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Circulant Games

Pura-Georg Grani¢ * Johannes Kern

August 7, 2013

Abstract

This paper presents a class of finite two-player normal-form n x
n games we coin circulant games. In circulant games, each player’s
payoff matrix is a circulant matrix, i.e. each row vector is rotated
by one element relative to the preceding row vector. We show that
when the payoffs in the first row of each payoff matrix are strictly
ordered, a single parameter fully determines the exact number and the
structure of all Nash equilibria in these games. The parameter itself
only depends on the position of the largest payoff in the first row of
player 2’s payoff matrix. The class of circulant games contains well-
known games such as Matching Pennies, Rock-Paper-Scissors, as well
as subclasses of coordination and common interest games.

1 Introduction

The multiplicity of Nash equilibrium outcomes for a given game has moti-
vated many scholars to analyze the structure of Nash equilibria in general
as well as for special subclasses of games. Consider for example the case
of finite two-player normal-form n x n games. Provided that such a game
is non-degenerate the number of Nash equilibria is finite and odd (see e.g.
Shapley, 1974). Quint and Shubik (1997) have shown that for any odd inte-
ger number y between 1 and 2" — 1, there exist a game with exactly y Nash
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equilibria. Moreover, they conjectured that 2" — 1 is the tight upper bound
on the cardinality of the set of Nash equilibria.

This conjecture can be considered as the starting point of the active search
for the upper bound on the number of Nash equilibria (mixed or pure) in such
games. Quint and Shubik (1997) showed that the conjecture holds for n = 3,
Keiding (1997) and McLennan and Park (1999) proved it for n = 4. The
conjecture was refuted by von Stengel (1997) who gave a counterexample for
n = 6 with a total number of 75 Nash equilibria whereas 2 — 1 = 63.! New
upper bounds on the number of distinct Nash equilibria were established in
Keiding (1998) and von Stengel (1999). However, special classes of games
exist for which the conjecture is true as shown by Quint and Shubik (2002)
for the class of coordination games.

In this paper, we investigate a class of finite two-player normal-form n xn
games we coin circulant games. As any finite game can be fully represented
by the associated players’ payoff matrices, our concepts and ideas are ex-
pressed in terms of properties the payoff matrices have to fulfill. In circulant
games, the players’ payoff matrices are circulant, i.e. each row vector is ro-
tated by one element relative to the preceding row vector. It is easy to
show that all such games have a Nash equilibrium where players random-
ize between all pure strategies with equal probability (uniformly completely
mixed Nash equilibrium). Our main theorems establish the exact number of
(pure strategy) Nash equilibria when the first row of each payoff matrix is
strictly ordered. We also provide necessary and sufficient conditions for the
uniqueness of the uniformly completely mixed Nash equilibrium and for the
existence of pure strategy Nash equilibria. As a consequence of our main
results we obtain that the maximal number of Nash equilibria in these games
is exactly 2" — 1. The number of pure strategy Nash equilibria is either 0, 1,
2, or n, and for a specific subclass a pure strategy Nash equilibrium always
exists. Further, the best response correspondences induce an equivalence re-
lation on each player’s set of pure strategies. In any Nash equilibrium all
strategies within one equivalence class are either played with strictly posi-
tive or with zero probability. Our proofs provide a recipe on how to derive
the equivalence classes and allow us to characterize the support of all Nash
equilibrium strategies.

!The game is constructed using pairs of dual cyclic polytopes with 2n suitably labeled
facets in n-space. Such games were coined ‘hard to solve’. The Lemke-Howson algorithm,
the classical method for finding one Nash equilibrium of a two-player normal-form game,
takes a number of steps exponential in the dimension n (see Savani and von Stengel, 2006).



The class of circulant games contains well-known games such as Matching
Pennies, Rock-Paper-Scissors, and subclasses of common-interest and coordi-
nation games.? Recently, several other articles analyzed subclasses of games
with a special focus on different notions of cyclicity. Duersch et al. (2012)
consider symmetric two-player zero-sum normal-form games and define gen-
eralized rock-paper-scissors matrices (¢RPS) in terms of best response cycles.
In their setting, a game has a pure strategy Nash equilibrium if and only if it
is not a gRPS. Bahel (2012) and Bahel and Haller (2013) examine zero-sum
games that are based on cyclic preference relations on the set of actions and
characterize the set of Nash equilibria. In the former paper, actions are dis-
tinguishable, i.e. one specific actions is the beginning of the cyclic relation,
and there exists a unique Nash equilibrium. In the latter, the actions are
anonymous, i.e. each action can be seen as the beginning of the cycle with-
out affecting the relation, and depending on the number of actions the Nash
equilibrium is unique or there exists an infinite number of Nash equilibria.
To the best of our knowledge, games with circulant payoff matrices have not
been studied so far.

The remainder of this paper is structured as follows. Section 2 introduces
the class of (ordered) circulant games. In Section 3.2, we present the main
theorems on the number and structure of Nash equilibria in ordered circulant
games. Section 4 presents circulant games which are not ordered but exhibit
similar properties as ordered circulant games. Section 5 concludes. All proofs
are relegated to the appendix.

2 Circulant Games

Let I' = ((S1,52), (71, m2)) be a finite two-player normal-form game where
S; = {0,1,...,n; — 1} denotes player i’s set of pure strategies and m; :
S1 x Sy — R denotes player i’s payoff function for i = 1,2.3 We will write
player ¢’s payoff function as an n; X ny matrix. Player ¢’s payoff matrix
A; = (a}y)res, ies, is then given by a}; = m;(k,1). Thus in both matrices each
row corresponds to a pure strategy of player 1 and each column to a pure

2As Quint and Shubik (2002) re-established the upper bound of 2" — 1 for the class of
coordination games, we would like to point out that the class of circulant games is different
from this class. The two classes do, however, have a non-empty intersection.

3We choose to label players’ strategies from 0 to n; — 1 as this will later simplify notation
significantly.



strategy of player 2. Following the notation in e.g. Alos-Ferrer and Kuzmics
(2013), we will also write 7;(s|s") for player i’s payoff if he chooses a strategy
s and player —i chooses strategy s’. The set of mixed strategies for player ¢
is denoted by %;. For o; € 3;, 0;(s) denotes the probability that o; places on
the pure strategy s € S;. The set of all pure strategies played with strictly
positive probability is denoted by supp(o;). Payoff functions are extended to
the sets of mixed strategies by expected payoffs. Given a mixed strategy o_;
of player —1, a best response for player ¢ against o_; is a strategy o; such that
mi(oi|lo—;) > mi(ol|o—;) for all o, € ;. The set of best responses for player i
against a strategy o_; of the other player is denoted by BR;(c_;). A finite
two-player normal-form game is non-degenerate if for any mixed strategy
o; of player ¢ with supp(o;) = m, player —i has at most m best responses
against 0;. In what follows I',, denotes a finite two-player normal-form game
in which Sl :SQ =5" = {0,,71-1}

The following two results are well-known and will be used throughout the
paper.

