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Abstra
t

This paper presents a 
lass of �nite two-player normal-form n ×
n games we 
oin 
ir
ulant games. In 
ir
ulant games, ea
h player's

payo� matrix is a 
ir
ulant matrix, i.e. ea
h row ve
tor is rotated

by one element relative to the pre
eding row ve
tor. We show that

when the payo�s in the �rst row of ea
h payo� matrix are stri
tly

ordered, a single parameter fully determines the exa
t number and the

stru
ture of all Nash equilibria in these games. The parameter itself

only depends on the position of the largest payo� in the �rst row of

player 2's payo� matrix. The 
lass of 
ir
ulant games 
ontains well-

known games su
h as Mat
hing Pennies, Ro
k-Paper-S
issors, as well

as sub
lasses of 
oordination and 
ommon interest games.

1 Introdu
tion

The multipli
ity of Nash equilibrium out
omes for a given game has moti-

vated many s
holars to analyze the stru
ture of Nash equilibria in general

as well as for spe
ial sub
lasses of games. Consider for example the 
ase

of �nite two-player normal-form n × n games. Provided that su
h a game

is non-degenerate the number of Nash equilibria is �nite and odd (see e.g.

Shapley, 1974). Quint and Shubik (1997) have shown that for any odd inte-

ger number y between 1 and 2n − 1, there exist a game with exa
tly y Nash
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equilibria. Moreover, they 
onje
tured that 2n − 1 is the tight upper bound

on the 
ardinality of the set of Nash equilibria.

This 
onje
ture 
an be 
onsidered as the starting point of the a
tive sear
h

for the upper bound on the number of Nash equilibria (mixed or pure) in su
h

games. Quint and Shubik (1997) showed that the 
onje
ture holds for n = 3,
Keiding (1997) and M
Lennan and Park (1999) proved it for n = 4. The


onje
ture was refuted by von Stengel (1997) who gave a 
ounterexample for

n = 6 with a total number of 75 Nash equilibria whereas 26 − 1 = 63.1 New

upper bounds on the number of distin
t Nash equilibria were established in

Keiding (1998) and von Stengel (1999). However, spe
ial 
lasses of games

exist for whi
h the 
onje
ture is true as shown by Quint and Shubik (2002)

for the 
lass of 
oordination games.

In this paper, we investigate a 
lass of �nite two-player normal-form n×n
games we 
oin 
ir
ulant games. As any �nite game 
an be fully represented

by the asso
iated players' payo� matri
es, our 
on
epts and ideas are ex-

pressed in terms of properties the payo� matri
es have to ful�ll. In 
ir
ulant

games, the players' payo� matri
es are 
ir
ulant, i.e. ea
h row ve
tor is ro-

tated by one element relative to the pre
eding row ve
tor. It is easy to

show that all su
h games have a Nash equilibrium where players random-

ize between all pure strategies with equal probability (uniformly 
ompletely

mixed Nash equilibrium). Our main theorems establish the exa
t number of

(pure strategy) Nash equilibria when the �rst row of ea
h payo� matrix is

stri
tly ordered. We also provide ne
essary and su�
ient 
onditions for the

uniqueness of the uniformly 
ompletely mixed Nash equilibrium and for the

existen
e of pure strategy Nash equilibria. As a 
onsequen
e of our main

results we obtain that the maximal number of Nash equilibria in these games

is exa
tly 2n − 1. The number of pure strategy Nash equilibria is either 0, 1,

2, or n, and for a spe
i�
 sub
lass a pure strategy Nash equilibrium always

exists. Further, the best response 
orresponden
es indu
e an equivalen
e re-

lation on ea
h player's set of pure strategies. In any Nash equilibrium all

strategies within one equivalen
e 
lass are either played with stri
tly posi-

tive or with zero probability. Our proofs provide a re
ipe on how to derive

the equivalen
e 
lasses and allow us to 
hara
terize the support of all Nash

equilibrium strategies.

1

The game is 
onstru
ted using pairs of dual 
y
li
 polytopes with 2n suitably labeled

fa
ets in n-spa
e. Su
h games were 
oined `hard to solve'. The Lemke-Howson algorithm,

the 
lassi
al method for �nding one Nash equilibrium of a two-player normal-form game,

takes a number of steps exponential in the dimension n (see Savani and von Stengel, 2006).
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The 
lass of 
ir
ulant games 
ontains well-known games su
h as Mat
hing

Pennies, Ro
k-Paper-S
issors, and sub
lasses of 
ommon-interest and 
oordi-

nation games.

2

Re
ently, several other arti
les analyzed sub
lasses of games

with a spe
ial fo
us on di�erent notions of 
y
li
ity. Duers
h et al. (2012)


onsider symmetri
 two-player zero-sum normal-form games and de�ne gen-

eralized ro
k-paper-s
issors matri
es (gRPS ) in terms of best response 
y
les.

In their setting, a game has a pure strategy Nash equilibrium if and only if it

is not a gRPS. Bahel (2012) and Bahel and Haller (2013) examine zero-sum

games that are based on 
y
li
 preferen
e relations on the set of a
tions and


hara
terize the set of Nash equilibria. In the former paper, a
tions are dis-

tinguishable, i.e. one spe
i�
 a
tions is the beginning of the 
y
li
 relation,

and there exists a unique Nash equilibrium. In the latter, the a
tions are

anonymous, i.e. ea
h a
tion 
an be seen as the beginning of the 
y
le with-

out a�e
ting the relation, and depending on the number of a
tions the Nash

equilibrium is unique or there exists an in�nite number of Nash equilibria.

To the best of our knowledge, games with 
ir
ulant payo� matri
es have not

been studied so far.

The remainder of this paper is stru
tured as follows. Se
tion 2 introdu
es

the 
lass of (ordered) 
ir
ulant games. In Se
tion 3.2, we present the main

theorems on the number and stru
ture of Nash equilibria in ordered 
ir
ulant

games. Se
tion 4 presents 
ir
ulant games whi
h are not ordered but exhibit

similar properties as ordered 
ir
ulant games. Se
tion 5 
on
ludes. All proofs

are relegated to the appendix.

2 Cir
ulant Games

Let Γ = ((S1, S2), (π1, π2)) be a �nite two-player normal-form game where

Si = {0, 1, . . . , ni − 1} denotes player i's set of pure strategies and πi :
S1 × S2 → R denotes player i's payo� fun
tion for i = 1, 2.3 We will write

player i's payo� fun
tion as an n1 × n2 matrix. Player i's payo� matrix

Ai = (aikl)k∈S1,l∈S2
is then given by aikl = πi(k, l). Thus in both matri
es ea
h

row 
orresponds to a pure strategy of player 1 and ea
h 
olumn to a pure

2

As Quint and Shubik (2002) re-established the upper bound of 2
n − 1 for the 
lass of


oordination games, we would like to point out that the 
lass of 
ir
ulant games is di�erent

from this 
lass. The two 
lasses do, however, have a non-empty interse
tion.

3

We 
hoose to label players' strategies from 0 to ni−1 as this will later simplify notation

signi�
antly.
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strategy of player 2. Following the notation in e.g. Alós-Ferrer and Kuzmi
s

(2013), we will also write πi(s|s
′) for player i's payo� if he 
hooses a strategy

s and player −i 
hooses strategy s′. The set of mixed strategies for player i
is denoted by Σi. For σi ∈ Σi, σi(s) denotes the probability that σi pla
es on

the pure strategy s ∈ Si. The set of all pure strategies played with stri
tly

positive probability is denoted by supp(σi). Payo� fun
tions are extended to

the sets of mixed strategies by expe
ted payo�s. Given a mixed strategy σ−i

of player −i, a best response for player i against σ−i is a strategy σi su
h that

πi(σi|σ−i) ≥ πi(σ
′
i|σ−i) for all σ

′
i ∈ Σi. The set of best responses for player i

against a strategy σ−i of the other player is denoted by BRi(σ−i). A �nite

two-player normal-form game is non-degenerate if for any mixed strategy

σi of player i with supp(σi) = m, player −i has at most m best responses

against σi. In what follows Γn denotes a �nite two-player normal-form game

in whi
h S1 = S2 = Sn = {0, . . . , n− 1}.
The following two results are well-known and will be used throughout the

paper.

