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Abstract: Stochastic Weather Generators (SWGs) try to replicate the stochastic pat-
terns of climatological variables characterized by high dimensionality, non-normal probabi-
lity density functions and non-linear dependence relationships. However, conventional SWGs
usually typify weather variables with not always justified probability distributions assuming
linear dependence between variables. This research proposes an alternative SWG that in-
troduces the advantages of the copula modeling into the replication of stochastic weather
patterns. The semiparametric copula-based SWG introduces more flexibility allowing resear-
cher to model non-linear dependence structures independently of the marginals involved.
Also, it can better model tail dependence, which would result in a more accurate reproduc-
tion of extreme weather events.
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Resumen: Los Generadores Estocásticos de Clima (GSC) tratan de replicar los patrones
estocásticos de las variables climatológicas, las cuales se caracterizan por alta dimensiona-
lidad, funciones de densidad de probabilidad no normales y patrones de dependencia no
lineales. Sin embargo, usualmente los GECs representan a las variables climatológicas con
distribuciones de probabilidad dif́ıcilmente justificables y asumen dependencia lineal entre
las variables. Esta investigación propone un GEC alternativo que introduce las ventajas de
las copulas en la reproducción de los patrones estocásticos de clima. El GEC semiparamétri-
co basado en copulas introduce mayor flexibilidad, lo cual permite modelar las estructuras
de dependencia no lineal independientemente de las distribuciones marginales involucradas.
Asimismo, el GEC propuesto captura la dependencia en las colas de la distribución, lo cual
resulta en una reproducción más exacta de los eventos climáticos extremos.
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1. Introduction  

Climatological variables are complex systems, characterized by high dimensionality, 

non-normal probability density functions and non-linear dependence relationships. 

Temperature belongs to bounded and skewed distributions, and precipitation is ruled by 

nonlinear and highly variable, in space and time, physical processes. The high zero 

frequency in precipitation probability distribution explains its discontinuity between zero 

and nonzero observations and its mixed discrete and continuous temporal correlations. 

SWGs are numerical models that try to reproduce the statistical properties from 

the observed historical climate series: maximum temperature, minimum temperature and 

precipitation. SWG parameters comprise a concise summary of climate behavior and use 

Monte Carlo methods as a random number generator for simulation. In theory, these 

models can generate long synthetic weather series that preserve the statistical properties 

of the original data observed in a broad variety of climates and regions.  

SWGs have numerous applications; they have been widely used as input in crop 

simulation models because of their ability to generate missing data and to produce long 

series to allow good estimates of the probability of extreme events that affect crop yield.
1
 

Also, their parameters can be interpolated to generate synthetic daily data for unobserved 

locations and they are frequently used in climate changes studies for impact evaluation. 

In the last decade, the desire for the more accurate replication of stochastic 

patterns has led to the application of copula methods in the modeling of natural hazards.  

The main objective of this research is to propose an alternative SWG that 

introduces the advantages of the copula modeling into the replication of stochastic 

weather patterns. This SWG approach models, in cross-section, the dependence structure 

between the probability distributions of the climatological variables, while the dynamics 

is reproduced by a Brownian bridge stochastic process that emulates the daily time 

stochastic behavior of the weather variables. Thus, the joint distribution of weather 

                                                 
1
 In terms of their use in crop growth models, the SWGs are used in the yield simulation for the 

ratemaking process of new crop insurance schemes when no historical yield series are available. 
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variables incorporates their non-linear dependence structure and more accurately 

reproduces the extreme weather patterns.  

Furthermore, another important objective is to carry out a comprehensive 

evaluation of the proposed SWG in terms of its replication power of weather patterns 

through the climate simulation of three weather stations with highly differentiated 

climatic patterns across the United States and, in comparison with Richardsons SWG, to 

show the capabilities and the limitations of this approach. 

 

2.  Background and Related Work 

SWGs are stochastic numerical models that reproduce the observed climate series 

by preserving their statistical properties. SWGs are not forecasting algorithms, neither 

are they deterministic weather models that numerically integrate partial differential 

equations. Traditional modeling of climate variables, on SWG, relies on a multivariate 

distribution, which is usually characterized jointly under the same parametric family and 

their pattern of dependence is assumed to be linear. Usually this multivariate approach is 

limited by its dependence structure (it only considers linear dependence), with a high 

number of parameters and dismisses additional information regarding their individual 

behavior (Schölzel and Friederichs 2008).  

One of the most widely used SWG with this approach is the Richardson’s SWG 

(Richardson, 1981). This SWG considers for each variable a dependence structure (serial 

correlation) characterized by a first order linear autoregressive model. The model 

configuration awards a primary role to precipitation, preserving the dependence on time, 

the correlation between variables, and the seasonal characteristics in actual weather data 

for the location. Precipitation is characterized in two steps. The first stage characterizes 

the precipitation occurrence process using a Markov chain exponential model with the 

two states: wet and dry. The probability of rain is conditioned on the wet or the dry 
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status of the previous day, which exhibits persistence or positive serial autocorrelation.
 2

 

So, wet and dry runs tend to clump together in volume more strongly than could be 

expected by chance. Second, daily precipitation amount, given a wet day, is supposed to 

be independently determined by an exponential distribution (Richardson 1981). The 

inputs for the model are monthly means and coefficients of variation for each variable.  

According to Wilks and Wilby (1999), although Richardson´s model operates on 

a daily time step, their simulations do not show longer-term variations. Their random 

realizations show a lower monthly mean temperature and lower monthly accumulated 

precipitation than the observed weather data. The implicit rigidity in the dependence 

pattern prevents the model from capturing the variability and the long-term changes in 

the climatological process.  

 

3. The Semiparametric Copula-Based Stochastic Weather Generator 

In recent years, the simulation of multivariate data using the copula approach, the 

extreme value analysis and the modeling of more complex dependence structures have 

increased in climatological phenomena analysis. This study proposes an alternative 

SWG, based on copula methodology, to simulate the weather variables: precipitation, 

maximum temperature and minimum temperature. The main objective of this research is 

to apply the copula conditional mixture approach to capture more accurately their 

nonlinear dependence structure and the occurrence of extreme events.  

The copula approach has several advantages. In particular, its flexibility allows 

researchers to model dependence structures between random variables independently of 

the marginal involved and the different treatments on dependence structures for extreme 

events, common in weather variables. Multivariate probability distribution resulting 

from the copula approach might capture more accurately long-term changes in the 

                                                 
2
 The behavior of the Markov chain is ruled by the transition probabilities that specify the conditional 

probabilities for the system to be in each of its possible states during the next time period. In a first order 

Markov chain, the transition probabilities controlling for the next stage of the system depend only on the 

current state of the system (Wilks, 2011). 
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hydrologic cycle and weather patterns of specific regions because it can model different 

patterns of dependency and joint extreme events. The extreme dependence captured by 

extreme value copulas allows calculating the return period of a given event and 

reproducing more accurately the extreme weather events occurrence such as droughts, 

hail, heavy rain, cold spells and heat waves. 