Proposition 1 (Best Response Condition Nash, 1951). Let T' be a finite
two-player normal-form game. Let oy € ¥y and o9 € Y. Then o; is a best
response to o_; if and only if for all s; € S;

oi(si) > 0= m(silo_;) = rsré%xm(sb_i).

(3

Proposition 2 (Shapley, 1974; Quint and Shubik, 1997). Let T" be a finite
non-degenerate two-player normal-form game with strategy set Sy = S = S.
Then

(1) T has a finite and odd number of Nash equilibria.

(17) if Ty,Ty C S then I' has at most one Nash equilibrium (oy,05) such
that supp(oy) = Ty and supp(oq) = Ts.

Before we can introduce circulant games a couple of definitions are nec-
essary.

Definition 1. A matrix A € R™*" is



circulant if it has the form

Qg ayp az -+ O4p—1

ap—1 Qp Qa1 ... QAp—2

A = Ap—2 an1 Qg Ap—3

a1 az as --- Qo
and anti-circulant if

Qg Tt Ap—3 Op—2 Gp—1

a1 o Qp—2 Qp-—1 Qg

A= az ++ Ap—1 Qg ay
Ap—1 - Ap—q4 Ap—3 QAp—2

We are now ready to define a circulant game.

Definition 2. A two-player normal-form game I, is a circulant game if each
players’ payoff matrix is either circulant or anti-circulant.

Note that if A; is circulant then a;; = a;_; and if A; is anti-circulant
then a;; = a;;; where the indices are to be read modulo n, e.g. -1 =
n—1,n+1=1, etc. In a circulant game, if player 1’s payoff matrix is
circulant then m(s]s’) = al,_, and if player 1’s payoff matrix is anti-circulant
then 7(s|s') = al, . Similarly if player 2’s payoff matrix is circulant then
ma(s|s’) = a?__, and if player 2’s payoff matrix is anti-circulant then my(s|s’) =
a?. . Throughout the paper the sum and difference of two strategies in a
circulant game is to be read modulo n. Similarly, the multiplication of a
strategy with an integer is to be read modulo n.

Since in a circulant game the sum of the payoffs in each row and each
column is constant, if one player plays the completely uniformly mixed strat-
egy, then all of the others player’s pure strategies yield the same payoff. An
immediate consequence of this is the following

Lemma 1. Let '), be a circulant game. Then o* = (o7, 03) where o} (s) =
1/n for all s € S™, i = 1,2, is a Nash equilibrium of T',,.

We can classify circulant games according to whether the players’ payoff
matrices “cycle” in the same or in opposite directions.



Definition 3. A circulant game is iso-circulant if the players’ payoff matri-
ces are either both circulant or both anti-circulant matrices. It is counter-
circulant if one player’s payoff matrix is circulant and the other player’s
payoff matrix is anti-circulant.

For n = 2 every iso-circulant game is also counter-circulant and vice versa,
as any circulant 2 x 2 matrix is also anti-circulant. For n > 3, however, the
class of iso-circulant games is disjoint from the class of counter-circulant
games.

Ezxample 1 (Matching Pennies).
The game given by

1 -1 -1 1
Al:(—l 1)’A2:( 1—1)

is the well-know Matching Pennies game. As both players’ payoff matrices
are circulant (and anti-circulant), it is an iso-circulant (and also a counter-
circulant) game and [(1/2,1/2), (1/2,1/2)] is a Nash equilibrium of this game.
As we will show later it is the unique one.

Ezxample 2 (Rock-Paper-Scissors).
The game given by

Alz ,AQI

_ W N
W N =
N = W
W = DN
_ N W
N W =

is Rock-Paper-Scissors. Strategies are ordered so that for both players strat-
egy 0 corresponds to “Rock”, strategy 1 corresponds to “Paper”, and strategy
2 corresponds to “Scissors”. This is an iso-circulant game and a Nash equi-
librium of this game is [(1/3,1/3,1/3),(1/3,1/3,1/3)]. As we will see later
it is the unique one.

Ezxample 3 (4 x 4 Coordination Game).
The game given by



5 4 3 2 5 4 3 2
4 3 25 4 3 25
A1_3254’A2_3254
2 5 4 3 2 5 4 3

is an iso-circulant game and the uniform probability distribution over all
pure strategies, [(1/4,1/4,1/4,1/4),(1/4,1/4,1/4,1/4)] constitutes a Nash
equilibrium. It is not the only one. As we will see later this game has 15
Nash equilibria.

The following two games are examples of counter-circulant games. In
both games player 1’s payoff matrix is anti-circulant and player 2’s payoff
matrix is circulant.

Ezample 4.
4 3 21 1 4 3 2
321 4 2 1 4 3
A1_2143’A2_3214
1 4 3 2 4 3 2 1

This is a counter-circulant game. The uniform probability distribution over
all pure strategies [(1/4,1/4,1/4,1/4),(1/4,1/4,1/4,1/4)] is a Nash equilib-
rium of this game. As we will see later this game has 3 Nash equilibria.

Ezample 5.
5 4 3 2 1 3215 4
4 3 215 4 3 2 1 5
A= 3 2 15 4 |,A=]5 43 21
215 4 3 1 54 3 2
1 54 3 2 21 5 4 3

This is a counter-circulant game. The uniform probability distribution over
all pure strategies [(1/5,1/5,1/5,1/5,1/5),(1/5,1/5,1/5,1/5,1/5)] is a Nash
equilibrium of this game. As we will see later this game has 7 Nash equilibria.

Definition 4. A circulant game I',, is ordered with shift 1 < k < n if
ay > af > -+ >ap_, and either a>_, > a2_, ., > -+ > a2 | > af > af >
ce>ak_yoral_y>ai o, > >al>ai>ai_ > >ak .



In an ordered circulant game the entries in the first row of player 1’s payoff
matrix decrease when moving from left to right. The entries in the first row of
player 2’s payoff matrix decrease either when moving from the largest payoff
to the right, or when moving from the largest payoff to the left. The shift k&
is determined by the position of the largest payoff in the first row of player
2’s payoff matrix. A shift of k& = n corresponds to a2 being player 2’s largest
payoff. A shift of &k = 0 is of course possible but for notational convenience
is formally represented by a shift of £ = n. Ordered iso-circulant games
with shift £ = n capture the class of ordered circulant coordination games.
Matching Pennies (Example 1) is and example of an ordered iso-circulant
(and counter-circulant) game with shift £ = 1 as for player 2 a?_; = a? =1
is the largest payoff. Relabeling the strategies in Example 2 such that for
player 1, strategy 0 is ‘Rock’, strategy 1 is ‘Scissors’, and strategy 2 is ‘Paper’
and for player 2, strategy 0 is ‘Scissors’, strategy 1 is ‘Rock’, and strategy 2
is ‘Paper’ yields the following payoff matrices:

A=

— N W
W = N
N W
N = W

1 2
A= 2 3
31

It is now easy to see that (this relabeled version of) Rock-Paper-Scissors is
an ordered iso-circulant with shift k = 1, as for player 2 a2_, = a3 = 3 is the
largest payoff. The 4 x 4 coordination game (Example 3) is an example of
an ordered iso-circulant game with shift k = 4 as for player 2 a>_, = a2 =5
is the largest payoff.