Proposition 1 (Best Response Condition Nash, 1951). Let Γ be a �nite

two-player normal-form game. Let σ1 ∈ Σ1 and σ2 ∈ Σ2. Then σi is a best

response to σ−i if and only if for all si ∈ Si

σi(si) > 0 ⇒ πi(si|σ−i) = max
s∈Si

πi(s|σ−i).

Proposition 2 (Shapley, 1974; Quint and Shubik, 1997). Let Γ be a �nite

non-degenerate two-player normal-form game with strategy set S1 = S2 = S.
Then

(i) Γ has a �nite and odd number of Nash equilibria.

(ii) if T1, T2 ⊆ S then Γ has at most one Nash equilibrium (σ1, σ2) su
h

that supp(σ1) = T1 and supp(σ2) = T2.

Before we 
an introdu
e 
ir
ulant games a 
ouple of de�nitions are ne
-

essary.

Definition 1. A matrix A ∈ Rn×n
is

4




ir
ulant if it has the form

A =















a0 a1 a2 · · · an−1

an−1 a0 a1 . . . an−2

an−2 an1
a0 . . . an−3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a1 a2 a3 · · · a0















and anti-
ir
ulant if

A =















a0 · · · an−3 an−2 an−1

a1 · · · an−2 an−1 a0
a2 · · · an−1 a0 a1
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

an−1 · · · an−4 an−3 an−2















We are now ready to de�ne a 
ir
ulant game.

Definition 2. A two-player normal-form game Γn is a 
ir
ulant game if ea
h

players' payo� matrix is either 
ir
ulant or anti-
ir
ulant.

Note that if Ai is 
ir
ulant then aij = aj−i and if Ai is anti-
ir
ulant

then aij = ai+j where the indi
es are to be read modulo n, e.g. −1 =
n − 1, n + 1 = 1, et
. In a 
ir
ulant game, if player 1's payo� matrix is


ir
ulant then π1(s|s
′) = a1s′−s and if player 1's payo� matrix is anti-
ir
ulant

then π1(s|s
′) = a1s+s′. Similarly if player 2's payo� matrix is 
ir
ulant then

π2(s|s
′) = a2s−s′ and if player 2's payo� matrix is anti-
ir
ulant then π2(s|s

′) =
a2s+s′. Throughout the paper the sum and di�eren
e of two strategies in a


ir
ulant game is to be read modulo n. Similarly, the multipli
ation of a

strategy with an integer is to be read modulo n.
Sin
e in a 
ir
ulant game the sum of the payo�s in ea
h row and ea
h


olumn is 
onstant, if one player plays the 
ompletely uniformly mixed strat-

egy, then all of the others player's pure strategies yield the same payo�. An

immediate 
onsequen
e of this is the following

Lemma 1. Let Γn be a 
ir
ulant game. Then σ∗ = (σ∗
1, σ

∗
2) where σ∗

i (s) =
1/n for all s ∈ Sn

, i = 1, 2, is a Nash equilibrium of Γn.

We 
an 
lassify 
ir
ulant games a

ording to whether the players' payo�

matri
es �
y
le� in the same or in opposite dire
tions.
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Definition 3. A 
ir
ulant game is iso-
ir
ulant if the players' payo� matri-


es are either both 
ir
ulant or both anti-
ir
ulant matri
es. It is 
ounter-


ir
ulant if one player's payo� matrix is 
ir
ulant and the other player's

payo� matrix is anti-
ir
ulant.

For n = 2 every iso-
ir
ulant game is also 
ounter-
ir
ulant and vi
e versa,

as any 
ir
ulant 2 × 2 matrix is also anti-
ir
ulant. For n ≥ 3, however, the

lass of iso-
ir
ulant games is disjoint from the 
lass of 
ounter-
ir
ulant

games.

Example 1 (Mat
hing Pennies).

The game given by

A1 =

(

1 −1
−1 1

)

, A2 =

(

−1 1
1 −1

)

is the well-know Mat
hing Pennies game. As both players' payo� matri
es

are 
ir
ulant (and anti-
ir
ulant), it is an iso-
ir
ulant (and also a 
ounter-


ir
ulant) game and [(1/2, 1/2), (1/2, 1/2)] is a Nash equilibrium of this game.

As we will show later it is the unique one.

Example 2 (Ro
k-Paper-S
issors).

The game given by

A1 =





2 1 3
3 2 1
1 3 2



 , A2 =





2 3 1
1 2 3
3 1 2





is Ro
k-Paper-S
issors. Strategies are ordered so that for both players strat-

egy 0 
orresponds to �Ro
k�, strategy 1 
orresponds to �Paper�, and strategy

2 
orresponds to �S
issors�. This is an iso-
ir
ulant game and a Nash equi-

librium of this game is [(1/3, 1/3, 1/3), (1/3, 1/3, 1/3)]. As we will see later

it is the unique one.

Example 3 (4× 4 Coordination Game).

The game given by

6



A1 =









5 4 3 2
4 3 2 5
3 2 5 4
2 5 4 3









, A2 =









5 4 3 2
4 3 2 5
3 2 5 4
2 5 4 3









is an iso-
ir
ulant game and the uniform probability distribution over all

pure strategies, [(1/4, 1/4, 1/4, 1/4), (1/4, 1/4, 1/4, 1/4)] 
onstitutes a Nash

equilibrium. It is not the only one. As we will see later this game has 15
Nash equilibria.

The following two games are examples of 
ounter-
ir
ulant games. In

both games player 1's payo� matrix is anti-
ir
ulant and player 2's payo�

matrix is 
ir
ulant.

Example 4.

A1 =









4 3 2 1
3 2 1 4
2 1 4 3
1 4 3 2









, A2 =









1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1









This is a 
ounter-
ir
ulant game. The uniform probability distribution over

all pure strategies [(1/4, 1/4, 1/4, 1/4), (1/4, 1/4, 1/4, 1/4)] is a Nash equilib-

rium of this game. As we will see later this game has 3 Nash equilibria.

Example 5.

A1 =













5 4 3 2 1
4 3 2 1 5
3 2 1 5 4
2 1 5 4 3
1 5 4 3 2













, A2 =













3 2 1 5 4
4 3 2 1 5
5 4 3 2 1
1 5 4 3 2
2 1 5 4 3













This is a 
ounter-
ir
ulant game. The uniform probability distribution over

all pure strategies [(1/5, 1/5, 1/5, 1/5, 1/5), (1/5, 1/5, 1/5, 1/5, 1/5)] is a Nash
equilibrium of this game. As we will see later this game has 7 Nash equilibria.

Definition 4. A 
ir
ulant game Γn is ordered with shift 1 ≤ k ≤ n if

a10 > a11 > · · · > a1n−1 and either a2n−k > a2n−k+1 > · · · > a2n−1 > a20 > a21 >
· · · > a2n−k−1 or a

2
n−k > a2n−k−1 > · · · > a21 > a20 > a2n−1 > · · · > a2n−k+1.

7



In an ordered 
ir
ulant game the entries in the �rst row of player 1's payo�

matrix de
rease when moving from left to right. The entries in the �rst row of

player 2's payo� matrix de
rease either when moving from the largest payo�

to the right, or when moving from the largest payo� to the left. The shift k
is determined by the position of the largest payo� in the �rst row of player

2's payo� matrix. A shift of k = n 
orresponds to a20 being player 2's largest
payo�. A shift of k = 0 is of 
ourse possible but for notational 
onvenien
e

is formally represented by a shift of k = n. Ordered iso-
ir
ulant games

with shift k = n 
apture the 
lass of ordered 
ir
ulant 
oordination games.

Mat
hing Pennies (Example 1) is and example of an ordered iso-
ir
ulant

(and 
ounter-
ir
ulant) game with shift k = 1 as for player 2 a2n−1 = a21 = 1
is the largest payo�. Relabeling the strategies in Example 2 su
h that for

player 1, strategy 0 is `Ro
k', strategy 1 is `S
issors', and strategy 2 is `Paper'

and for player 2, strategy 0 is `S
issors', strategy 1 is `Ro
k', and strategy 2

is `Paper' yields the following payo� matri
es:

A1 =





3 2 1
2 1 3
1 3 2



 , A2 =





1 2 3
2 3 1
3 1 2



 .

It is now easy to see that (this relabeled version of) Ro
k-Paper-S
issors is

an ordered iso-
ir
ulant with shift k = 1, as for player 2 a2n−1 = a22 = 3 is the

largest payo�. The 4 × 4 
oordination game (Example 3) is an example of

an ordered iso-
ir
ulant game with shift k = 4 as for player 2 a2n−4 = a20 = 5
is the largest payo�.