Basically the idea of modeling climatic variables using copula methods relies on 

the dynamics of these variables.  Every year weather observations follow a well-known 

cycle: high temperature realizations in summers and low temperature realizations during 

winters. Although weather realizations are assumed stochastic, their differences between 

one day and the next one are not far. For example, usually the temperature on June 1
st
 is 

at most two or three degrees different from June 2
nd

, or even on June 5
th

. Furthermore, 

the climate dependence patterns might not be adequately modeled assuming linear 

dependence. Figure 1 shows an association between maximum temperature realizations 

and minimum temperature realizations as well as a connection between lower 

realizations in minimum temperature and rainfall occurrence.  
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Figure 1.  Bidimensional scatter matrix for weather variables from the weather      

station located in Conrad, Pondera County, Montana. 

 

Although copula approach could capture more accurately the dependence 

patterns, its estimation on daily basis leads to a dimensionality problem. In this context, 

dimensionality problem refers to the copula modeling of all dates throughout a year for 

three variables (maximum temperature, minimum temperature and precipitation), which 

implies the simultaneous modeling of hundreds of variables. So, the volume of the space 

increases so fast that the available data become sparse, diminishing the reliability of the 

estimation.  

In the most general case, each daily realization of a given weather variable would 

be treated as a separate random variable, so that modeling   random variables over a 

Scatter Matrix for Maximum temperature, Precipitation and Minimum Temperature
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period of   days would require the construction of a     dimensional joint 

distribution. The treatment proposed by this research for the dimensionality problem is 

the selection of the observations with the highest average anomalies per month to 

perform the copula estimation, thus reducing the number of random variables to 12 dates 

per year, or one per month.
3
  

For the selected dates, the parameters of the probability distribution for the 

marginals are estimated individually, and the parameters of the trivariate copula are 

estimated jointly. Thus, the copula simulated weather variables describe their joint 

probability distributions at the selected time which are the bordering conditions of the 

climate stochastic dynamic simulation. The daily dynamic of weather series is emulated 

by a random walk described by a reversible geometric Brownian Motion that reflects the 

intertemporal dynamic of weather variables evolving on a path forward through time. 

Basically the semiparametric copula-based SWG structure would impose only a joint 

dependence structure and the Brownian motion process between the simulated structures 

to emulate their daily time stochastic dynamics.
4
 

 

Figure 2. The semiparametric copula-based SWG incorporates the copula simulations as the 

bordering conditions of the climate stochastic dynamic simulation and the Brownian Bridge 

reproduces the daily dynamics of weather variables. 

                                                 
3
 Anomalies measure deviations over a certain period of time (month, season or year) from the long-term 

climate statistics, relating to their calendar period. 
4
 The Brownian motion has been adopted as the probabilistic model for numerous natural phenomena such 

as weather and hydrology because it describes the random movement of particles in multidimensional 

space and its simplicity. 
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The strong connection between random weather variables and their daily sequence 

validate the assumption of the Brownian Bridge stochastic process interpolating the 

Copula realizations (see Figure 2). The Brownian Bridge results from the conditioning of 

the Brownian motion on its endpoints and its potential advantage relies on its use with 

variance reduction techniques and low discrepancy methods (Glasserman 2010). Turvey 

(2005) applied a similar idea for daily pricing of weather insurance for ice wine in the 

Niagara Peninsula of Southern Ontario. 

Although there are numerous applications of copula modeling to hydrology and 

climate, to our knowledge this is the first application of copula methods for a 

multivariate SWG.  

 

4. Methods and General Theory about Copulas 

Copulas are joint cumulative distribution functions that describe dependencies 

among distributions independent of their univariate marginals which are        (Joe 

1997). In terms of an m-dimensional distribution   with marginal cumulative 

distribution functions             and a     univariate margin   , the copula associated 

with   is a distribution function                that satisfies  

                              (1) 

Besides, if   is a continuous m-variate distribution function with univariate 

margins          , and quantile functions    
       

   , then 

         
            

        (2) 

In terms of multivariate weather data simulation, copula representation is more 

than convenient because of their probabilistic interpretation. The Sklar theorem states 

that if all           are continuous, then copula    is uniquely determined on the 

range of          . As a consequence, the joint probability density of multivariate 
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distributions can be presented as the product of the marginal probability densities and the 

copula density, which is the canonical representation (Cherubini et al. 2004).  

           (                      )    ∏  (  )

 

   

 

 

(3) 

where  

  (                      )   
                            

                         
 

(4) 

Two important implications are derived from Sklar theorem. First, the 

independent representation from marginals of the copula defines the dependence 

structure in the multivariate structure (Nelsen 2006). This separation between marginal 

distributions and dependence creates the flexibility to use marginals from different types 

of distributions that describe better the multivariate phenomena. The second implication 

is the possibility of simulating random variables with the same probability distributions 

as original data and preserving the dependence structure through the copula.  

Copula Families 

One direct application of the copula methods is the simulation of dependent 

variables, and diverse forms of dependence can be modeled using different copula 

families specifications. The copula families characterize dependence functional forms 

related to properties that include reflection symmetry, extreme value copula, multivariate 

extendibility, as well as dependence properties (Joe 1997).  Each copula family or class 

is represented by its density and conditional distribution function and the parameter or a 

vector of parameters.  

In particular, the Archimedean family is widely used in the modeling of climate 

and hydrological phenomena because of their simplicity, their broad variety in 

dependence structures and the modeling of multivariate extremes. For example, Frank 

copula can model both negative and positive association, and Gumbel copula can only 
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describe positive forms of association.  Also, Frank copula does not capture tail 

dependence, as opposed to Gumbel copula. For the SWG, Gumbel copula can model the 

positive association and the concentration of observations in the extreme upper right 

corner of the Figure 1 that captures the distribution of the maximum temperature and 

minimum temperature observations.  

In general terms, Archimedean copulas can be constructed by a generator 

function       . The most frequent source of generators for m-dimensional 

Archimedean copulas are the Laplace inverse transformations for distribution functions. 

This generator function     must be strictly monotone, continuous, decreasing, convex 

with        to guarantee its existence and to allow the multivariate extension of the 

copula, see details in Cherubini et al. (2004). Given a generator   and its pseudo-

inverse,
5
 the function                expresses an Archimedean copula   .  

                                (5) 

The three Archimedian copulas used in this research are Gumbel, Clayton and 

Frank. There are important reasons for their use. Gumbel Clayton and Frank copula 

classes have been widely used in hydrology and climate modeling. These copula 

specifications are easily constructed and allow modeling different characteristics of the 

climate processes, such as tail dependence, that accounts for extreme dependence. 

The extreme value Gumbel copula belongs to the Gumbel-Hougaard family. 

Gumbel copula is completely monotone, has upper tail dependence, extreme value 

copula and partial multivariate extension.
6
 

                                                                   6) 

          (  
 

 )                                                  (7) 

                                                 
5
 The pseudo-inverse function    , in composition with the generator, gives the identity, see Cherubini et 

al. (2004) for a detailed explanation. 
6
 Extreme value distributions and their three types (Gumbel, Frétchet and the Weibull) provide the only 

non-degenerated limit laws for adequate transformed maxima of identical and independently distributed 

random variables. For a detailed reference in this issue, consult Embrechts et al. (2001).  
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                 ,  ∑        
  

    
 

 -                            (8) 

Clayton m-copula, belongs to Clayton family, is completely monotone and owns 

lower and upper tail dependence. 