Example 4 is an ordered counter-circulant game with shift £k = 3 as for
player 2 a?_, = a? = 4 is the largest payoff. Example 5 is an ordered counter-
circulant game with shift k& = 2 as for player 2 a?_, = a2 = 5 is the largest
payoft.

3 Main Results

In this section we present the main results on the number and the structure
of Nash equilibria in ordered circulant games. We start by presenting some
preliminary lemmata that we require to state the main results. All proofs
are relegated to the appendix.



3.1 Preliminaries

Lemma 2. Let I, be an ordered circulant game with shift k in which player
1’s payoff matriz is anti-circulant and let d = ged(k,n).

(1) If T, is iso-circulant, then in any Nash equilibrium (o1,03), for all
s € 8", 04(s) = 0 if and only if o;(s+km) =0 for allm =0,...,%5—1,
i=1,2.

(1i) If Ty, is counter-circulant, then in any Nash equilibrium (o1, 02), for all
s € 8" o1(s) =0 if and only if o1(—s + k) = 0 and o2(s) = 0 if and
only if oo(—s —k) =0

Given an ordered iso-circulant game I',,, we can define an equivalence
relation ~ on the set S™ by s ~ & if and only if s = s’ + mk for some
0 <m < % —1, where d = ged(n, k). Denote the equivalence class of
s € S™ by I(s). Note that, s + mik # s + mok for all 0 < m; < my <
2 — 1. Hence I(s) = {s+mkl0 < m < Z — 1} contains n/d elements
and there are d different equivalence classes. Let I(S™) = {I(s)|s € S™}
be the set of equivalence classes. Suppose player 1’s payoff matrix is anti-
circulant. By Lemma 2(i) two strategies are equivalent if and only if in
any Nash equilibrium either both are simultaneously played with positive
probability or both are simultaneously played with zero probability.

For an ordered counter-circulant game let Cy(s) = {s, —s+k} and Cy(s) =
{s,—s—k} for all s € S™. Note that any class C(s) contains at least one and
at most two elements. It contains one element if —s+k =s mod n and two
elements if —s+k # s mod n. The former occurs if and only if either 25 = k
or 2s = n + k. Thus there is a singleton class if and only if either g e S" or
@ € 5™, i.e. if either k or (n + k) is an even number. In particular there
can be at most two singleton classes. Similarly, any class Cy(s) contains one
element if —s — k = s mod n and two elements if —s — k # s mod n. The
former occurs if and only if either 2s = n — k or 2s = 2n — k. Thus there
is a singleton class if and only if either n — k or 2n — k is an even number
which holds if and only if either k£ or (n + k) is an even number. We define
C;(S™) == {Ci(s)|s € S™}, i = 1,2. Suppose player 1’s payoff matrix is
anti-circulant. Then, by Lemma 2(ii), s’ € C;(s) if and only if in any Nash
equilibrium either both are simultaneously played with positive probability
or both are simultaneously played with zero probability.

For an ordered iso-circulant game, the set [(S™) is a partition of S™ by
construction. It can be shown (Lemma B3 in the appendix) that this is also

9



true in the case of ordered counter-circulant games and C1(S™) and Cy(S™),
respectively.

The following lemma covers the connection between the support of a
strategy of player ¢ and the best response of player —i against that strategy.

Lemma 3. Let '), be an ordered circulant game in which player 1’°s payoff
matriz s anti-circulant.

(1) If '), is iso-circulant then if o, € ¥; and 1(s) € 1(S™) are such that
supp(c;) N I(s) =0 then BR_;(o;) N I(—s) = 0.

(ii) If Ty, is counter-circulant then if supp(o_;) N C_;(s) = 0 for C_;(s) €
C_;(S™) then BR;(0_;) N Ci(—s) = 0.

The next lemma shows that only specific subsets of S™ can arise as the
support of a Nash equilibrium strategy of player 1.

Lemma 4. Let '), be an ordered circulant game in which player 1’°s payoff
matrix 15 anti-circulant.

(i) If T, is iso-circulant then for any union U = \JI_, I(s?) of elements of
I1(S™) there is a unique Nash equilibrium (o1, 02) such that supp(oy) =

U. Further, for any Nash Equilibrium (o1,05) there is a union U =
UL, I(s7) of elements of I1(S™) such that supp(o1) = U.

(ii) If 'y, is counter-circulant then for any union U = Uznzl Cy(s?) of ele-
ments of C1(S™) there is a unique Nash equilibrium (o1, 09) such that
supp(oy) = U. Further, for any Nash Equilibrium (o1, 09) there is a
union U = Jj~, C1(s?) of elements of C1(S™) such that supp(o1) = U.

3.2 The Number of Nash Equilibria

Theorem 1. Let I';, be an ordered iso-circulant game with shift k and let
d = ged(k,n) denote the greatest common divisor of k and n. Then T, has
2¢ — 1 Nash equilibria.

Since by definition k& < n, necessarily ged(k,n) < n. It follows that an
ordered iso-circulant game can have at most 2" — 1 Nash equilibria. Further,
an ordered iso-circulant game has a unique Nash equilibrium if and only if
ged(k,n) = 1. Together with Lemma 1, this implies that if ged(k,n) = 1

10



then the unique Nash equilibrium is the one where both players place equal
probability on each pure strategy. Some immediate consequences of these
results are the following.

“Matching Pennies” (Example 1) is an ordered iso-circulant game with
shift £ = 1. Hence, [(1/2,1/2),(1/2,1/2)] is the unique Nash equilibrium.
“Rock-Paper-Scissors” (Example 2) is an ordered iso-circulant game with shift
k = 1. Hence, the unique Nash equilibrium is [(1/3,1/3,1/3),(1/3,1/3,1/3)].

Proposition 3. Let I',, be an ordered iso-circulant game with shift k. T',, has
n pure strateqy Nash equilibria if and only if k = n. Further, I',, has no pure
strateqy Nash equilibrium if and only if k # n.

By the last proposition an ordered iso-circulant game I',, has either 0 or
n pure strategy Nash equilibria. The “4 x 4 coordination ” (Example 3) is an
ordered iso-circulant game with shift £ = 4. As ged(4,4) = 4, by Theorem
1, this game has 2* — 1 = 15 Nash equilibria. By Proposition 3 four of these
are in pure strategies.

Theorem 2. Let I',, be an ordered counter-circulant game with shift k.

(i) If n is odd, then T, has exactly 2" — 1 Nash equilibria.

(i7) If both n and k are even, then I',, has exactly 221 — 1 Nash equilibria.
(iii) If n is even and k is odd, then ', has evactly 25 — 1 Nash equilibria.