Example 4 is an ordered 
ounter-
ir
ulant game with shift k = 3 as for

player 2 a2n−3 = a21 = 4 is the largest payo�. Example 5 is an ordered 
ounter-


ir
ulant game with shift k = 2 as for player 2 a2n−2 = a23 = 5 is the largest

payo�.

3 Main Results

In this se
tion we present the main results on the number and the stru
ture

of Nash equilibria in ordered 
ir
ulant games. We start by presenting some

preliminary lemmata that we require to state the main results. All proofs

are relegated to the appendix.

8



3.1 Preliminaries

Lemma 2. Let Γn be an ordered 
ir
ulant game with shift k in whi
h player

1's payo� matrix is anti-
ir
ulant and let d = gcd(k, n).

(i) If Γn is iso-
ir
ulant, then in any Nash equilibrium (σ1, σ2), for all

s ∈ Sn
, σi(s) = 0 if and only if σi(s+km) = 0 for all m = 0, . . . , n

d
−1,

i = 1, 2.

(ii) If Γn is 
ounter-
ir
ulant, then in any Nash equilibrium (σ1, σ2), for all
s ∈ Sn

, σ1(s) = 0 if and only if σ1(−s + k) = 0 and σ2(s) = 0 if and

only if σ2(−s− k) = 0

Given an ordered iso-
ir
ulant game Γn, we 
an de�ne an equivalen
e

relation ∼ on the set Sn
by s ∼ s′ if and only if s = s′ + mk for some

0 ≤ m ≤ n
d
− 1, where d = gcd(n, k). Denote the equivalen
e 
lass of

s ∈ Sn
by I(s). Note that, s′ + m1k 6= s′ + m2k for all 0 ≤ m1 < m2 ≤

n
d
− 1. Hen
e I(s) = {s + mk|0 ≤ m ≤ n

d
− 1} 
ontains n/d elements

and there are d di�erent equivalen
e 
lasses. Let I(Sn) = {I(s)|s ∈ Sn}
be the set of equivalen
e 
lasses. Suppose player 1's payo� matrix is anti-


ir
ulant. By Lemma 2(i) two strategies are equivalent if and only if in

any Nash equilibrium either both are simultaneously played with positive

probability or both are simultaneously played with zero probability.

For an ordered 
ounter-
ir
ulant game let C1(s) = {s,−s+k} and C2(s) =
{s,−s−k} for all s ∈ Sn

. Note that any 
lass C1(s) 
ontains at least one and
at most two elements. It 
ontains one element if −s+k ≡ s mod n and two

elements if −s+k 6≡ s mod n. The former o

urs if and only if either 2s = k
or 2s = n + k. Thus there is a singleton 
lass if and only if either

k
2
∈ Sn

or

(n+k)
2

∈ Sn
, i.e. if either k or (n + k) is an even number. In parti
ular there


an be at most two singleton 
lasses. Similarly, any 
lass C2(s) 
ontains one
element if −s− k ≡ s mod n and two elements if −s− k 6≡ s mod n. The
former o

urs if and only if either 2s = n − k or 2s = 2n − k. Thus there

is a singleton 
lass if and only if either n − k or 2n − k is an even number

whi
h holds if and only if either k or (n + k) is an even number. We de�ne

Ci(S
n) := {Ci(s)|s ∈ Sn}, i = 1, 2. Suppose player 1's payo� matrix is

anti-
ir
ulant. Then, by Lemma 2(ii), s′ ∈ Ci(s) if and only if in any Nash

equilibrium either both are simultaneously played with positive probability

or both are simultaneously played with zero probability.

For an ordered iso-
ir
ulant game, the set I(Sn) is a partition of Sn
by


onstru
tion. It 
an be shown (Lemma B3 in the appendix) that this is also

9



true in the 
ase of ordered 
ounter-
ir
ulant games and C1(S
n) and C2(S

n),
respe
tively.

The following lemma 
overs the 
onne
tion between the support of a

strategy of player i and the best response of player −i against that strategy.

Lemma 3. Let Γn be an ordered 
ir
ulant game in whi
h player 1's payo�

matrix is anti-
ir
ulant.

(i) If Γn is iso-
ir
ulant then if σi ∈ Σi and I(s) ∈ I(Sn) are su
h that

supp(σi) ∩ I(s) = ∅ then BR−i(σi) ∩ I(−s) = ∅.

(ii) If Γn is 
ounter-
ir
ulant then if supp(σ−i) ∩ C−i(s) = ∅ for C−i(s) ∈
C−i(S

n) then BRi(σ−i) ∩ Ci(−s) = ∅.

The next lemma shows that only spe
i�
 subsets of Sn

an arise as the

support of a Nash equilibrium strategy of player 1.

Lemma 4. Let Γn be an ordered 
ir
ulant game in whi
h player 1's payo�

matrix is anti-
ir
ulant.

(i) If Γn is iso-
ir
ulant then for any union U =
⋃m

j=1 I(s
j) of elements of

I(Sn) there is a unique Nash equilibrium (σ1, σ2) su
h that supp(σ1) =
U . Further, for any Nash Equilibrium (σ1, σ2) there is a union U =
⋃m

j=1 I(s
j) of elements of I(Sn) su
h that supp(σ1) = U .

(ii) If Γn is 
ounter-
ir
ulant then for any union U =
⋃m

j=1C1(s
j) of ele-

ments of C1(S
n) there is a unique Nash equilibrium (σ1, σ2) su
h that

supp(σ1) = U . Further, for any Nash Equilibrium (σ1, σ2) there is a

union U =
⋃m

j=1C1(s
j) of elements of C1(S

n) su
h that supp(σ1) = U .

3.2 The Number of Nash Equilibria

Theorem 1. Let Γn be an ordered iso-
ir
ulant game with shift k and let

d = gcd(k, n) denote the greatest 
ommon divisor of k and n. Then Γn has

2d − 1 Nash equilibria.

Sin
e by de�nition k ≤ n, ne
essarily gcd(k, n) ≤ n. It follows that an

ordered iso-
ir
ulant game 
an have at most 2n−1 Nash equilibria. Further,

an ordered iso-
ir
ulant game has a unique Nash equilibrium if and only if

gcd(k, n) = 1. Together with Lemma 1, this implies that if gcd(k, n) = 1

10



then the unique Nash equilibrium is the one where both players pla
e equal

probability on ea
h pure strategy. Some immediate 
onsequen
es of these

results are the following.

�Mat
hing Pennies� (Example 1) is an ordered iso-
ir
ulant game with

shift k = 1. Hen
e, [(1/2, 1/2), (1/2, 1/2)] is the unique Nash equilibrium.

�Ro
k-Paper-S
issors� (Example 2) is an ordered iso-
ir
ulant game with shift

k = 1. Hen
e, the unique Nash equilibrium is [(1/3, 1/3, 1/3), (1/3, 1/3, 1/3)].

Proposition 3. Let Γn be an ordered iso-
ir
ulant game with shift k. Γn has

n pure strategy Nash equilibria if and only if k = n. Further, Γn has no pure

strategy Nash equilibrium if and only if k 6= n.

By the last proposition an ordered iso-
ir
ulant game Γn has either 0 or

n pure strategy Nash equilibria. The �4×4 
oordination � (Example 3) is an

ordered iso-
ir
ulant game with shift k = 4. As gcd(4, 4) = 4, by Theorem

1, this game has 24 − 1 = 15 Nash equilibria. By Proposition 3 four of these

are in pure strategies.

Theorem 2. Let Γn be an ordered 
ounter-
ir
ulant game with shift k.

(i) If n is odd, then Γn has exa
tly 2
n+1

2 − 1 Nash equilibria.

(ii) If both n and k are even, then Γn has exa
tly 2
n

2
+1 − 1 Nash equilibria.

(iii) If n is even and k is odd, then Γn has exa
tly 2
n

2 − 1 Nash equilibria.

It follows that an ordered 
ounter-
ir
ulant game 
an have at most 2
n

2
+1−

1 Nash equilibria. Further, an ordered 
ounter-
ir
ulant game has a unique

Nash equilibrium if and only if n = 2 and k = 1. Example 4 is an ordered


ounter-
ir
ulant game with shift k = 3. As n is even and k is odd, by

Theorem 2(iii) the game has 22 − 1 = 3 Nash equilibria. Example 5 is an

ordered 
ounter-
ir
ulant game with shift k = 2. As n is odd, by Theorem

2(i) the game has 23 − 1 = 7 Nash equilibria.