                                          (9) 

             
 

         (10) 

               ∑    
        

     
 

                  (11) 

Frank m-copula, belongs to Frank family, is completely monotone, has reflection 

symmetry, partial multivariate extension and extension to negative dependence, see 

Cherubini et al. (2004) for more details. 

                    (
          

         
)      (12) 

        
 

 
  (           )         (13) 

               
 

 
  ,  

∏           
   

          -                             (14) 

Mixtures of Conditional Distributions 

The conditional mixture method introduces additional flexibility in the model 

extending bivariate copulas to an arbitrary dimension, while it models different 

dependence patterns in the multivariate distribution. This technique allows additional 

flexibility because it can interpolate from perfect conditional negative dependence to 

perfect conditional positive dependence, with conditional independence in between 

(Salvadori et al. 2007).  

For the SWG, the a priori application of one copula family in the modeling of the 

three weather variables could reduce the accuracy of the copula representation because 

the dependence specification for the temperature variables could not fit well the 

dependence structure between temperatures and precipitation. In this sense, the 

conditional mixture allows one to model the dependence pattern by pairs of variables 
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capturing the best dependence structure in each pair of variables using the conditional 

sampling method.   

M-variate distributions can be constructed based on     dimensional margins, 

which must have     variables in common. If one is given, 

                        ,  it is possible  to build an m-variate  distribution  starting 

with the  trivariate  distribution                              , next the four-variate 

distributions from                                      and so on. There is a bivariate 

copula     associated with the       bivariate margin of the m-variate distribution. For 

      with       ,     measures the amount of conditional dependence in the     and 

   variables, given those variables with indices in between (Joe 1997).  Following Joe 

(1997), the next equation shows the construction of a trivariate copula family. 

        ∫    (                (      ))
  

  

         
(15) 

The conditional probability distribution functions are regular. The arguments of 

the integrand are conditional cumulative distribution functions       and       obtained 

from     and    . They can be written in terms of copulas because by construction, 

equation (15) is a trivariate distribution with univariate margins           and bivariate 

margins      and    .     can be interpreted as a copula representing the amount of 

conditional dependence between the first and third univariate margins given the behavior 

of the second (Joe 1997).  This method can be extended recursively to an m-dimensional 

copula. 

The trivariate copula can be derived directly by using the integral representation 

in equation (15) and Sklar’s theorem. The application of the conditional mixture method 

for the estimation of a trivariate copula can include diverse marginal distributions and 

different copula family specifications.  
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               ∫    .
          

   
 
          

   
/

  

 

   
(16) 

The estimation and simulation of copulas is possible by the calculation of partial 

derivatives, as the following equations show.  

               
             

         

 
     (

          
   

 
          

   
)

      
 

            

      

 
            

      

    .
           

   
 
           

   
/                        

(17) 

 

with 

    (         )

   
 

   (     )  
     (         )

      
 

(18) 

 

(19) 

Thus, different specification families can be used to give more flexibility to the 

specification. Three different parameters substituting equation (18), and (19) into (17) 

result in a three-variable-three parameter copula density     (                   ). This 

expression can be used to estimate the parameter values by Maximum Likelihood or they 

can be rewritten in terms of their Laplace transformation representations for the 

Archimedian Copulas. Equations (20) and (21) detail the partial derivatives of the 

Laplace representation that simplifies the parameter estimation. 
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  (            )  
                                 

                                   
 

                

           
                                     ∏    (  )

   

   

 

(20) 

 

(21) 

The canonical representation for the multivariate density function, in equation (3), 

allows decomposing the statistical modeling of copulas in two steps: first the 

identification and modeling of the marginal distributions; and second, the estimation of 

the suitable copula function. This procedure can be generalized to mainly three methods: 

the Exact Maximum Likelihood (EML) method, the inference for the marginal (IFM) 

method and the canonical maximum likelihood (CML) method.  

 

5. Brownian Bridge  

The Brownian Bridge reproduces the daily dynamics of the weather variables 

through the generation of high quality sequences that outline the paths of the Brownian 

motion process. The simulated realizations of the copula will act as milestones (or 

borderline conditions), while the Brownian bridge will sample the sequence of weather 

variables between such observations using Monte Carlo methods. Brownian Bridge has 

its origin in Brownian motion stochastic process. 

Brownian motion is a continuous-time stochastic process              

that, in general terms, describes the random movement of particles in multidimensional 

space. Brownian motion is a continuous function on       such that maps                     

        with probability 1; centered       ; and it has independent increments 

normally distributed,                        for any              .
7
  A 

Brownian bridge constructed from a Brownian motion with drift , is the same as the 

                                                 
7
 Brownian motion is an exact method because the joint distribution of the simulated values 

[W(t1),…,W(tn)] is the same for the joint distribution of the corresponding Brownian motion at [t1,…,tn], 

see Glasserman (2010) for more details. 



 

14 

 

one constructed from a standard Brownian motion, only the first step (sampling the 

rightmost point) would change. Instead of sampling       from        , it would be 

sampled from          .  

The conditional distribution of                 given        is the same for 

all values of   (Glasserman 2010). Let         be independent standard normal 

random variables, so a Brownian motion on       with      and        can be 

generated with the subsequent values as 

                 √                            (22) 

However, this research carries out an implementation of this process in a discrete 

version. The Brownian bridge      is a continuous-time stochastic process that describes 

the conditional probability distribution of a short memory Brownian motion model 

    , with the condition       .
8
 Still, Brownian Bridge has stationary but non-

independent increments which are the result of conditioning the final value to be 

canceled in the considered interval. Given the Brownian motion              then 

the Brownian Bridge independent of      is expressed as 

          
 

 
             

(23) 

When the Brownian bridge realizations satisfy an initial point        and a final point 

      , the Brownian Bridge can be expressed as 

    
   

           
 

 
           

(24) 

See Appendix A for a detailed explanation of Brownian Bridge treatment and 

construction.
9
 

                                                 
8
 The Martingale property is: 

       |                                                
9
 The Brownian Bridge Matlab program generates the underlying Brownian motion process by successive 

increments. 
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Simulation Methods for the SWG 

Monte Carlo method is a fundamental component of the semiparametric copula-

based SWG that generates independent sequences under the distributional assumptions 

defined and provides variance reduction.   

In the copula simulation, Salvadori et al. (2007) and Cherubini et al. (2004) 

provide a straightforward method Monte Carlo based on Sklar’s Theorem with a nested 

structure for the simulation of multivariate copula vectors by calculating partial 

derivatives of the copulas. Eventually only composite functions of partial derivatives for 

bivariate copulas are evaluated. Assume that   is a multivariate distribution with 

continuous marginals              that can be represented by an m-copula,   . Then, 

the generation of a vector                  can be done by simulating a vector 

                 where the random variables   ’s are Uniform      . Because 

copulas are invariant to monotonic transformations, the simulated random vector 𝑿 has 

the same dependence structure as vector  .  

Initially with the bivariate copula with known parameters, the idea is to generate 

pairs       ) of       uniformly distributed random variable samples    and   whose 

joint distribution is   using the conditional distribution for the random variable    at a 

given    of   : 

                         

Where the conditional functions are the partial derivatives of the copula       . 

                |        
  

    
        10 

(25) 

Then, two independent uniform random variable samples               are 

generated, where    is the first draw. Next, the quasi-inverse function of         that 

                                                 
10

        is a non-decreasing function and exist for all          
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depends on the copula´s parameter and    is calculated.  So, the second draw (  ) is 

generated from 

      
       

Successively to simulate u3, sampled from    and consistent with the joint 

distribution function   and the previously sampled       

   
(        )                          

   
(        )  

      
           

      
        

 

(26) 

(27) 

Thus, to simulate     from    
(        ), one must draw     from         from 

which      
  (        ) can be obtained through the equation       (        ) 

by numerical rootfinding.  