It follows that an ordered counter-circulant game can have at most 22+ —
1 Nash equilibria. Further, an ordered counter-circulant game has a unique
Nash equilibrium if and only if n = 2 and £ = 1. Example 4 is an ordered
counter-circulant game with shift & = 3. As n is even and k is odd, by
Theorem 2(iii) the game has 2 — 1 = 3 Nash equilibria. Example 5 is an
ordered counter-circulant game with shift £ = 2. As n is odd, by Theorem
2(i) the game has 2® — 1 = 7 Nash equilibria.

Proposition 4. Let I',, be an ordered counter-circulant game with shift k.

(1) Ty, has a exactly one pure strategy Nash equilibrium if and only if n is
odd.

(11) T, has exactly two pure strategy Nash equilibria if and only if both n
and k are even.

11



(iii) T, has no pure strategy Nash equilibrium if and only if n is even and
k is odd.

In Example 4 n is even and k is odd, and by Proposition 4(iii) none of
its three Nash equilibria are in pure strategies. In Example 5 n is odd, and
by Proposition 4(i) one of its seven Nash equilibria is in pure strategies.

It follows from (i) and (ii) in Proposition 4 that the class of ordered
counter-circulant games with even shift is a class of games for which a pure
strategy Nash equilibrium always exists.

3.3 The Structure of Nash Equilibria

By Lemma 4, there exists a straightforward way to characterize the support of
all Nash equilibrium strategies for a given ordered circulant game. Moreover,
once we know what to look for the weights of the strategies in the support
can be easily derived.

Consider first the case of an ordered iso-circulant game with n and k,
and let d = ged(n, k). By Lemma Al(i) in the appendix we can transform
the game so that player 1’s payoff matrix is anti-circulant. The circulant
structure of the payoff matrices allows us to define an equivalence relation
on the set of pure strategies S for each player. For a pure strategy s € S™,
the corresponding equivalence class I(s) = {s+mk|0 < m < % —1} contains
n/d elements and there are d different equivalence classes. In any Nash
equilibrium all strategies within one equivalence class are either played with
strictly positive or with zero probability. It follows from Lemma 4(i) that
in any Nash equilibrium the support of either player’s strategy is the union
of classes in I(S™) = {I(s)|s € S} and further that for any such union
of classes in I(S™) there is a unique Nash equilibrium in which player 1’s
strategy has this union as its support. Further, if the mixed strategy profile
(01, 02) is a Nash equilibrium with supp(o1) = (2, I(s?) for some strategies
s',...,s™ € S™ then by Lemma 3(i) it follows that supp(o2) = UL, I(—s7).
The actual probabilities put on each strategy of course depend on the actual
payoffs, however, the structure of the supports is the same for all ordered iso-
circulant games with the same shift and the same number of pure strategies.

Let us revisit the “4 x 4 coordination” game from Example 3. Here,
n =k = d = 4 and hence there are four (singleton) classes: I(0) = {0},
I(1) = {1}, I(2) = {2}, and I(3) = {3}. Each class is part of a (pure strat-
egy) Nash equilibrium in which supp(cy) = I(s) and supp(os) = I(—s), and

12



there are four such combinations. E.g., in one Nash equilibrium player 1 plays
the strategy s = 1, i.e. plays the equivalence class (1) and player 2 plays s =

3, the equivalence class I(—1) = I(3). Analogously, the three remaining pure
strategy Nash equilibria are given by the profiles (0,0), (2,2), and (3,1). Fur-
ther, each union of two classes is part of a (mixed strategy) Nash equilibrium
in which supp(o1) = I(s')UI(s?) and supp(oy) = I(—s')UI(—s?). There are
six such combinations. E.g., in one Nash equilibrium player 1 puts positive
probability only on 7(0) and I(1) and player 2 puts positive probability on
I(—0) = I(0) and I(—1) = I(3). The probabilities are easily derived from the
corresponding indifference conditions and the Nash equilibrium strategy pro-
file is [(1/4,3/4,0,0), (3/4,0,0,1/4)]. The remaining five Nash equilibria in
which the support of player 1’s strategy is the union of two classes are given by
the profiles [(1/2,0,1/2,0), (1/2,0,1/2,0)], [(3/4,0,0,1/4), (1/4,3/4,0,0)],
[(0,1/4,3/4,0), (0,0,1/4,3/4)], [(0,1/2,0,1/2), (0,1/2,0,1/2)], [(0,0,1/4, 3/4),
(0,1/4,3/4,)]. Analogously, there are four Nash equilibria in which the sup-
port of player 1's (and player 2’s) strategy is the union of three classes:
[(1/4,1/4,1/2,0),(1/2,0,1/4,1/4)],[(1/4,1/2,0,1/4),(1/4,1/2,0,1/4)],[(1/2,0,1/4,1/4),
(1/4,1/4,1/2,0)], [(0,1/4,1/4,1/2), (0,1/4,1/4,1/2)]. Finally, there is one
Nash equilibrium where player 1’s (and player 2’s) strategy is completely
mixed: [(1/4,1/4,1/4,1/4), (1/4,1/4,1/4,1/4)].

Consider now the case of an ordered counter-circulant game with given n
and k. We can apply Lemma A1(ii) in the appendix to transform this game
so that player 1’s payoff matrix is anti-circulant. As in the previous case, we
can define an equivalence relation on set of pure strategies for each player.
For all s € S let Cy(s) = {s, —s + k} denote the corresponding equivalence
class of player 1 and Cy(s) = {s,—s — k} the one of player 2. Note that
any class C(s), Cy(s) contains at least one and at most two elements. It
follows from Lemma 4(ii) that in any Nash equilibrium the support of player
1’s strategy is a union of classes C1(S™) and that for any union of classes in
C1(S™) = {C1(s)|s € S™} there is a Nash equilibrium in which the support of
player 1’s strategy has this union as its support. Further, if (7, 03) is a Nash
equilibrium with supp(a1) = L, C1(s’) for some strategies s',...,s™ € S"
then by Lemma 3(ii) it follows that supp(os) = L, Ca(—s7).

Let us revisit the game in Example 4. Here, n = 4 and k = 3. There
are two classes for player 1: C1(0) = C1(3) = {0,3} and Cy(1) = C1(2) =
{1,2}. Correspondingly there are two classes for player 2: Cy(0) = C(1) =
{0,1} and C3(2) = C5(3) = {2,3}. There are two Nash equilibria in which
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the support of player 1’s (and player 2’s) strategy consists of a single class:
[(1/4,0,0,3/4),(1/4,3/4,0,0)],((0,3/4,1/4,0),(0,0,1/4,3/4)]. Further there
is one equilibrium in which player 1 (and player 2) plays a completely mixed
strategy: [(1/4,1/4,1/4,1/4),(1/4,1/4,1/4,1/4)].