Proposition 4. Let Γn be an ordered 
ounter-
ir
ulant game with shift k.

(i) Γn has a exa
tly one pure strategy Nash equilibrium if and only if n is

odd.

(ii) Γn has exa
tly two pure strategy Nash equilibria if and only if both n
and k are even.

11



(iii) Γn has no pure strategy Nash equilibrium if and only if n is even and

k is odd.

In Example 4 n is even and k is odd, and by Proposition 4(iii) none of

its three Nash equilibria are in pure strategies. In Example 5 n is odd, and

by Proposition 4(i) one of its seven Nash equilibria is in pure strategies.

It follows from (i) and (ii) in Proposition 4 that the 
lass of ordered


ounter-
ir
ulant games with even shift is a 
lass of games for whi
h a pure

strategy Nash equilibrium always exists.

3.3 The Stru
ture of Nash Equilibria

By Lemma 4, there exists a straightforward way to 
hara
terize the support of

all Nash equilibrium strategies for a given ordered 
ir
ulant game. Moreover,

on
e we know what to look for the weights of the strategies in the support


an be easily derived.

Consider �rst the 
ase of an ordered iso-
ir
ulant game with n and k,
and let d = gcd(n, k). By Lemma A1(i) in the appendix we 
an transform

the game so that player 1's payo� matrix is anti-
ir
ulant. The 
ir
ulant

stru
ture of the payo� matri
es allows us to de�ne an equivalen
e relation

on the set of pure strategies S for ea
h player. For a pure strategy s ∈ Sn
,

the 
orresponding equivalen
e 
lass I(s) = {s+mk|0 ≤ m ≤ n
d
−1} 
ontains

n/d elements and there are d di�erent equivalen
e 
lasses. In any Nash

equilibrium all strategies within one equivalen
e 
lass are either played with

stri
tly positive or with zero probability. It follows from Lemma 4(i) that

in any Nash equilibrium the support of either player's strategy is the union

of 
lasses in I(Sn) = {I(s)|s ∈ Sn} and further that for any su
h union

of 
lasses in I(Sn) there is a unique Nash equilibrium in whi
h player 1's

strategy has this union as its support. Further, if the mixed strategy pro�le

(σ1, σ2) is a Nash equilibrium with supp(σ1) =
⋃m

j=1 I(s
j) for some strategies

s1, . . . , sm ∈ Sn
then by Lemma 3(i) it follows that supp(σ2) =

⋃m
j=1 I(−sj).

The a
tual probabilities put on ea
h strategy of 
ourse depend on the a
tual

payo�s, however, the stru
ture of the supports is the same for all ordered iso-


ir
ulant games with the same shift and the same number of pure strategies.

Let us revisit the �4 × 4 
oordination� game from Example 3. Here,

n = k = d = 4 and hen
e there are four (singleton) 
lasses: I(0) = {0},
I(1) = {1}, I(2) = {2}, and I(3) = {3}. Ea
h 
lass is part of a (pure strat-

egy) Nash equilibrium in whi
h supp(σ1) = I(s) and supp(σ2) = I(−s), and

12



there are four su
h 
ombinations. E.g., in one Nash equilibrium player 1 plays

the strategy s = 1, i.e. plays the equivalen
e 
lass I(1) and player 2 plays s =
3, the equivalen
e 
lass I(−1) = I(3). Analogously, the three remaining pure

strategy Nash equilibria are given by the pro�les (0, 0), (2, 2), and (3, 1). Fur-
ther, ea
h union of two 
lasses is part of a (mixed strategy) Nash equilibrium

in whi
h supp(σ1) = I(s1)∪I(s2) and supp(σ2) = I(−s1)∪I(−s2). There are
six su
h 
ombinations. E.g., in one Nash equilibrium player 1 puts positive

probability only on I(0) and I(1) and player 2 puts positive probability on

I(−0) = I(0) and I(−1) = I(3). The probabilities are easily derived from the


orresponding indi�eren
e 
onditions and the Nash equilibrium strategy pro-

�le is [(1/4, 3/4, 0, 0), (3/4, 0, 0, 1/4)]. The remaining �ve Nash equilibria in

whi
h the support of player 1's strategy is the union of two 
lasses are given by

the pro�les [(1/2, 0, 1/2, 0), (1/2, 0, 1/2, 0)], [(3/4, 0, 0, 1/4), (1/4, 3/4, 0, 0)],
[(0, 1/4, 3/4, 0), (0, 0, 1/4, 3/4)], [(0, 1/2, 0, 1/2), (0, 1/2, 0, 1/2)], [(0, 0, 1/4, 3/4),
(0, 1/4, 3/4, )]. Analogously, there are four Nash equilibria in whi
h the sup-

port of player 1's (and player 2's) strategy is the union of three 
lasses:

[(1/4, 1/4, 1/2, 0), (1/2, 0, 1/4, 1/4)], [(1/4, 1/2, 0, 1/4), (1/4, 1/2, 0, 1/4)], [(1/2, 0, 1/4, 1/4),
(1/4, 1/4, 1/2, 0)], [(0, 1/4, 1/4, 1/2), (0, 1/4, 1/4, 1/2)]. Finally, there is one

Nash equilibrium where player 1's (and player 2's) strategy is 
ompletely

mixed: [(1/4, 1/4, 1/4, 1/4), (1/4, 1/4, 1/4, 1/4)].
Consider now the 
ase of an ordered 
ounter-
ir
ulant game with given n

and k. We 
an apply Lemma A1(ii) in the appendix to transform this game

so that player 1's payo� matrix is anti-
ir
ulant. As in the previous 
ase, we


an de�ne an equivalen
e relation on set of pure strategies for ea
h player.

For all s ∈ S let C1(s) = {s,−s + k} denote the 
orresponding equivalen
e


lass of player 1 and C2(s) = {s,−s − k} the one of player 2. Note that

any 
lass C1(s), C2(s) 
ontains at least one and at most two elements. It

follows from Lemma 4(ii) that in any Nash equilibrium the support of player

1's strategy is a union of 
lasses C1(S
n) and that for any union of 
lasses in

C1(S
n) = {C1(s)|s ∈ Sn} there is a Nash equilibrium in whi
h the support of

player 1's strategy has this union as its support. Further, if (σ1, σ2) is a Nash
equilibrium with supp(σ1) =

⋃m
j=1C1(s

j) for some strategies s1, . . . , sm ∈ Sn

then by Lemma 3(ii) it follows that supp(σ2) =
⋃m

j=1C2(−sj).
Let us revisit the game in Example 4. Here, n = 4 and k = 3. There

are two 
lasses for player 1: C1(0) = C1(3) = {0, 3} and C1(1) = C1(2) =
{1, 2}. Correspondingly there are two 
lasses for player 2: C2(0) = C2(1) =
{0, 1} and C2(2) = C2(3) = {2, 3}. There are two Nash equilibria in whi
h
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the support of player 1's (and player 2's) strategy 
onsists of a single 
lass:

[(1/4, 0, 0, 3/4), (1/4, 3/4, 0, 0)],[(0, 3/4, 1/4, 0), (0, 0, 1/4, 3/4)]. Further there
is one equilibrium in whi
h player 1 (and player 2) plays a 
ompletely mixed

strategy: [(1/4, 1/4, 1/4, 1/4), (1/4, 1/4, 1/4, 1/4)].

4 Generalizations

By our de�nition there are games that are not ordered iso-
ir
ulant (
ounter-


ir
ulant) games, but that 
an be transformed into one by a simple relabeling

of strategies. We 
hose to ex
lude those games from our de�nition for ease of

exposition. However, the results presented above also apply for these games.

It is not ne
essary to insist on ea
h row 
ontaining the same entries. All

our proof go through if payo�s are transformed in a way that preserves the

order of entries in ea
h row and in ea
h 
olumn of the payo� matri
es.