For the simulation of the Brownian Bridge that emulates the daily dynamics of 

the weather series, Monte Carlo or quasi-Monte Carlo methods generate random 

sequences to outline the paths of the Brownian motion process, by sampling points 

acting as the milestones (Brandimonte 2006). The property of stationary independent 

increments of the Brownian Bridge makes the simulation process equivalent to the 

random variable generation from a specific infinitely divisible distribution (Glasserman 

2010). Because Brownian bridge relies on Brownian motion, it exhibits centered 

Gaussian distribution, and Martingale and Markovian properties that aggregate more 

persistence in the simulated weather series.  

 

6. Generation Methodology  

The methodology to simulate weather variables using the semiparametric copula-

based SWG comprises eight stages. The first step includes the date selection of the 

observations with the highest average monthly anomaly. The second step consists in 

detrending the original daily weather observations. The third step relies on the selection 
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of the probability distributions for the marginals. The forth step involves the estimation 

of parameters and the determination of the best specification for copula mixture. The 

fifth step is the estimation of trivariate normal parameters for the Brownian bridge. The 

sixth step consists of the copula simulation for the selected dates. The seventh step is the 

Brownian bridge generation to emulate daily dynamics of the weather variables. Finally, 

the eighth step comprises the incorporation of the trend into the daily simulated weather 

variables.  

The semiparametric copula-based SWG is applied to simulate weather for three 

locations with highly differentiated weather patterns across the United States: Conrad, 

Montana; Spokane, Washington; and Temple, Texas. The climatological information 

was obtained from the National Oceanic and Atmospheric Administration (NOAA) 

website.
11

 The available data for Conrad and Spokane weather stations was 50 years 

(1960-2010) of daily observations. For Temple weather station, 42 years of daily data 

was available.  The selection of dates was carried out by choosing 12 observations per 

year (one per month) according to the highest absolute deviations from historical 

monthly means. 

Variable Detrending 

The modeling of the weather variables requires the decomposition of the series 

when some sequential or cyclical patterns are observed. The standard methodology 

consists of decomposing the series in long-term trend, seasonal behavior and white 

noise. Harmonic analysis is useful to extract the fluctuations and variations in the series, 

using sin and cosine functions.
12

 Application of harmonic series requires three 

adjustments (Wilks 2011). First, the fundamental frequency term          rescales 

proportionally time to angular measure, i.e. specifies the fraction of the full cycle over 

the whole data series (given n, the length of the data is considered as a full cycle of 360
o
 

or     radians in angular measure). Second, the amplitude       is the determination of 

                                                 
11

 http://gis.ncdc.noaa.gov/map/cdo/?thm=themeDaily  
12

 These periodic functions have repetitive patterns every 2 π radians or 360
o
 and they oscillate around 

their average value of zero and attain maximum values of +1 and minimum of -1. The cosine function is 

maximized at 0
o
, 360

o
 and so on, the sine function is maximized at 90

o
, 450

o
 and so on. 

http://gis.ncdc.noaa.gov/map/cdo/?thm=themeDaily
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the stretching or compressing of the cosine or sine into the range of the data. Third, the 

phase angle or phase shift     that makes the lateral adjustment of the harmonic 

function. 

    ̅       (
   

 
  )        (

   

 
  ) 

     (
   

 
  )       (

   

 
)        (

   

 
) 

(28) 

 

(29) 

Where              and              are the amplitudes of an upshifted 

cosine and sine waves. The parameters    and    are calculated by using standard 

regression methods. 

 

 

Figure 3.  Detrended maximum temperature and minimum temperature anomalies, Conrad, 

Pondera County, Montana  

 

This detrending technique was applied to daily weather observations, considering 

a cycle of 365 days, for maximum temperature and minimum temperature for the three 
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weather stations.
13

 Once the trend was removed from these data series, specific dates 

were selected for the copula parameter estimation. Figure 3 shows the application of this 

method for the maximum temperature monthly anomalies with data from Conrad, 

Montana weather station.   

Selection Process for Marginal Distributions 

Parametric distributions have been widely used to model climate variables. In 

parametric density fitting, the criterion of selection for the best fit distribution rely on 

Maximum Likelihood as a competitive indicator of goodness of fit, especially if the 

parametric densities have the same number of parameters. However, when the number of 

parameters differs, the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) can derive a conclusion about fitting the distributions. 

However, the pitfall of the parametric approach is the a priori assumption of the 

parametric functional form of the variable to be estimated. Misspecification often occurs 

because restrictive assumptions can result in a misrepresentative characterization of the 

true density, thus producing erroneous estimates that lead to unsound inference.  

Frequently Gaussian distributions are used for modeling temperature with the Box-Cox 

transformation. Gamma distribution is suitable to model precipitation, but estimation is 

complex because parameters do not exactly correspond to the moments of the 

distribution (Wilks 2011).   

Nonparametric characterization of the marginal distribution is a potential option 

because of its flexibility. Nonparametric representation requires more data to achieve the 

same grade of precision as a parametric model and some regularity conditions such as 

smoothness and differentiability (Wand and Jones 1995).   

                                                 
13

 The coefficients of the regressions for maximum and minimum temperature were significant explaining 

66% of the behavior of both variables in Conrad, 80% and 70% respectively in Spokane and 69% and 75% 

respectively in Temple. In precipitation, any trend specification was significant for all the stations.  
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(30) 

Where   is a function that satisfies∫        , which is the kernel and   is 

bandwidth or window width and is a positive number.   is chosen to be a unimodal 

probability density function that is symmetric about zero ensuring that  ̂      is a 

density (Wand and Jones 1995). For a given sample size  , if   is small, the resulting 

estimator will have a small bias but a large variance. Conversely, if   is large, the 

resulting estimator will have a small variance but large bias. Minimization of the Mean 

Square Error (MSE) – which is the error measure of the estimation of the density at a 

single point of the density kernel function – is a consequence of the bandwidth optimal 

selection, which requires the balance of the bias squared and the variance terms. 

Although, there is a broad variety of kernel functions (uniform, triangular, biweight, 

triweight, Epanechnikov, Gaussian), by simplicity this research will focus on Gaussian 

kernel with emphasis on the choice of the bandwidth.   
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Table 1. Parametric distributions fit for weather variables, 

   three weather stations 

 

 

Table 1 shows the results of the parametric estimation for the marginals. 