4 (Generalizations

By our definition there are games that are not ordered iso-circulant (counter-
circulant) games, but that can be transformed into one by a simple relabeling
of strategies. We chose to exclude those games from our definition for ease of
exposition. However, the results presented above also apply for these games.
It is not necessary to insist on each row containing the same entries. All
our proof go through if payoffs are transformed in a way that preserves the
order of entries in each row and in each column of the payoff matrices.

Ezxample 6. In the 3 x 3 with payoff matrices

3.1 1.9 0.8 0.7 2.2 3.5
Ar=1 15 09 34 |, A= 1.8 26 0.1
0.5 32 21 3 0.5 28

the order of payoffs in each row and in each column is the same as in Rock-
Paper-Scissors (Example 2). The proof of Theorem 1 can easily be general-
ized to this case to show that this game has a unique Nash equilibrium. As
the sum of payoffs in each row is not constant, however, the unique Nash equi-
librium is not the strategy profile in which both players play the uniformly
completely mixed strategies.

In this sense, our results on the number and the structure of Nash equi-
libria only depend on the order of payoffs in the rows and columns of the
payoff matrices.

Our results further generalize to coordination games in which players
obtain a strictly positive payoff if and only if they use the same strategy
and a payoff of 0 otherwise i.e., so-called games of pure coordination. The
resulting payoff matrices are of the form

a 0 0 --- 0 a 0 0 --- 0
0 aq 0 ... 0 0 ap 0 ... 0
Alz 0 0 a ... 0 A2: 0 0 ay ... 0
0 0 0 - ap 0 0 0 - ap

14



Proving that such games have 2" — 1 Nash equilibria works analogously to
the proof of Theorem 1.

5 Conclusion

In this paper we introduce and investigate a class of two-player normal-form
games we coin circulant games. Circulant games have a straightforward
representation in form of circulant matrices. Each player’s payoff matrix is
fully characterized by a single row vector, which appears as the first row of
the matrix. The remaining rows are obtained through cyclic permutations
of the first line such that a row vector is rotated by one element relative
to the preceding row vector. All circulant games have a Nash equilibrium
where players randomize between all pure strategies with equal probability
(uniformly completely mixed Nash equilibrium).

If the first row of each payoff matrix is strictly ordered (ordered circu-
lant games), the circulant structure underlying the payoff matrices has some
interesting implications. First, the best response correspondences induce a
partition on each players’ set of pure strategies into equivalence classes. In
any Nash Equilibrium all strategies within one class are either played with
strictly positive or with zero probability. Second, there exist a simple one-to-
one correspondence between the players’ equivalence classes. If some player
puts zero probability on one class (i.e. plays all pure strategies within one
class with zero probability), the other has one corresponding equivalence class
he plays with zero probability. Finally, a single parameter k fully determines
the strategy classes and the relation between the players’ classes. The param-
eter itself only depends on the position of the largest payoff in the first row
of player 2’s payoff matrix. For a given ordered circulant game, knowing k
and the number of pure strategies n suffices to calculate the number of Nash
equilibria and to describe the support of all Nash equilibrium strategies. As
an immediate consequence of our main results we reestablish 2" — 1 as the
tight upper bound on the number of Nash equilibria in these games.

The class of ordered circulant games contains well-known games such as
Matching Pennies and Rock-Paper-Scissors. Our approach shifts the focus
of these two games away from their zero-sum property towards the circulant
structure of the corresponding payoff matrices. Hereby, we shed new light
on their connection. Matching Pennies is simply the two-strategy variant of
Rock-Paper-Scissors. Within our framework the two games belong to the

15



same sub-class of ordered circulant games. Both games are characterized by
k =1 and the only Nash equilibrium is the uniformly completely mixed one.
The common denominator that connects these games is the balanced payoff
structure induced by the circulant matrices with a shift of £ = 1. Moreover,
this reinterpretation is robust in the sense that only relative payoffs matter.
We can write down Rock-Paper-Scissors in many variants, including asym-
metric evaluations of wins or losses, variants that cannot be transformed into
zero-sum games. Yet, the balanced structure is preserved and the best players
can do is to randomize between all pure strategies with equal probability.

A different way to interpret our results is from the perspective of Social
Choice Theory. As for example in Gibbard (1974), we can decompose social
states into different components representing private spheres of the individ-
uals. If we require a collective choice rule to respect liberalism with respect
to private spheres, then individuals should be decisive over their own private
spheres (i.e. choose their strategies) and should not intervene with private
spheres of the other individuals (i.e. given the other players’ strategies). In
this context, social states correspond to strategy profiles, and private spheres
to players’ strategies. If the there is no pure strategy equilibrium in the cor-
responding game, the collective choice set is empty (see e.g. Gaertner, 2006,
Chapter 4.4). Hence we can interpret the subclass of ordered circulant games
with pure strategy Nash equilibria as a domain restriction on the collective
choice rule such that the choice set is not empty.
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A Transformation of Games

Lemma Al. (i) Let T, be an iso-circulant game in which both players’
payoff matrices are circulant. There is a permutation of row wvectors
that fizes the first row in both matrices and transforms both player’s
payoff matrices into anti-circulant matrices.

(11) Let T, be a counter-circulant game in which player 1’s payoff matriz
15 circulant. There is a permutation of row vectors that fizes that first
row in both matrices and transforms player 1’s payoff matriz into an
anti-circulant matriz and player 2°s matriz into a circulant matriz.

Proof. (i) A matrix A is anti-circulant if and only if A = PC, where C is a
circulant matrix and

10 00 0
00 00 1
0 0 010
P=1¢ o 100
01 - 00 0

(Davis, 1979, p. 162, Corollary). The matrix P switches rows i and n+1—1i
and fixes the first row. Using this result, we obtain that PA; and PA, are
anti-circulant matrices since both A; and A, are circulant matrices.

(ii) Using the matrix P defined as in (i), we obtain that PA; is anti-
circulant (Davis, 1979, p. 162, Corollary). As A, is anti-circulant, Ay = PC
for some circulant matrix C' (Davis, 1979, p. 162, Corollary). Hence PAy =
P(PC) and since P = P~! (Davis, 1979, p.28, equ. (2.4.22)), we obtain that
PA, is a circulant matrix. O
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B Proofs

Lemma B2. Let '), be an ordered circulant game with shift k in which player
1’s payoff matriz is anti-circulant.

(i) For all 09 € X9 and all s € S™ if 09(s) =0 then —s ¢ BRy(02) -

(1i) If Iy, is iso-circulant, then for all oy € ¥y and all s € S™ if o1(s) =0
then (—s — k) ¢ BRy(01) .

(iii) If Ty, is counter-circulant, then for all oy € ¥y and all s € S™ if 01(s) =
0 then (s — k) ¢ BRy(01) .

Proof. (i) Let o9 € 5 be such that oy(s) = 0 for some s € S™. Since player
1’s payoff matrix is anti-circulant m;(s|s’) = al . By definition, for player 1

al, ,<al,_, | forall &+ s. Hence, as oy(s) =0,

(—slog) = Zag
<D oals)ab = m(=s = Llow),

s'#s

which implies that —s ¢ BR;(02).