Example 6. In the 3× 3 with payo� matri
es

A1 =





3.1 1.9 0.8
1.5 0.9 3.4
0.5 3.2 2.1



 , A2 =





0.7 2.2 3.5
1.8 2.6 0.1
3 0.5 2.8



 .

the order of payo�s in ea
h row and in ea
h 
olumn is the same as in Ro
k-

Paper-S
issors (Example 2). The proof of Theorem 1 
an easily be general-

ized to this 
ase to show that this game has a unique Nash equilibrium. As

the sum of payo�s in ea
h row is not 
onstant, however, the unique Nash equi-

librium is not the strategy pro�le in whi
h both players play the uniformly


ompletely mixed strategies.

In this sense, our results on the number and the stru
ture of Nash equi-

libria only depend on the order of payo�s in the rows and 
olumns of the

payo� matri
es.

Our results further generalize to 
oordination games in whi
h players

obtain a stri
tly positive payo� if and only if they use the same strategy

and a payo� of 0 otherwise i.e., so-
alled games of pure 
oordination. The

resulting payo� matri
es are of the form

A1 =















a0 0 0 · · · 0
0 a1 0 . . . 0
0 0 a2 . . . 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · an−1















A2 =















a0 0 0 · · · 0
0 a1 0 . . . 0
0 0 a2 . . . 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · an−1














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Proving that su
h games have 2n − 1 Nash equilibria works analogously to

the proof of Theorem 1.

5 Con
lusion

In this paper we introdu
e and investigate a 
lass of two-player normal-form

games we 
oin 
ir
ulant games. Cir
ulant games have a straightforward

representation in form of 
ir
ulant matri
es. Ea
h player's payo� matrix is

fully 
hara
terized by a single row ve
tor, whi
h appears as the �rst row of

the matrix. The remaining rows are obtained through 
y
li
 permutations

of the �rst line su
h that a row ve
tor is rotated by one element relative

to the pre
eding row ve
tor. All 
ir
ulant games have a Nash equilibrium

where players randomize between all pure strategies with equal probability

(uniformly 
ompletely mixed Nash equilibrium).

If the �rst row of ea
h payo� matrix is stri
tly ordered (ordered 
ir
u-

lant games), the 
ir
ulant stru
ture underlying the payo� matri
es has some

interesting impli
ations. First, the best response 
orresponden
es indu
e a

partition on ea
h players' set of pure strategies into equivalen
e 
lasses. In

any Nash Equilibrium all strategies within one 
lass are either played with

stri
tly positive or with zero probability. Se
ond, there exist a simple one-to-

one 
orresponden
e between the players' equivalen
e 
lasses. If some player

puts zero probability on one 
lass (i.e. plays all pure strategies within one


lass with zero probability), the other has one 
orresponding equivalen
e 
lass

he plays with zero probability. Finally, a single parameter k fully determines

the strategy 
lasses and the relation between the players' 
lasses. The param-

eter itself only depends on the position of the largest payo� in the �rst row

of player 2's payo� matrix. For a given ordered 
ir
ulant game, knowing k
and the number of pure strategies n su�
es to 
al
ulate the number of Nash

equilibria and to des
ribe the support of all Nash equilibrium strategies. As

an immediate 
onsequen
e of our main results we reestablish 2n − 1 as the

tight upper bound on the number of Nash equilibria in these games.

The 
lass of ordered 
ir
ulant games 
ontains well-known games su
h as

Mat
hing Pennies and Ro
k-Paper-S
issors. Our approa
h shifts the fo
us

of these two games away from their zero-sum property towards the 
ir
ulant

stru
ture of the 
orresponding payo� matri
es. Hereby, we shed new light

on their 
onne
tion. Mat
hing Pennies is simply the two-strategy variant of

Ro
k-Paper-S
issors. Within our framework the two games belong to the
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same sub-
lass of ordered 
ir
ulant games. Both games are 
hara
terized by

k = 1 and the only Nash equilibrium is the uniformly 
ompletely mixed one.

The 
ommon denominator that 
onne
ts these games is the balan
ed payo�

stru
ture indu
ed by the 
ir
ulant matri
es with a shift of k = 1. Moreover,

this reinterpretation is robust in the sense that only relative payo�s matter.

We 
an write down Ro
k-Paper-S
issors in many variants, in
luding asym-

metri
 evaluations of wins or losses, variants that 
annot be transformed into

zero-sum games. Yet, the balan
ed stru
ture is preserved and the best players


an do is to randomize between all pure strategies with equal probability.

A di�erent way to interpret our results is from the perspe
tive of So
ial

Choi
e Theory. As for example in Gibbard (1974), we 
an de
ompose so
ial

states into di�erent 
omponents representing private spheres of the individ-

uals. If we require a 
olle
tive 
hoi
e rule to respe
t liberalism with respe
t

to private spheres, then individuals should be de
isive over their own private

spheres (i.e. 
hoose their strategies) and should not intervene with private

spheres of the other individuals (i.e. given the other players' strategies). In

this 
ontext, so
ial states 
orrespond to strategy pro�les, and private spheres

to players' strategies. If the there is no pure strategy equilibrium in the 
or-

responding game, the 
olle
tive 
hoi
e set is empty (see e.g. Gaertner, 2006,

Chapter 4.4). Hen
e we 
an interpret the sub
lass of ordered 
ir
ulant games

with pure strategy Nash equilibria as a domain restri
tion on the 
olle
tive


hoi
e rule su
h that the 
hoi
e set is not empty.
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A Transformation of Games

Lemma A1. (i) Let Γn be an iso-
ir
ulant game in whi
h both players'

payo� matri
es are 
ir
ulant. There is a permutation of row ve
tors

that �xes the �rst row in both matri
es and transforms both player's

payo� matri
es into anti-
ir
ulant matri
es.

(ii) Let Γn be a 
ounter-
ir
ulant game in whi
h player 1's payo� matrix

is 
ir
ulant. There is a permutation of row ve
tors that �xes that �rst

row in both matri
es and transforms player 1's payo� matrix into an

anti-
ir
ulant matrix and player 2's matrix into a 
ir
ulant matrix.

Proof. (i) A matrix A is anti-
ir
ulant if and only if A = PC, where C is a


ir
ulant matrix and

P =



















1 0 · · · 0 0 0
0 0 · · · 0 0 1
0 0 · · · 0 1 0
0 0 · · · 1 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 1 · · · 0 0 0



















(Davis, 1979, p. 162, Corollary). The matrix P swit
hes rows i and n+1− i
and �xes the �rst row. Using this result, we obtain that PA1 and PA2 are

anti-
ir
ulant matri
es sin
e both A1 and A2 are 
ir
ulant matri
es.

(ii) Using the matrix P de�ned as in (i), we obtain that PA1 is anti-


ir
ulant (Davis, 1979, p. 162, Corollary). As A2 is anti-
ir
ulant, A2 = PC
for some 
ir
ulant matrix C (Davis, 1979, p. 162, Corollary). Hen
e PA2 =
P (PC) and sin
e P = P−1

(Davis, 1979, p.28, equ. (2.4.22)), we obtain that

PA2 is a 
ir
ulant matrix.
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B Proofs

Lemma B2. Let Γn be an ordered 
ir
ulant game with shift k in whi
h player

1's payo� matrix is anti-
ir
ulant.

(i) For all σ2 ∈ Σ2 and all s ∈ Sn
if σ2(s) = 0 then −s /∈ BR1(σ2) .

(ii) If Γn is iso-
ir
ulant, then for all σ1 ∈ Σ1 and all s ∈ Sn
if σ1(s) = 0

then (−s− k) /∈ BR2(σ1) .

(iii) If Γn is 
ounter-
ir
ulant, then for all σ1 ∈ Σ1 and all s ∈ Sn
if σ1(s) =

0 then (s− k) /∈ BR2(σ1) .