Although the AIC and the BIC show the normal distribution as the best parametric 

specification for maximum temperature and minimum temperature, and the extreme 

value distribution for the precipitation, these distributions hardly provide a good 

Distribution a b  - S  log L AIC BIC

Maximum Temperature 0.40 5.16 1,835.79 -3,667.58 -3,658.79

Precipitation 0.06 0.22 -64.48 132.95 141.75

Minimum Temperature -0.57 5.90 1,916.06 -3,828.12 -3,819.33

Maximum Temperature 3.05 7.64 2,028.13 99,999.00 99,999.00

Precipitation 0.21 0.53 387.32 -770.64 -761.84

Minimum Temperature 2.22 5.38 1,920.69 3,986.14 3,994.93

Precipitation 0.06 -1,071.89 2,145.79 2,150.18

Maximum Temperature 0.29 3.62 1,622.86 -3,241.72 -3,232.93

Precipitation 0.12 0.30 128.04 -252.08 -243.29

Minimum Temperature -0.09 4.16 1,705.92 -3,407.85 -3,399.05

Maximum Temperature 2.08 3.42 1,651.93 3,467.29 3,476.08

Precipitation 0.30 0.52 421.92 -839.85 -831.05

Minimum Temperature 1.88 3.68 1,703.00 3,551.31 3.56E+03

Precipitation 0.12 -685.35 1,372.70 1,377.10

Maximum Temperature 0.36 3.90 1,398.35 -2,792.71 -2,784.27

Precipitation 0.24 0.89 656.70 -2,928.01 -1,300.95

Minimum Temperature -0.40 4.47 1,466.00 -2,928.01 -2,919.56

Maximum Temperature 2.30 4.20 1,456.83 3,102.95 3,111.39

Precipitation 0.86 2.08 1,019.89 -2,035.78 -2,027.34

Minimum Temperature 1.84 4.66 1,519.48 3,213.06 3,221.50

Precipitation 0.24 -205.38 412.76 416.98

Extremevalue (Gumbel)

Exponential

Normal

Extremevalue (Gumbel)

Exponential

Temple TX, Bell County, Texas

Normal

Conrad MT1974, Pondera County, Montana

Normal

Extremevalue (Gumbel)

Exponential

Spokane WA, Spokane County, Washington
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description of the data.
14

 The kernel distribution attains the best fit for maximum and 

minimum temperature, while the large volume of weather data provides reliability on 

non-parametric estimations that usually captures more accurately the probability in the 

tails of the distribution.  

 

                                                 
14

 Parameters for other parametric distributions were fitted, but the results were even poorer than those in 

Table 1.  
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Figure 4.  Probability kernel distribution fit: Conrad, Pondera County, Montana 

 

Copula Family Selection 

Usually the goodness of fit test (GOF) helps to determine if the observed data are 

well-modeled by the specified dependence structure of the multivariate distribution for 

the specific family of parametric copulas. However, the development of a GOF test for 

the mixture copula exceeds the primary objective of this research. This research uses one 

reasonable criterion for the selection of the appropriate copula family based on a ranking 

that measures the likeness of that sample coming from a given distribution. Although 

maximum likelihood cannot be the criterion because parametric distributions are 

unknown, it is possible to use maximum likelihood as ranking base measure for all 

component mixtures that denote improvements in flexibility.   

Although important advances have been attained in GOF test, the formal 

methodology is just recently emerging and the developments for the multivariate case 

are inconclusive (Genest et al. 2009). Most of the progress has been done for a one-

dimensional test, for the multivariate case the value of the statistics depends on the order 
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of conditioning of the variables. So, different conditioning decisions could lead to 

different results (Genest et al. 2009).  

Table 2.   Copula mixture estimation for climatic variables by weather stations 

 

It is impossible to evaluate all copula mixtures combinations. However, in this 

context the maximum likelihood provides some discernment about the applicability of a 

Copula Mixture Param. 1 Param. 2 Param. 3  - S  log L AIC BIC

Clayton 0.001000 0.041399 1.917202 6.314132

Frank 0.001000 0.025487 1.949025 6.345955

Gumbel 1.100000 5.732520 -5.244449 -9.465039

Clayton, Clayton,Clayton 0.001000 0.077741 -0.048485 * -1.036122 8.072244 21.263033

Clayton, Clayton,Gumbel 1.022122 -0.164136 0.846158 * -19.985389 45.970779 59.161568

Frank, Frank, Frank 0.001000 -1.099259 -1.418806 -13.851869 33.703739 46.894528

Frank, Frank, Clayton 0.001000 0.862911 -0.044400 * -1.105269 8.210538 21.401327

Frank, Frank, Gumbel 1.000204 -1.297100 0.832434 -20.887645 47.775289 60.966078

Gumbel,Gumbel, Gumbel 1.513458 0.952485 * 0.751978 * -25.867954 57.735909 70.926698

Gumbel, Frank, Clayton 0.813972 * 0.925946 -0.043871 -4.338217 14.676433 27.867222

Gumbel, Frank, Gumbel 0.995191 1.000036 0.842727 * -25.061201 56.122402 69.313191

Clayton 0.00100 0.05886 6.10288 1.88229

Frank 0.00100 0.02635 6.16790 1.94731

Gumbel 1.10000 -41.69724 -29.63757 -25.41698

Clayton, Clayton,Clayton 0.00100 0.14990 -0.07667 * -3.51428 25.69033 13.02856

Clayton, Clayton,Gumbel 0.00100 0.04713 0.77590 * -32.56102 83.78380 71.12203

Frank, Frank, Frank 0.00100 1.21032 -2.14424 * -29.12381 76.90940 64.24763

Frank, Frank, Clayton 0.00100 1.73605 -0.07553 * -5.27117 29.20411 16.54234

Frank, Frank, Gumbel 0.00100 1.61078 0.79008 * -34.17259 87.00695 74.34518

Gumbel,Gumbel, Gumbel 0.90662 * 1.11905 0.77290 * -41.69724 102.05625 89.39448

Gumbel, Frank, Clayton 0.87410 1.75801 -0.07423 * -7.30074 33.26324 20.60147

Gumbel, Frank, Gumbel 0.90662 * 1.11897 0.77243 * -40.54667 99.75512 87.09335

Clayton 0.00100 0.11772 1.76457 6.16150

Frank 0.00100 0.02776 1.94448 6.34141

Gumbel 1.10000 -32.98232 -37.37925 -32.98232

Clayton, Clayton,Clayton 0.00100 0.21398 -0.12842 -11.13180 28.26361 41.45439

Clayton, Clayton,Gumbel 0.00100 1.13314 0.89037 * -12.96967 31.93935 45.13014

Frank, Frank, Frank 0.00100 0.19995 0.87737 -16.54238 39.08476 52.27555

Frank, Frank, Clayton 0.00100 1.77027 -0.10693 * -13.77605 33.55209 46.74288

Frank, Frank, Gumbel 0.00100 1.72906 -1.00565 * -16.30425 38.60849 51.79928

Gumbel,Gumbel, Gumbel 0.00100 * 1.85597 0.89791 * -34.14157 74.28315 87.47394

Gumbel, Frank, Clayton 0.73401 * 1.83158 -0.13861 -34.72642 75.45285 88.64364

Gumbel, Frank, Gumbel 0.81940 * 2.74101 0.86815 * -33.25106 72.50213 85.69292

Note: * Parameters that do not satisfy monotonicity conditions.

Conrad MT1974, Pondera County, Montana

Temple TX, Bell County, Texas

Spokane WA, Spokane County, Washington
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particular distribution to every sample. Table 2 shows the AIC and BIC statistics for the 

considered weather stations. The best specifications are attained by the one-parameter-

Gumbel copula family.  