(ii) Let 0y € X1 and s € S™ be such that o1(s) = 0. Since player 2’s payoff
matrix is anti-circulant, my(s|s’) = a2, for s,s' € S. Since T',, is an ordered
circulant game, either a?_, >a2_, ., >+ >a2_ | >af >a1 > - >a>_,_,
orai_, >ai_, ;> --->aj >aj > ap_q > - > a>_,.; and hence either
aZ < aZ_y or a? < a2, for all & # n — k. We will only prove the result
for the former case as the proof for the latter works analogously (by using
the inequality a? < a2, for all &' # n — k instead of a2, < a%_,). Since
a? < a?_, we obtain a®_, , <a?_, ,_ for all § # s and hence

mo(—s — k|oy) Zal a2 _,

<Y oi(sad gy =m—s—k—1|oy),

so (—s — k) ¢ BRay(0y).
(iii) Let 01 € ¥y and s € S™ be such that oy(s) = 0. Since player 2’s
payoff matrix is circulant, my(s|s’) = a?__ for s, s’ € S. Since I',, is an ordered
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circulant game, by definition either a? , > -+ >a? | > a2 >--- > a2 , |
orai_, >ai_,_ > >af>ar_y > --->ar .., and hence a < a?_,
or a2 < a2, for all ' # n — k. We will only prove the result for the former
case as the proof for the latter works analogously. Since a? < a?_; we obtain

a’?_, o, <a? , , ,forall s+ s and hence
8 — ]{7|0'1 ZUl Ay g g
s'#s
< Zgl(sl) s—k—1—s' _7T2(S - 1|01)
s'#s
so (s — k) ¢ BRy(0y1). O

The lemma makes a statement about best responses of player ¢ given that
player —i plays some strategy with zero probability provided that player 1’s
payoff matrix is anti-circulant. By (i) if player 2 plays a strategy s with prob-
ability 0 then for player 1 strategy —s cannot be a best response. Similarly,
(ii) and (iii) state that if in an iso-circulant (counter-circulant) game player
1 places probability 0 on strategy s then —s — k (s — k) cannot be a best
response for player 2. The idea behind the proof is very simple. For player
1 strategy —s — 1 yields a strictly higher payoff than —s against any pure
strategy of player 2 except s. Hence, if player 2 places probability 0 on s then
—s cannot be a best response. Analogously, for player 2 strategy —s —k — 1
(s —k — 1) yields a strictly higher payoff than —s — k (s — k) against any
pure strategy of player 1 except s.

Proof of Lemma 2. (i) The “if” part is trivial. To see the “only if” part let
(01, 09) be a Nash equilibrium of I',, and let s € S™ be such that o1(s) = 0. By
Lemma B2(ii), 02(—s—k) = 0 and consequently by Lemma B2(i) oy (s+k) =
0. Iterating this argument yields o1(s +mk) = 0 for all m =0,...,%5 — 1. If
09(s) = 0 the argument works analogously.

(ii) By Lemma B2(i) and (iii) for any Nash equilibrium (o4, 03) and any
s € S™ we obtain

0'1(5’):O:>0'2(5—]€):0:>0'1(—S+]€):0

and
o1(—=s+k)=0= 09(—s) =0=oy(s) = 0.
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Analogously, for player 2, we obtain
Ug(S) =0= 0'1(—8) =0= 0'2(—8 — k) =0

and
oo(—s —k)=0=01(s+ k) =0= 09(s) =0.

O

Lemma B3. Let [',, be an ordered counter-circulant game. For i = 1,2 the
set C;(S™) is a partition of S™.

Proof. We will prove the result for ¢ = 1 as the proof for ¢« = 2 works
analogously. Since s € C'(s) for all s € S, it follows that J g, C1(s) = S™.
If there is 5 € C(s) N C(s') for some s,s" € S™, then then since 5 € Cy(s)
either s = sor s = —s+ k. If s = s then Cy(s) = C;(3). If s = —s+ k
then -5+ k = s — k+ k = s. In any case it follows that C1(3) = Ci(s).
Using the same argument one obtains C(5) = C(s’) and hence that C(s) =
Ci(8). O

=0

Proof of Lemma 8. (i) First, let s € S™ be such that supp(oy) N I(s) :
By Lemma B2(ii), —s — (m + 1)k ¢ BRy(0y) for all 0 < m < n/d—1. As
{=s—(m+1)k|0 <m <n/d—1} = I(—s) we obtain BRy(c1)NI(—s)=10.

Next, let s € S™ be such that supp(o2) N I(s) = (). By Lemma B2(i),
—s —mk ¢ BRy(092) for all 0 < m < n/d—1. As {—s —mk|0 < m <
n/d —1} = I(—s) we obtain BR;(02) N I(—s) = 0.

(ii) If supp(o_;) N C_;(s) = 0 for C_;(s) € C_;(S™), then, since C_;(s) =
{s,—s+(—=1)""'k}, by Lemma B2(i) and (iii), —s,s+ (—1)""'k ¢ BR;(c_;).
Hence BR;(o_;) N Ci(—s) = 0. O

Lemma B4. Let '), be an ordered iso-circulant game in which both play-
ers’ payoff matrices are anti-circulant. For every s € S™, there is a Nash
equilibrium (o1, 09) such that supp(oq) = 1(s) and supp(os) = I(—s).

Proof. Given's € S, define o(s) = d/n for all s € I(5) and o5(s) = d/n for
all s € I(—5). By construction supp(oy) = I(35) and supp(o2) = I(—5). By
Lemma 3(i), any strategy outside /(3) cannot be a best response for player
1 against oy and any strategy outside /(—35) cannot be a best response for
player 2 against o;. Further, m (s|oy) = Z:ﬁal %as+§+mk = m1(8'|og) for
all 5,8 € I(3) and analogously my(s|oy) = me(s'|oy) for all s,¢" € I(—3).
Proposition 1 yields that (o1, 03) is a Nash equilibrium of T',,. O
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The next lemma establishes a result for ordered counter-circulant games
which is analogous to Lemma B4 for ordered iso-circulant games.

Lemma B5. Let '), be an ordered counter-circulant game in which player
1’s payoff matriz is anti-circulant and let o = (01, 02) € 31 X Xs.

(1) C;i(s) is a singleton if and only if C_;(—s) is a singleton.

(ii) Foreverys € S™, there is a Nash equilibrium (oq, 02) such that supp(oy)
C1(s) and supp(o2) = Ca(—s).

Proof. (i) Suppose that C;(s) is a singleton. By construction, s = —s +
(—=1)'k mod n which is equivalent to —s = s+ (—1)’k mod n. This holds
if and only if C_;(—s) is a singleton.

(ii) Note that this follows from (i) and Lemma 3(ii) if C(s) is a singleton
set. Hence, suppose that C(s) = {s, —s + k} contains two elements. Then,
by (i), Ca(—s) = {—s,s — k} contains two elements and neither 2s = k
nor 2s = n + k. Choose oy(s) as the solution to za?,, + (1 — z)a?, =
za*, + (1 —z)a3, o, 1.e.