Proof. (i) Let σ2 ∈ Σ2 be su
h that σ2(s) = 0 for some s ∈ Sn
. Sin
e player

1's payo� matrix is anti-
ir
ulant πi(s|s
′) = a1s+s′. By de�nition, for player 1

a1s′−s < a1s′−s−1 for all s
′ 6= s. Hen
e, as σ2(s) = 0,

π1(−s|σ2) =
∑

s′ 6=s

σ2(s
′)a1s′−s

<
∑

s′ 6=s

σ2(s
′)a1s′−s−1 = π1(−s− 1|σ2),

whi
h implies that −s /∈ BR1(σ2).
(ii) Let σ1 ∈ Σ1 and s ∈ Sn

be su
h that σ1(s) = 0. Sin
e player 2's payo�
matrix is anti-
ir
ulant, π2(s|s

′) = a2s′+s for s, s
′ ∈ S. Sin
e Γn is an ordered


ir
ulant game, either a2n−k > a2n−k+1 > · · · > a2n−1 > a20 > a1 > · · · > a2n−k−1

or a2n−k > a2n−k−1 > · · · > a21 > a20 > an−1 > · · · > a2n−k+1 and hen
e either

a2s′ < a2s′−1 or a2s′ < a2s′+1 for all s′ 6= n − k. We will only prove the result

for the former 
ase as the proof for the latter works analogously (by using

the inequality a2s′ < a2s′+1 for all s′ 6= n − k instead of a2s′ < a2s′−1). Sin
e

a2s′ < a2s′−1 we obtain a2s′−s−k < a2s′−s−k−1 for all s
′ 6= s and hen
e

π2(−s− k|σ1) =
∑

s′ 6=s

σ1(s
′)a2s′−s−k

<
∑

s′ 6=s

σ1(s
′)a2s′−s−k−1 = π2(−s− k − 1|σ1),

so (−s− k) /∈ BR2(σ1).
(iii) Let σ1 ∈ Σ1 and s ∈ Sn

be su
h that σ1(s) = 0. Sin
e player 2's

payo� matrix is 
ir
ulant, π2(s|s
′) = a2s′−s for s, s

′ ∈ S. Sin
e Γn is an ordered
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ir
ulant game, by de�nition either a2n−k > · · · > a2n−1 > a20 > · · · > a2n−k−1

or a2n−k > a2n−k−1 > · · · > a20 > a2n−1 > · · · > a2n−k+1 and hen
e a2s′ < a2s′−1

or a2s′ < a2s′+1 for all s
′ 6= n− k. We will only prove the result for the former


ase as the proof for the latter works analogously. Sin
e a2s′ < a2s′−1 we obtain

a2s−k−s′ < a2s−k−1−s′ for all s
′ 6= s and hen
e

π2(s− k|σ1) =
∑

s′ 6=s

σ1(s
′)a2s−k−s′

<
∑

s′ 6=s

σ1(s
′)a2s−k−1−s′ = π2(s− k − 1|σ1),

so (s− k) /∈ BR2(σ1).

The lemma makes a statement about best responses of player i given that

player −i plays some strategy with zero probability provided that player 1's

payo� matrix is anti-
ir
ulant. By (i) if player 2 plays a strategy s with prob-
ability 0 then for player 1 strategy −s 
annot be a best response. Similarly,

(ii) and (iii) state that if in an iso-
ir
ulant (
ounter-
ir
ulant) game player

1 pla
es probability 0 on strategy s then −s − k (s − k) 
annot be a best

response for player 2. The idea behind the proof is very simple. For player

1 strategy −s − 1 yields a stri
tly higher payo� than −s against any pure

strategy of player 2 ex
ept s. Hen
e, if player 2 pla
es probability 0 on s then
−s 
annot be a best response. Analogously, for player 2 strategy −s− k− 1
(s − k − 1) yields a stri
tly higher payo� than −s − k (s − k) against any
pure strategy of player 1 ex
ept s.

Proof of Lemma 2. (i) The �if� part is trivial. To see the �only if� part let

(σ1, σ2) be a Nash equilibrium of Γn and let s ∈ Sn
be su
h that σ1(s) = 0. By

Lemma B2(ii), σ2(−s−k) = 0 and 
onsequently by Lemma B2(i) σ1(s+k) =
0. Iterating this argument yields σ1(s+mk) = 0 for all m = 0, . . . , n

d
− 1. If

σ2(s) = 0 the argument works analogously.

(ii) By Lemma B2(i) and (iii) for any Nash equilibrium (σ1, σ2) and any

s ∈ Sn
we obtain

σ1(s) = 0 ⇒ σ2(s− k) = 0 ⇒ σ1(−s+ k) = 0

and

σ1(−s + k) = 0 ⇒ σ2(−s) = 0 ⇒ σ1(s) = 0.
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Analogously, for player 2, we obtain

σ2(s) = 0 ⇒ σ1(−s) = 0 ⇒ σ2(−s− k) = 0

and

σ2(−s− k) = 0 ⇒ σ1(s+ k) = 0 ⇒ σ2(s) = 0.

Lemma B3. Let Γn be an ordered 
ounter-
ir
ulant game. For i = 1, 2 the

set Ci(S
n) is a partition of Sn

.

Proof. We will prove the result for i = 1 as the proof for i = 2 works

analogously. Sin
e s ∈ C1(s) for all s ∈ Sn
, it follows that

⋃

s∈Sn C1(s) = Sn
.

If there is s ∈ C1(s) ∩ C1(s
′) for some s, s′ ∈ Sn

, then then sin
e s ∈ C1(s)
either s = s or s = −s + k. If s = s then Ci(s) = Ci(s). If s = −s + k
then −s + k = s − k + k = s. In any 
ase it follows that C1(s) = C1(s).
Using the same argument one obtains C1(s) = C1(s

′) and hen
e that C1(s) =
C1(s

′).

Proof of Lemma 3. (i) First, let s ∈ Sn
be su
h that supp(σ1) ∩ I(s) = ∅.

By Lemma B2(ii), −s − (m + 1)k /∈ BR2(σ1) for all 0 ≤ m ≤ n/d − 1. As

{−s− (m+1)k|0 ≤ m ≤ n/d− 1} = I(−s) we obtain BR2(σ1)∩ I(−s) = ∅.
Next, let s ∈ Sn

be su
h that supp(σ2) ∩ I(s) = ∅. By Lemma B2(i),

−s − mk /∈ BR1(σ2) for all 0 ≤ m ≤ n/d − 1. As {−s − mk|0 ≤ m ≤
n/d− 1} = I(−s) we obtain BR1(σ2) ∩ I(−s) = ∅.

(ii) If supp(σ−i) ∩ C−i(s) = ∅ for C−i(s) ∈ C−i(S
n), then, sin
e C−i(s) =

{s,−s+ (−1)i−1k}, by Lemma B2(i) and (iii), −s, s+ (−1)i−1k /∈ BRi(σ−i).
Hen
e BRi(σ−i) ∩ Ci(−s) = ∅.

Lemma B4. Let Γn be an ordered iso-
ir
ulant game in whi
h both play-

ers' payo� matri
es are anti-
ir
ulant. For every s ∈ Sn
, there is a Nash

equilibrium (σ1, σ2) su
h that supp(σ1) = I(s) and supp(σ2) = I(−s).

Proof. Given s ∈ Sn
, de�ne σ1(s) = d/n for all s ∈ I(s) and σ2(s) = d/n for

all s ∈ I(−s). By 
onstru
tion supp(σ1) = I(s) and supp(σ2) = I(−s). By
Lemma 3(i), any strategy outside I(s) 
annot be a best response for player

1 against σ2 and any strategy outside I(−s) 
annot be a best response for

player 2 against σ1. Further, π1(s|σ2) =
∑n/d−1

m=0
d
n
as+s+mk = π1(s

′|σ2) for

all s, s′ ∈ I(s) and analogously π2(s|σ1) = π2(s
′|σ1) for all s, s′ ∈ I(−s).

Proposition 1 yields that (σ1, σ2) is a Nash equilibrium of Γn.
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The next lemma establishes a result for ordered 
ounter-
ir
ulant games

whi
h is analogous to Lemma B4 for ordered iso-
ir
ulant games.

Lemma B5. Let Γn be an ordered 
ounter-
ir
ulant game in whi
h player

1's payo� matrix is anti-
ir
ulant and let σ = (σ1, σ2) ∈ Σ1 × Σ2.

(i) Ci(s) is a singleton if and only if C−i(−s) is a singleton.

(ii) For every s ∈ Sn
, there is a Nash equilibrium (σ1, σ2) su
h that supp(σ1) =

C1(s) and supp(σ2) = C2(−s).

Proof. (i) Suppose that Ci(s) is a singleton. By 
onstru
tion, s ≡ −s +
(−1)i−1k mod n whi
h is equivalent to −s ≡ s+(−1)ik mod n. This holds
if and only if C−i(−s) is a singleton.

(ii) Note that this follows from (i) and Lemma 3(ii) if C1(s) is a singleton
set. Hen
e, suppose that C1(s) = {s,−s+ k} 
ontains two elements. Then,

by (i), C2(−s) = {−s, s − k} 
ontains two elements and neither 2s = k
nor 2s = n + k. Choose σ1(s) as the solution to xa2−2s + (1 − x)a2−k =
xa2−k + (1− x)a22s−2k, i.e.