 

7. Statistical validation for the semiparametric copula-based SWG 

A comparative evaluation of the semiparametric copula-based SWG performance 

versus the Richardson’s SWG performance is carried out to learn about their strengths 

and limitations.  

Two-Sample Kolmogorov-Smirnov Test 

Because any parametric functional form is used, a non-parametric two sample 

Kolmogorov-Smirnov test can be used to evaluate the performance of the Copula 

method to replicate the distribution for the weather series. The two-sample Kolmogorov-

Smirnov test (KS) is applied to Copula simulations to compare the        of the 

generated weather series vs. the        of original observed weather data at each one of 

the three locations. In this context, this non-parametric test compares two unknown 

      s: F for the observed data and   for the simulation, quantifying the distance 

between the empirical distribution functions of the two samples through the test statistic 

in the following expression 

      |       | (31) 

Where      is the empirical       from a sample of    data values (observed weather 

data) and      is the empirical cdf from a sample of    data values (simulated data).  

The null hypothesis is H0:     =      The fit is measured by the statistic   with 

its asymptotic distribution and the limiting distribution √    is distribution free, in 

consequence, the reasonable criterion is to reject    if    is large (Mood et al. 1974). 

The critical values were obtained based on a 120-year sample of draws for every one of 

the three locations using both SWGs and the two-sample Kolmogorov-Smirnov test. In  
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large samples, critical values for the statistic    are determined by simulation. 

Table 3.  Two-sample Kolmogorov-Smirnov test for selected dates 

(P-Values) 

 

Selected  Dates

Max Temp Precipitation Min Temp Max Temp Precipitation Min Temp

January, 9th 0.028 * 0.267 0.002 ** 0.226 0.560 0.022 *

February, 1st 0.001 ** 0.998 0.000 ** 0.167 0.989 0.062

March, 3rd 0.453 0.999 0.525 0.433 0.610 0.085

April, 3rd 0.737 0.995 0.242 0.448 0.662 0.794

May, 1st 0.372 0.999 0.095 0.028 * 0.081 0.073

June, 1st 0.000 ** 0.072 0.019 * 0.019 * 0.053 0.267

July, 1st 0.001 ** 0.071 0.046 * 0.628 0.404 0.794

August, 7th 0.011 * 0.009 ** 0.112 0.190 0.404 0.069

September, 5th 0.571 0.886 0.225 0.062 0.696 0.139

October, 1st 0.744 0.995 0.306 0.017 * 0.880 0.145

November, 4th 0.819 0.969 0.063 0.104 0.960 0.056

December, 1st 0.763 0.669 0.489 0.867 0.960 0.464

January, 9th 0.069 0.001 ** 0.107 0.074 0.008 ** 0.000 **

February, 1st 0.159 0.050 * 0.001 ** 0.005 ** 0.008 ** 0.000 **

March, 3rd 0.113 0.024 * 0.304 0.001 ** 0.326 0.000 **

April, 3rd 0.012 * 0.804 0.017 * 0.055 0.100 0.000 **

May, 1st 0.077 0.362 0.058 0.673 0.010 ** 0.000 **

June, 1st 0.089 0.765 0.360 0.718 0.000 0.056

July, 1st 0.082 0.999 0.011 * 0.673 0.050 0.098

August, 7th 0.007 ** 0.530 0.000 ** 0.000 ** 0.999 0.000 **

September, 5th 0.691 0.701 0.730 0.039 0.368 0.000 **

October, 1st 0.022 * 0.739 0.172 0.026 * 0.308 0.000 **

November, 4th 0.023 * 0.004 ** 0.123 0.001 ** 0.001 0.000 **

December, 1st 0.000 ** 0.000 ** 0.371 0.006 ** 0.000 0.000 **

January, 9th 0.035 * 0.393 0.015 * 0.082 0.166 0.860

February, 1st 0.013 * 0.049 * 0.040 * 0.407 0.211 0.945

March, 3rd 0.057 0.232 0.074 0.377 0.673 0.339

April, 3rd 0.007 ** 0.959 0.530 0.709 0.860 0.860

May, 1st 0.113 0.001 ** 0.203 0.356 0.231 0.186

June, 1st 0.000 ** 0.114 0.013 * 0.252 0.403 0.087

July, 1st 0.000 ** 0.989 0.000 ** 0.015 * 0.915 0.108

August, 7th 0.013 * 0.980 0.003 ** 0.200 0.999 0.067

September, 5th 0.002 ** 0.985 0.000 ** 0.356 0.915 0.209

October, 1st 0.111 0.965 0.343 0.915 0.761 0.938

November, 4th 0.046 * 0.866 0.199 0.274 0.403 0.615

December, 1st 0.967 0.994 0.142 0.399 0.575 0.549

Note: * Reject H0 at 5% significance level

             ** Reject H0 at 1% significance level

Copula Based SWG Richardson's SWG

Copula Based SWG Richardson's SWG

Copula Based SWG Richardson's SWG

Conrad, Montana Conrad, Montana

Spokane, Washington Spokane, Washington

Temple, Texas Temple, Texas
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Table 3 shows the p-values for the selected dates generated. Simulated dates that 

reject the    are marked with asterisks, in these cases the probability distribution of the 

simulated weather data does not correspond to the probability distribution of the 

observed data. In the case of the semiparametric copula-based SWG simulations the    

is rejected in 37% of the cases, while in the case of Richardson SWG is 27%.   

This rate of rejection in the case of the semiparametric copula-based SWG can be 

attributed to the fact that the KS test tends to be more sensitive near the center (median 

values) of the distribution than at the tails. The cases of rejection for the Richardson’s 

SWG are concentrated in simulated data of the Spokane weather station, whose 

distributions show more rounded peaks than in Temple, Texas weather station. In 

contrast, the cases of rejection for the semiparametric copula-based SWG are 

concentrated in Temple, Texas weather station, whose distribution has a more acute peak 

around the mean. 

Quantile Analysis 

Quantiles of the distributions are calculated to analyze in detail the differences in 

the distributions for the simulated weather series versus the observed weather series. A 

120-year simulation was performed to carry out the quantile analysis. The quantiles of a 

distribution are points taken at regular intervals c.d.f. function that provides 

nonparametric estimators of their population counterparts based on a set of independent 

observations            from the distribution  . Quantile of the distribution   is 

defined by the following expression:  

                                            (32) 

Let {                } denote the order statistics of            and let   ̂    

denote the     sample quantile.  

 

 



 

28 

 

Table 4. Comparative quantile analysis for three locations
15

 

 

          Table 4 shows values of the weather variables for different quantiles of the 

distribution. The semiparametric copula-based SWG generates weather series 

                                                 
15

 In weather stations the minimum reported amount of precipitation is 0.0254 cm (0.01 inches). 