UT(S) _ a%s—2k - a727,—k‘

2 2 2 2 :
Aos—ok — Gy + Ap_og — Uy}

By definition a?_, is player 2s largest payoff implying that a3, ,, —a2_, <0
since 2s # n+k and that a2 _,, —a?_, < 0 since 2s # k. Hence o,(s) €0, 1[.
Choose 03(—s) as the solution to zaj+ (1 —z)ay,_, = zal,, , +(1—2z)ag,
Le. . .
05(=5) = — 1% azi_k 1 :
Ap = Ags_p + A = Qg iy,

By definition a is player 1’s largest payoff. Hence as 2s # k af —ay, . > 0
and a) — al,,,, > 0 implying that oy(—s) €]0,1[. By Lemma 3(ii) and
Proposition 1, (01, 09) is a Nash equilibrium. O

The set C1(S) can be viewed as a partition of the strategy set for player
1 while C5(S) is a partition of the strategy set for player 2. By (i) a class
C4(s) of player 1 “corresponds" to a class Cy(—s) of player 2 in the sense
that if player 1 puts probability 0 on all strategies in C(s) then none of the
strategies in Cy(—s) are a best response for player 2 and vice versa. Part (ii)
states that two “corresponding” classes contain the same number of elements.
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By (iii) for every class Ci(s) there is always a Nash Equilibrium such that
player 1’s strategy has this class as its support while player 2’s strategy has
support Co(—s). The equilibrium constructed to prove (ii) is such that player
1 chooses his strategy (with support C(s)) such that player 2 is indifferent
between all strategies in Cy(—s) (and vice versa). As I',, is a non-degenerate
game, by Proposition 2(ii) this is the unique equilibrium (oy, 05) such that
supp(o1) = C1(s) and supp(os) = Ca(—s).

In Example 4 there are 2 classes C}(s) (and by Lemma B4(i) also Cy(s))
in S™. The classes are C1(0) = {0,3}, Ci(1) = {1,2}, and C»(0) = {0, 1},
C5(2) = {2,3}. As there are no singleton classes, there are no pure strategy
equilibria.

In Example 5 there are 3 classes C(s) (and by Lemma B4(i) also Cy(s))
in S™. These are C1(0) = {0,2}, C1(1) = {1}, C1(3) = {3,4}, and C5(0) =
{0,3}, C5(2) = {1,2}, C2(4) = {4}. The game has one pure-strategy Nash
equilibrium: (1,4).

Having determined the support of an equilibrium strategy for player 1
Lemmata B4 and B5 can be used to determine the support of player 2’s
equilibrium strategy.

Proposition B1. For the two-player normal-form game T, let Si = {[s|1]s €
S"} and Sy = {[s|s|s € S"} be partitions of S" such that [Si]| = [Sa|. If I'y,
S1, and Sy satisfy

(a) for all Nash equilibria (o1, 05), and all s,s" € S, if s' € [s]; then 0;(s) =
0 if and only if o;(s') =0,

(b) for all o; € i, i = 1,2, supp(oy) N [s]; = O for [s]; € S; implies
BR_i(0;) N [=s]-i =0,

(c) for all s € S™, I, has a Nash equilibrium (o1, 09) with supp(oy) = [s]y
and supp(oy) = [—$]s,

then

(i) for any M C Sy T, has a unique Nash equilibrium (o, 09) with supp(o;) =
U[s]leM[S]l;

(ii) Ty has exactly 2% — 1 Nash equilibria.
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This proposition is the central part of the proof of Theorems 1 and 2.
Using the results in the previous sections it follows immediately that its
hypotheses (in particular properties (a)-(c)) are satisfied by ordered iso-
circulant and ordered counter-circulant games.

Proof. (i) Given §) £ M C Sy let —M := {[—s]s|[s]; € M} C and let T'M be
the reduced game where player 1’s set of strategies is (J;, c)[s]1 and player
2’s set of strategies is (Jy,cp/[—sl2 (and the payoff functions are restricted
accordingly).

Claim A: Let M’ € M C S; be a nonempty subset of S; and let
(oM o)) be a completely mixed Nash equilibrium of T'M". Then (oM, o37)
defined by oM(s) = oM'(s) if [s]y € M’ and o (s) = 0 otherwise, and
ol (s) = o’ (s) if [s], € —M’ and o} (s) = 0 otherwise is a Nash equilibrium
in ',

Since (o', 3") is a completely mixed Nash equilibrium of I'M’, all strate-

gies in U[sheM’[_S]Q yield the same payoff for player 2 against 0. By hy-
pothesis (b), since supp(cf) = Upsjenr[s]; all strategies outside [, < [—s]2
cannot be a best response for player 2 against o}’. Analogously all strate-
gies in (), cpr[sh yield the same payoff for player 1 against oM. and since
supp(cd!) = — Ulgear [—8]2; strategies outside [, cppr[s]1 cannot be a best
response for player 1 against o!. Hence, by Proposition 1, (o}, o)) is a

Nash equilibrium in T'». This proves the claim.

Claim B: For any ) # M C S, the reduced game I'M has exactly one
completely mixed Nash equilibrium.

Let ) # M C S, be such that |M| = m. We will prove the claim by
induction over m. Note first, that by hypothesis (b), in any Nash equilibrium
(01,09) of T™ supp(cy) is a union of elements of M.

For m = 1, this follows by hypothesis (¢). For m > 1, by induction
hypothesis we obtain that for all () # M’ C M the reduced game '’ has a
unique completely mixed Nash equilibrium. By Claim A, for every () £ M’ C
M there is a Nash equilibrium (o, o)) in TM with supp(cM) = Ugjen[s]-
As by Proposition 2(ii) for any () # M’ C M there can be at most one
Nash equilibrium (o, 09) in TM with supp(c;) = M’ we obtain that there is
exactly one such Nash equilibrium. This implies that [' has at least 2™ — 2
Nash equilibria.
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Suppose there is no completely mixed Nash equilibrium in T'M. Then '
has exactly 2 —2 Nash equilibria. From hypotheses (a) and (b) it follows that
I, is non-degenerate and hence that ' is non-degenerate. By Proposition
2(i) M must have an odd number of Nash equilibria, which contradicts the
fact that 2™ — 2 is even. Hence there is at least one completely mixed Nash
equilibrium and again because T'M is non-degenerate by Proposition 2(ii)
there is exactly one. This proves the claim.