σs
1(s) =

a22s−2k − a2n−k

a22s−2k − a2n−k + a2n−2s − a2n−k

.

By de�nition a2n−k is player 2's largest payo� implying that a22s−2k−a2n−k < 0
sin
e 2s 6= n+k and that a2n−2s−a2n−k < 0 sin
e 2s 6= k. Hen
e σ1(s) ∈]0, 1[.

Choose σs
2(−s) as the solution to xa10+(1−x)a12s−k = xa1−2s+k+(1−x)a10,

i.e.

σs
2(−s) =

a10 − a12s−k

a10 − a12s−k + a10 − a1−2s+k

.

By de�nition a10 is player 1's largest payo�. Hen
e as 2s 6= k a10 − a12s−k > 0
and a10 − a1−2s+k > 0 implying that σ2(−s) ∈]0, 1[. By Lemma 3(ii) and

Proposition 1, (σ1, σ2) is a Nash equilibrium.

The set C1(S) 
an be viewed as a partition of the strategy set for player

1 while C2(S) is a partition of the strategy set for player 2. By (i) a 
lass

C1(s) of player 1 �
orresponds" to a 
lass C2(−s) of player 2 in the sense

that if player 1 puts probability 0 on all strategies in C1(s) then none of the

strategies in C2(−s) are a best response for player 2 and vi
e versa. Part (ii)

states that two �
orresponding� 
lasses 
ontain the same number of elements.
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By (iii) for every 
lass C1(s) there is always a Nash Equilibrium su
h that

player 1's strategy has this 
lass as its support while player 2's strategy has

support C2(−s). The equilibrium 
onstru
ted to prove (ii) is su
h that player

1 
hooses his strategy (with support C1(s)) su
h that player 2 is indi�erent

between all strategies in C2(−s) (and vi
e versa). As Γn is a non-degenerate

game, by Proposition 2(ii) this is the unique equilibrium (σ1, σ2) su
h that

supp(σ1) = C1(s) and supp(σ2) = C2(−s).
In Example 4 there are 2 
lasses C1(s) (and by Lemma B4(i) also C2(s))

in Sn
. The 
lasses are C1(0) = {0, 3}, C1(1) = {1, 2}, and C2(0) = {0, 1},

C2(2) = {2, 3}. As there are no singleton 
lasses, there are no pure strategy

equilibria.

In Example 5 there are 3 
lasses C1(s) (and by Lemma B4(i) also C2(s))
in Sn

. These are C1(0) = {0, 2}, C1(1) = {1}, C1(3) = {3, 4}, and C2(0) =
{0, 3}, C2(2) = {1, 2}, C2(4) = {4}. The game has one pure-strategy Nash

equilibrium: (1, 4).
Having determined the support of an equilibrium strategy for player 1

Lemmata B4 and B5 
an be used to determine the support of player 2's

equilibrium strategy.

Proposition B1. For the two-player normal-form game Γn let S1 = {[s]1|s ∈
Sn} and S2 = {[s]2|s ∈ Sn} be partitions of Sn

su
h that |S1| = |S2|. If Γn,

S1, and S2 satisfy

(a) for all Nash equilibria (σ1, σ2), and all s, s′ ∈ S, if s′ ∈ [s]i then σi(s) =
0 if and only if σi(s

′) = 0,

(b) for all σi ∈ Σi, i = 1, 2, supp(σi) ∩ [s]i = ∅ for [s]i ∈ Si implies

BR−i(σi) ∩ [−s]−i = ∅,

(
) for all s ∈ Sn
, Γn has a Nash equilibrium (σ1, σ2) with supp(σ1) = [s]1

and supp(σ2) = [−s]2,

then

(i) for any M ⊆ S1 Γn has a unique Nash equilibrium (σ1, σ2) with supp(σ1) =
⋃

[s]1∈M
[s]1;

(ii) Γn has exa
tly 2|S1| − 1 Nash equilibria.
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This proposition is the 
entral part of the proof of Theorems 1 and 2.

Using the results in the previous se
tions it follows immediately that its

hypotheses (in parti
ular properties (a)-(
)) are satis�ed by ordered iso-


ir
ulant and ordered 
ounter-
ir
ulant games.

Proof. (i) Given ∅ 6= M ⊆ S1 let −M := {[−s]2|[s]1 ∈ M} ⊆ and let ΓM
n be

the redu
ed game where player 1's set of strategies is

⋃

[s]1∈M
[s]1 and player

2's set of strategies is

⋃

[s]1∈M
[−s]2 (and the payo� fun
tions are restri
ted

a

ordingly).

Claim A: Let M ′ ⊆ M ⊆ S1 be a nonempty subset of S1 and let

(σM ′

1 , σM ′

2 ) be a 
ompletely mixed Nash equilibrium of ΓM ′

n . Then (σM
1 , σM

2 )
de�ned by σM

1 (s) = σM ′

1 (s) if [s]1 ∈ M ′
and σM

1 (s) = 0 otherwise, and

σM
2 (s) = σM ′

2 (s) if [s]2 ∈ −M ′
and σM

2 (s) = 0 otherwise is a Nash equilibrium

in ΓM
n .

Sin
e (σM ′

1 , σM ′

2 ) is a 
ompletely mixed Nash equilibrium of ΓM ′

n , all strate-

gies in

⋃

[s]1∈M ′[−s]2 yield the same payo� for player 2 against σM
1 . By hy-

pothesis (b), sin
e supp(σM
1 ) =

⋃

[s]∈M ′[s], all strategies outside
⋃

[s]1∈M ′ [−s]2

annot be a best response for player 2 against σM

1 . Analogously all strate-

gies in

⋃

[s]1∈M ′[s]1 yield the same payo� for player 1 against σM
2 , and sin
e

supp(σM
2 ) = −

⋃

[s]1∈M ′[−s]2, strategies outside
⋃

[s]1∈M ′[s]1 
annot be a best

response for player 1 against σM
2 . Hen
e, by Proposition 1, (σM

1 , σM
2 ) is a

Nash equilibrium in ΓM
n . This proves the 
laim.

Claim B: For any ∅ 6= M ⊆ S1, the redu
ed game ΓM
n has exa
tly one


ompletely mixed Nash equilibrium.

Let ∅ 6= M ⊆ S1 be su
h that |M | = m. We will prove the 
laim by

indu
tion over m. Note �rst, that by hypothesis (b), in any Nash equilibrium

(σ1, σ2) of Γ
M
n , supp(σ1) is a union of elements of M .

For m = 1, this follows by hypothesis (
). For m > 1, by indu
tion

hypothesis we obtain that for all ∅ 6= M ′ ( M the redu
ed game ΓM ′

n has a

unique 
ompletely mixed Nash equilibrium. By Claim A, for every ∅ 6= M ′ (

M there is a Nash equilibrium (σM
1 , σM

2 ) in ΓM
n with supp(σM

1 ) =
⋃

[s]∈M ′[s].

As by Proposition 2(ii) for any ∅ 6= M ′ ( M there 
an be at most one

Nash equilibrium (σ1, σ2) in ΓM
n with supp(σ1) = M ′

we obtain that there is

exa
tly one su
h Nash equilibrium. This implies that ΓM
n has at least 2m− 2

Nash equilibria.
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Suppose there is no 
ompletely mixed Nash equilibrium in ΓM
n . Then ΓM

n

has exa
tly 2m−2 Nash equilibria. From hypotheses (a) and (b) it follows that

Γn is non-degenerate and hen
e that ΓM
n is non-degenerate. By Proposition

2(i) ΓM
n must have an odd number of Nash equilibria, whi
h 
ontradi
ts the

fa
t that 2m − 2 is even. Hen
e there is at least one 
ompletely mixed Nash

equilibrium and again be
ause ΓM
n is non-degenerate by Proposition 2(ii)

there is exa
tly one. This proves the 
laim.

By Claim B, for ∅ 6= M ⊆ S1, Γ
M
n has exa
tly one 
ompletely mixed

Nash equilibrium (σM
1 , σM

2 ). By Claim A, this indu
es a Nash equilibrium

(σ1, σ2) in Γn with supp(σ1) =
⋃

[s]1∈M
[s]1. Any Nash equilibrium (σ′

1, σ
′
2) 6=

(σ1, σ2) with supp(σ′
1) =

⋃

[s]1∈M
[s]1 would indu
e a 
ompletely mixed Nash

equilibrium in ΓM
n di�erent from (σM

1 , σM
2 ), a 
ontradi
tion. Hen
e Γn has

exa
tly one Nash equilibrium (σ1, σ2) with supp(σ1) =
⋃

[s]1∈M
[s]1.