Quantile Observed Copula Richardson Observed Copula Richardson Observed Copula Richardson

Conrad, Montana

0.025 0.000 0.000 0.000 -13.300 -8.430 -10.509 -25.000 -19.554 -23.416

0.05 0.000 0.000 0.000 -7.800 -5.078 -6.691 -21.100 -16.894 -19.987

0.1 0.000 0.000 0.000 -1.100 -1.570 -2.270 -15.600 -13.919 -15.950

0.2 0.000 0.000 0.000 4.400 2.882 3.499 -9.400 -10.824 -10.628

0.3 0.000 0.000 0.000 7.800 6.621 7.845 -5.600 -8.173 -6.548

0.4 0.000 0.000 0.000 11.100 10.101 11.656 -2.800 -5.286 -3.130

0.5 0.000 0.001 0.000 14.400 13.668 15.179 -0.600 -2.231 -0.109

0.6 0.000 0.002 0.000 18.300 17.021 18.574 2.200 0.850 2.653

0.7 0.000 0.004 0.000 21.700 20.708 21.926 5.000 4.014 5.170

0.8 0.000 0.012 0.000 25.000 24.521 25.360 7.800 7.213 7.532

0.9 0.203 0.227 0.189 28.900 29.184 29.218 10.000 10.269 10.171

0.975 0.864 0.700 0.862 32.800 35.305 34.067 13.300 14.168 13.460

Spokane, Washington

0.025 0.000 0.000 0.000 -5.000 -4.310 -9.620 -13.300 -9.946 -21.603

0.05 0.000 0.000 0.000 -2.200 -2.193 -6.219 -10.000 -8.247 -18.306

0.1 0.000 0.000 0.000 0.600 0.513 -2.214 -6.100 -6.355 -14.364

0.2 0.000 0.000 0.000 3.900 4.117 3.000 -2.800 -3.920 -9.242

0.3 0.000 0.000 0.000 7.200 7.296 6.939 -1.100 -1.713 -5.409

0.4 0.000 0.000 0.000 10.000 11.101 10.356 0.600 0.707 -2.121

0.5 0.000 0.002 0.000 13.300 14.906 13.668 2.800 3.323 0.757

0.6 0.000 0.004 0.000 17.200 18.782 16.967 5.000 5.676 3.400

0.7 0.025 0.013 0.000 21.100 22.232 20.440 7.800 7.952 5.899

0.8 0.127 0.142 0.057 25.000 25.227 24.114 10.000 10.098 8.255

0.9 0.406 0.385 0.310 29.400 28.778 28.416 12.800 12.460 10.881

0.975 1.036 0.847 1.051 33.900 33.279 33.821 16.700 15.418 14.170

Temple, Texas

0.025 0.000 0.000 0.000 5.600 8.628 5.834 -3.900 -1.949 -3.887

0.05 0.000 0.000 0.000 8.300 10.808 8.879 -1.700 -0.089 -1.718

0.1 0.000 0.000 0.000 12.800 13.258 12.514 1.100 1.579 0.916

0.2 0.000 0.000 0.000 17.200 16.658 17.173 4.400 4.265 4.598

0.3 0.000 0.000 0.000 21.100 19.400 20.764 7.700 6.622 7.802

0.4 0.000 0.000 0.000 23.900 22.198 23.771 10.600 9.397 10.868

0.5 0.000 0.000 0.000 26.700 25.397 26.549 13.900 12.355 13.943

0.6 0.000 0.000 0.000 28.900 28.454 29.058 17.200 15.529 16.841

0.7 0.000 0.000 0.000 31.700 30.986 31.440 19.900 18.297 19.272

0.8 0.025 0.025 0.000 33.300 33.538 33.684 21.700 20.588 21.130

0.9 0.533 0.802 0.618 35.600 36.810 36.122 22.800 23.421 22.878

0.975 2.769 2.901 2.767 37.800 41.595 39.152 23.900 26.973 25.023

Precipitation  Amount, cm Maximum Temperature, oC Minimum Temperature, oC
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significantly closer to the original observed data. Although the reproduction of the 

weather patterns is consistent, the replication of the climate is comparatively better for 

the station of Spokane, Washington and Temple, Texas than for Conrad, Montana. The 

values of the lower percentiles are more accurate in the case of the simulations generated 

by the semiparametric copula-based SWG. This result could be attributed to the property 

of Gumbel´s copula to capture upper tail dependence of the distribution.
16

   

Statistical Analysis of the Simulated Weather Series 

The validation of a weather generator based only on the analysis of their moments 

distribution (mean, standard deviation, skewness and kurtosis) is insufficient.  A more 

accurate description of the occurrence of precipitation by season provides key 

information to evaluate the performance of the semiparametric copula-based SWG. For 

such purpose 28-day period indicators were calculated for both, the generated and the 

observed weather data series. Next, mean values of accumulated precipitation amounts 

(cm), mean number of rainy days, mean minimum temperature and mean maximum 

temperature per period were calculated.  

 

 

 

 

 

 

 

 

 

                                                 
16

 Several weather series were generated using different copula families and, in some cases, the results 

were substantially different in terms of the weather patterns reproduction from observed data. 
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Table 5. Average rainfall amount and average number of rainy days by 28-day period  

 

Precipitation Amount in Cms. Number of Rainy Days

Period Observed Copula Richardson Observed Copula Richardson

Conrad, Montana

1 0.976 1.590 0.858 5.020 4.625 3.067

2 0.798 1.502 0.801 4.120 4.708 2.720

3 1.193 1.573 1.148 4.580 5.125 3.367

4 2.111 2.002 1.853 5.040 5.525 3.780

5 3.335 1.903 3.722 6.620 5.767 5.187

6 6.672 1.272 5.227 9.800 4.542 6.787

7 4.086 2.323 3.960 7.420 5.958 5.293

8 2.483 2.535 2.681 5.440 6.542 4.507

9 2.925 1.950 2.565 5.900 5.058 4.573

10 2.156 1.357 1.897 4.960 4.367 3.513

11 1.037 1.699 1.137 3.660 4.558 2.533

12 1.127 1.703 1.108 4.420 4.242 3.007

13 1.036 2.210 0.901 4.700 5.925 2.947

Spokane, Washington

1 4.390 3.053 1.233 12.314 8.958 4.253

2 3.807 3.196 1.149 10.824 9.575 4.020

3 3.477 2.946 1.555 10.275 6.233 5.093

4 3.035 2.978 2.760 9.118 4.967 6.267

5 3.123 3.106 5.468 8.627 5.408 8.187

6 3.872 2.295 6.699 8.765 4.042 9.080

7 1.805 2.287 5.888 5.118 3.533 8.300

8 0.977 1.531 4.010 3.216 3.350 6.153

9 1.710 1.594 3.651 4.647 2.625 6.080

10 1.659 3.588 2.715 5.314 5.258 5.433

11 2.839 4.311 1.596 7.353 6.642 3.860

12 5.558 3.675 1.159 12.667 6.683 3.573

13 5.443 3.111 1.223 12.824 8.717 4.060

Temple, Texas

1 4.999 8.728 5.098 6.561 6.608 5.380

2 6.792 7.112 5.753 6.951 5.208 5.540

3 5.552 5.798 5.480 6.512 4.408 5.340

4 5.297 4.364 5.947 5.927 4.383 5.030

5 10.555 6.271 9.093 6.976 5.125 5.450

6 9.318 10.320 9.153 6.171 6.017 5.000

7 5.472 8.680 6.428 4.634 5.442 3.840

8 4.265 6.061 4.283 3.220 5.700 2.950

9 6.122 6.591 5.720 4.439 5.833 3.890

10 8.556 4.532 9.753 5.902 5.250 5.110

11 9.223 5.943 7.331 6.024 5.117 4.360

12 6.554 9.549 6.826 5.634 6.283 4.820

13 6.209 10.246 7.352 5.976 7.333 5.240
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Table 5 shows that the simulated mean precipitation amounts do not differ 

significantly from the values obtained from the observed data. However, the replication 

of the volume of rainfall is more accurate for locations with higher amounts of water 

such as Temple, Texas than in locations with low levels of rainfall during the year. The 

average number of days per period generated by the semiparametric copula-based SWG 

was in general terms close to the observed data. However, the semiparametric copula-

based SWG shows certain inflexibility in replicating the amounts of water and the 

recurrence of rain periods in highly variable precipitation patterns. 