By Claim B, for § # M C S;, '™ has exactly one completely mixed
Nash equilibrium (o, ¢3"). By Claim A, this induces a Nash equilibrium
(01,02) in T, with supp(o1) = Uy, eprlsh- Any Nash equilibrium (o7, 03) #
(01, 02) with supp(o}) = Uy, en[sh would induce a completely mixed Nash
equilibrium in T different from (0!, 037), a contradiction. Hence I, has
exactly one Nash equilibrium (o1, 02) with supp(o1) = Uy, e [s]1-

(ii) From (i) it follows that for any () # M C S, there is a unique Nash
equilibrium (01, 03) in I', such that supp(o1) = Uy cp(sli- Further, by
hypothesis (a), for any Nash equilibrium (o7, 09) of T',, there is ) # M C S
such that supp(o1) = U, enlsh. As Sy has 21511 — 1 nonempty subsets, I,

has exactly 21511 — 1 Nash equilibria.
O

Proof of Lemma 4. (i) To see the first part, let M = U;nzl I(s%) be a union of
elements of I(S™). By Lemma 2(i) and Lemma B4, T, and S; = Sy = I(S")
as defined in section 3.1 then satisfy the hypotheses of Proposition B1. Hence,
there is a unique Nash equilibrium (o7, 03) with supp(oy) = M.

To prove the second part, let (01, 02) be a Nash equilibrium. By Lemma
2(i), supp(oy) is a union of elements in 7(S™).

(ii) Too see the first part, let M = (", C1(s?) be a union of elements
of C1(S™). By Lemma B3, C1(S™) and C5(S™) as defined in section 3.1 are
partitions of S™. Further, by Lemma B5(i), |C1(S™)| = |C2(S™)| and by
Lemma 2(ii), Lemma 3(ii), and B5(ii), I',, S; = C1(S"), and Sy = C5(S™)
satisty properties (a)-(c) in Proposition B1. It follows that there is a unique
Nash equilibrium (o1, 09) with supp(o;1) = M.

To prove the second part, let (o1, 09) be a Nash equilibrium. By Lemma
2(ii), supp(o1) is a union of elements in C(S™). O

Proof of Theorem 1. 1f T, is an ordered iso-circulant game in which both
players’ payoff matrices are anti-circulant then by Lemma 2(i) and Lemma
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B4, I', and S; = Sy = I(S") as defined in section 3.1 then satisfy the
hypotheses of Proposition B1. As |I(S™)| = d, it follows that I',, has 2¢ — 1
Nash equilibria. If I',, is an iso-circulant game in which both players’ payoff
matrices are circulant, there is a permutation of row vectors that transforms
both players’ payoff matrices into anti-circulant matrices while fixing the first
row in both matrices (Lemma A1(i)). This permutation, which is essentially
a relabeling of the players’ strategies, does not affect the number of equilibria.
Hence, the proof of Theorem 1 is complete. O

Proof of Theorem 2. 1f T',, is an ordered counter-circulant game in which
player 1’s payoff matrix is anti-circulant and player 2’s payoff matrix is cir-
culant then by Lemma B3, C}(S™) and C5(S™) as defined in section 3.1 are
partitions of S™. Further, by Lemma B5(i), |C1(S™)| = |C2(S™)| and by
Lemma 2(ii), Lemma 3(ii), and B5(ii), I',, S; = C1(S"), and Sy = C5(S™)
satisfy properties (a)-(c) in Proposition B1 and hence I, has 2/¢1(5")I — 1
Nash equilibria.

To prove (i)-(iii) it hence suffices to determine |C;(S™)|. Note that any
class C}(s) contains either one or two elements. It contains one element if
and only if —s+k = s which occurs if and only if either 2s = k or 2s = n+k.
Further, there are at most two singleton classes.

(i) If n is odd, then either n — k is odd (if k is even) or 2n — k is odd (if
k is odd). Hence there is one singleton class in C(S™) and since all other
elements of C(S™) contain two elements, |C(S™)| = (n—1)/24+1 = (n+1)/2.

(ii) If both n and k are even, then both k and n+k are even and k/2, (n+
k)/2 € S™. Hence there are two singleton classes in C(S™) and since all other
elements of C7(S™) contain two elements, |C1(S™)| = (n—2)/242 = (n+2)/2.

(iii) If n is even and k is odd, then n+£ is odd and hence neither k/2 € S™
nor (n+ k)/2 € S™. Hence there is no singleton class and hence all elements
of C1(S™) contain 2 elements, implying that |C,(S™)| = n/2 = n/2.

If T',, is a count-circulant game in which player 1’s payoff matrix is cir-
culant and player 2’s payoff matrix is anti-circulant, there is a permutation
of row vectors that transforms player 1’s payoff matrix into an anti-circulant
matrix. Applying the same permutation of row vectors to player 2’s payoff
matrix yields a different version of the same game in which strategies are
differently labeled and player 1’s payoff matrix is anti-circulant and player
2’s payoff matrix is circulant (Lemma A1(ii)). This permutation does not
affect the number of Nash equilibria and hence the proof of Theorem 2 is
complete. O
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Proof of Proposition 3. Note first that if both players’ payoff matrices are
circulant then by Lemma A1(i) the game can be transformed into a different
version of the same game in which both players’ payoff matrices are anti-
circulant by a permutation of row vectors. Since such a permutation does
not affect the number of pure strategy Nash equilibria, we assume wlog that
both players’ payoff matrices are anti-circulant.

To see the “if” part suppose k = n. Then by construction, each class 1(s)
is a singleton set and there are n disjoint classes. Hence by Lemma B4, T",
has at least n pure strategy Nash equilibria. By Lemma 2(i), in any pure
strategy Nash equilibrium (o1, 09), supp(o;) = I(s) for some s € S and hence
I',, has exactly n pure strategy Nash equilibria.

To prove the “only if” part let I',, have n pure strategy Nash equilibria
and let (s1,s$2) be one of them. By Lemma 2(i), I(s;) must be a singleton
set. By construction, I(s;) is a singleton set if and only if £ = n.

This proves the first part of the theorem.

To see the second part, note that by construction of the classes I(s) is
a singleton set if and only if £ = n for any s € S. Further by Lemma 2(i)
and Lemma B4, I'), has a pure strategy Nash equilibrium if and only if there
is a singleton equivalence class I(s). Hence, I';, has no pure strategy Nash
equilibrium if and only if k£ # n. O

Proof of Proposition 4. Note first that if player 1’s payoff matrix is circulant
then by Lemma A1(i) the game can be transformed into a different version
of the same game in which player 1’s payoff matrix is anti-circulant by a
permutation of row vectors. Since such a permutation does not affect the
number of pure strategy Nash equilibria, we assume wlog that player 1’s
payoff matrix is anti-circulant.

(i) By Lemma 2(ii) and Lemma B5(ii), I',, has one pure strategy Nash
equilibrium if and only if one of the classes C'(s) is a singleton set, which by
construction happens if and only if n is odd.

(ii) By Lemma 2(ii) and Lemma B5(ii), I',, has two pure strategy Nash
equilibria if and only if two of the classes C(s) is a singleton set, which by
construction happens if and only if both n and £ are even.

(iii) By Lemma 2(ii) and Lemma B5(ii), I',, has no pure strategy Nash
equilibrium if and only if none of the classes C(s) is a singleton set, which

by construction happens if and only n is even and k is odd.
O
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