(ii) From (i) it follows that for any ∅ 6= M ⊆ S1 there is a unique Nash

equilibrium (σ1, σ2) in Γn su
h that supp(σ1) =
⋃

[s]1∈M
[s]1. Further, by

hypothesis (a), for any Nash equilibrium (σ1, σ2) of Γn there is ∅ 6= M ⊆ S1

su
h that supp(σ1) =
⋃

[s]1∈M
[s]1. As S1 has 2

|S1| − 1 nonempty subsets, Γn

has exa
tly 2|S1| − 1 Nash equilibria.

Proof of Lemma 4. (i) To see the �rst part, let M =
⋃m

j=1 I(s
j) be a union of

elements of I(Sn). By Lemma 2(i) and Lemma B4, Γn and S1 = S2 = I(Sn)
as de�ned in se
tion 3.1 then satisfy the hypotheses of Proposition B1. Hen
e,

there is a unique Nash equilibrium (σ1, σ2) with supp(σ1) = M .

To prove the se
ond part, let (σ1, σ2) be a Nash equilibrium. By Lemma

2(i), supp(σ1) is a union of elements in I(Sn).
(ii) Too see the �rst part, let M =

⋃m
j=1C1(s

j) be a union of elements

of C1(S
n). By Lemma B3, C1(S

n) and C2(S
n) as de�ned in se
tion 3.1 are

partitions of Sn
. Further, by Lemma B5(i), |C1(S

n)| = |C2(S
n)| and by

Lemma 2(ii), Lemma 3(ii), and B5(ii), Γn, S1 = C1(S
n), and S2 = C2(S

n)
satisfy properties (a)-(
) in Proposition B1. It follows that there is a unique

Nash equilibrium (σ1, σ2) with supp(σ1) = M .

To prove the se
ond part, let (σ1, σ2) be a Nash equilibrium. By Lemma

2(ii), supp(σ1) is a union of elements in C1(S
n).

Proof of Theorem 1. If Γn is an ordered iso-
ir
ulant game in whi
h both

players' payo� matri
es are anti-
ir
ulant then by Lemma 2(i) and Lemma
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B4, Γn and S1 = S2 = I(Sn) as de�ned in se
tion 3.1 then satisfy the

hypotheses of Proposition B1. As |I(Sn)| = d, it follows that Γn has 2d − 1
Nash equilibria. If Γn is an iso-
ir
ulant game in whi
h both players' payo�

matri
es are 
ir
ulant, there is a permutation of row ve
tors that transforms

both players' payo� matri
es into anti-
ir
ulant matri
es while �xing the �rst

row in both matri
es (Lemma A1(i)). This permutation, whi
h is essentially

a relabeling of the players' strategies, does not a�e
t the number of equilibria.

Hen
e, the proof of Theorem 1 is 
omplete.

Proof of Theorem 2. If Γn is an ordered 
ounter-
ir
ulant game in whi
h

player 1's payo� matrix is anti-
ir
ulant and player 2's payo� matrix is 
ir-


ulant then by Lemma B3, C1(S
n) and C2(S

n) as de�ned in se
tion 3.1 are

partitions of Sn
. Further, by Lemma B5(i), |C1(S

n)| = |C2(S
n)| and by

Lemma 2(ii), Lemma 3(ii), and B5(ii), Γn, S1 = C1(S
n), and S2 = C2(S

n)
satisfy properties (a)-(
) in Proposition B1 and hen
e Γn has 2|C1(Sn)| − 1
Nash equilibria.

To prove (i)-(iii) it hen
e su�
es to determine |C1(S
n)|. Note that any


lass C1(s) 
ontains either one or two elements. It 
ontains one element if

and only if −s+k ≡ s whi
h o

urs if and only if either 2s = k or 2s = n+k.
Further, there are at most two singleton 
lasses.

(i) If n is odd, then either n− k is odd (if k is even) or 2n− k is odd (if

k is odd). Hen
e there is one singleton 
lass in C1(S
n) and sin
e all other

elements of C1(S
n) 
ontain two elements, |C1(S

n)| = (n−1)/2+1 = (n+1)/2.
(ii) If both n and k are even, then both k and n+k are even and k/2, (n+

k)/2 ∈ Sn
. Hen
e there are two singleton 
lasses in C1(S

n) and sin
e all other
elements of C1(S

n) 
ontain two elements, |C1(S
n)| = (n−2)/2+2 = (n+2)/2.

(iii) If n is even and k is odd, then n+k is odd and hen
e neither k/2 ∈ Sn

nor (n+ k)/2 ∈ Sn
. Hen
e there is no singleton 
lass and hen
e all elements

of C1(S
n) 
ontain 2 elements, implying that |C1(S

n)| = n/2 = n/2.
If Γn is a 
ount-
ir
ulant game in whi
h player 1's payo� matrix is 
ir-


ulant and player 2's payo� matrix is anti-
ir
ulant, there is a permutation

of row ve
tors that transforms player 1's payo� matrix into an anti-
ir
ulant

matrix. Applying the same permutation of row ve
tors to player 2's payo�

matrix yields a di�erent version of the same game in whi
h strategies are

di�erently labeled and player 1's payo� matrix is anti-
ir
ulant and player

2's payo� matrix is 
ir
ulant (Lemma A1(ii)). This permutation does not

a�e
t the number of Nash equilibria and hen
e the proof of Theorem 2 is


omplete.
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Proof of Proposition 3. Note �rst that if both players' payo� matri
es are


ir
ulant then by Lemma A1(i) the game 
an be transformed into a di�erent

version of the same game in whi
h both players' payo� matri
es are anti-


ir
ulant by a permutation of row ve
tors. Sin
e su
h a permutation does

not a�e
t the number of pure strategy Nash equilibria, we assume wlog that

both players' payo� matri
es are anti-
ir
ulant.

To see the �if� part suppose k = n. Then by 
onstru
tion, ea
h 
lass I(s)
is a singleton set and there are n disjoint 
lasses. Hen
e by Lemma B4, Γn

has at least n pure strategy Nash equilibria. By Lemma 2(i), in any pure

strategy Nash equilibrium (σ1, σ2), supp(σ1) = I(s) for some s ∈ S and hen
e

Γn has exa
tly n pure strategy Nash equilibria.

To prove the �only if� part let Γn have n pure strategy Nash equilibria

and let (s1, s2) be one of them. By Lemma 2(i), I(s1) must be a singleton

set. By 
onstru
tion, I(s1) is a singleton set if and only if k = n.
This proves the �rst part of the theorem.

To see the se
ond part, note that by 
onstru
tion of the 
lasses I(s) is
a singleton set if and only if k = n for any s ∈ S. Further by Lemma 2(i)

and Lemma B4, Γn has a pure strategy Nash equilibrium if and only if there

is a singleton equivalen
e 
lass I(s). Hen
e, Γn has no pure strategy Nash

equilibrium if and only if k 6= n.

Proof of Proposition 4. Note �rst that if player 1's payo� matrix is 
ir
ulant

then by Lemma A1(i) the game 
an be transformed into a di�erent version

of the same game in whi
h player 1's payo� matrix is anti-
ir
ulant by a

permutation of row ve
tors. Sin
e su
h a permutation does not a�e
t the

number of pure strategy Nash equilibria, we assume wlog that player 1's

payo� matrix is anti-
ir
ulant.

(i) By Lemma 2(ii) and Lemma B5(ii), Γn has one pure strategy Nash

equilibrium if and only if one of the 
lasses C1(s) is a singleton set, whi
h by


onstru
tion happens if and only if n is odd.

(ii) By Lemma 2(ii) and Lemma B5(ii), Γn has two pure strategy Nash

equilibria if and only if two of the 
lasses C1(s) is a singleton set, whi
h by


onstru
tion happens if and only if both n and k are even.

(iii) By Lemma 2(ii) and Lemma B5(ii), Γn has no pure strategy Nash

equilibrium if and only if none of the 
lasses C1(s) is a singleton set, whi
h

by 
onstru
tion happens if and only n is even and k is odd.
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