a�et the

number of pure strategy Nash equilibria, we assume wlog that player 1's

payo� matrix is anti-irulant.

(i) By Lemma 2(ii) and Lemma B5(ii), Γn has one pure strategy Nash

equilibrium if and only if one of the lasses C1(s) is a singleton set, whih by

onstrution happens if and only if n is odd.

(ii) By Lemma 2(ii) and Lemma B5(ii), Γn has two pure strategy Nash

equilibria if and only if two of the lasses C1(s) is a singleton set, whih by

onstrution happens if and only if both n and k are even.

(iii) By Lemma 2(ii) and Lemma B5(ii), Γn has no pure strategy Nash

equilibrium if and only if none of the lasses C1(s) is a singleton set, whih

by onstrution happens if and only n is even and k is odd.
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