  



 

32 

 

Table 6. Average maximum temperature and average minimum temperature by 28-

day period 

 

Maximum Temperature oC Minimum Temperature oC

Period Observed Copula EPIC Observed Copula EPIC

Conrad, Montana

1 0.03 0.48 1.16 -13.47 -13.06 -13.04

2 3.38 1.23 3.26 -10.59 -12.20 -10.89

3 6.73 5.35 6.99 -7.85 -9.15 -7.70

4 12.62 11.15 12.61 -2.92 -4.32 -3.15

5 17.37 17.12 17.79 1.60 1.28 1.69

6 21.56 22.44 21.86 6.19 5.72 5.88

7 25.90 26.45 25.88 9.07 8.41 8.87

8 28.48 27.05 27.57 10.24 8.66 9.45

9 25.86 24.62 25.50 7.92 7.04 7.42

10 20.04 19.89 20.19 2.78 2.77 2.80

11 14.10 13.20 14.09 -1.93 -2.85 -2.20

12 5.74 6.81 6.86 -8.12 -7.93 -7.59

13 1.03 2.74 1.83 -11.91 -11.39 -12.05

Spokane, Washington

1 0.45 0.66 1.88 -5.60 -6.12 -11.35

2 3.77 1.43 2.89 -3.65 -5.74 -9.63

3 8.16 5.37 5.69 -1.42 -3.23 -6.87

4 12.64 11.23 10.35 1.06 0.47 -2.57

5 17.31 17.91 15.24 4.38 4.85 1.95

6 21.51 23.70 19.89 8.24 8.91 6.02

7 26.21 27.31 24.46 11.32 11.25 9.30

8 29.90 27.81 26.95 13.77 11.45 10.31

9 26.38 25.51 24.73 11.14 10.25 8.55

10 20.96 21.55 19.00 6.61 7.95 3.99

11 12.91 15.47 13.21 1.44 4.04 -0.88

12 4.71 9.58 7.06 -1.99 -0.05 -5.88

13 0.57 4.30 2.69 -5.44 -3.69 -10.35

Temple, Texas

1 13.83 15.45 14.57 1.85 2.44 2.29

2 16.31 15.23 16.14 3.70 2.55 3.66

3 19.99 17.15 19.84 7.13 4.66 7.16

4 24.13 21.25 24.24 11.60 8.96 11.54

5 27.75 26.57 27.88 15.90 14.02 15.93

6 31.05 31.54 31.02 19.51 19.01 19.33

7 33.80 34.69 33.57 21.83 22.08 21.53

8 35.40 35.65 35.03 22.54 22.88 22.34

9 34.81 34.03 34.37 21.98 21.42 21.48

10 30.44 30.75 30.51 17.75 17.73 17.87

11 25.29 26.36 25.71 12.59 13.41 12.82

12 19.70 21.48 20.74 7.35 8.72 7.98

13 15.26 17.54 15.95 3.26 4.58 3.76
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The same analysis is applied for the daily simulated temperatures. Table 6 shows 

the mean maximum temperature and the mean minimum temperature for 120 years of 

generated series and for the observed weather series. The means for the maximum and 

minimum temperature in the three weather stations are close to the observed data. The 

differences in averages can be mainly attributed to the detrending technique by harmonic 

analysis. Both SWGs reproduce significantly close weather patterns in the three weather 

stations. However, there is no conclusive evidence about how to rank the accurateness of 

these models. 

Table 7. Annual average temperature and number of days of extreme events by, 

weather station 

 

 Table 7 summarizes the ability of the semiparametric copula-based SWG to 

reproduce the distribution of annual extreme temperatures in minimum temperature and 

maximum temperature series. The comparative analysis of the generated and the 

observed data in Table 7 confirms that semiparametric copula-based SWG reproduces 

much closer the patterns of extreme events in weather series. Both, semiparametric 

copula-based SWG and Richardson’s SWG, show about the same number of days with 

extreme temperatures; however, the semiparametric copula-based SWG shows a better 

Weather Variable Observed Copula Richardson

Maximum Temperature, oC 40.60 47.50 49.99

Minimum Temperature, oC -27.20 -28.53 -45.58

Days ≥ 35 oC 1.10 5.08 6.38

Days ≤  0oC 183.84 205.13 183.93

Maximum Temperature, oC 42.20 42.02 51.42

Minimum Temperature, oC -24.40 -24.56 -43.37

Days ≥ 35 oC 6.41 3.27 6.17

Days ≤  0oC 138.27 113.95 172.73

Maximum Temperature, oC 43.30 55.30 48.32

Minimum Temperature, oC -14.40 -9.68 -16.23

Days ≥ 35 oC 54.61 55.43 52.11

Days ≤  0oC 31.49 18.92 29.14

       Conrad

Spokane

Temple
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replication in magnitude of the temperature extreme events of the observed data for the 

three weather stations.  

 

8. Summary and Conclusions  

Stochastic Weather Generators are an essential tool for the generation of weather 

series. However, conventional SWGs characterize climate variables with parametric 

probability distributions and linear dependence between, when in fact they are complex 

and their probability density function is close to non-normal distributions. This structure 

leads to the simulation of inaccurate climatic variables and to the sub replication of 

extreme weather events from observed data.  

The proposed semiparametric copula-based SWG more accurately replicate some 

aspects of the observed weather patterns, such as the nonlinear dependence structure and 

the occurrence of extreme events between precipitation, maximum temperature, and 

minimum temperature. The idea of modeling climatic variables using copula methods 

relies on the behavior and structure of these variables. Copula methods provide the 

flexibility to model nonlinear dependence structures between random variables 

independent of the marginal distributions involved. The marginal distributions were 

modeled by the non-parametric kernel smoothing specification. The large volume of data 

provides reliability on non-parametric estimations and captures more accurately the 

probability in the tails of the distribution.  

Instead of estimating parameters for 365 dates, one per day throughout the year, 

the alternative to treat the dimensionality problem in copula estimation was the selection 

of 12 dates, those with the highest historical monthly average anomaly. Thus, the 

weather series simulated by copula methods are the bordering conditions of the weather 

stochastic simulator, while the Brownian Bridge uses Monte Carlo methods to replicate 

the daily dynamic of weather variables evolving on a path forward through time.  

Although the numerous specifications were tested, the final specification was the one-

parameter Gumbel family.  
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Finally the statistical tests performed on simulated weather, showed that 

semiparametric copula-based SWG can perform an acceptable replication of the 

observed weather patterns and an accurate reproduction of the extreme weather event 

patterns. Although in general there is no conclusive evidence about the superiority of the 

semiparametric copula-based SWG, one of its remarkable characteristics is the accurate 

representations on magnitudes of extreme weather events in temperatures.  
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Appendix A 

Brownian Bridge Treatment and Construction 

The Brownian Bridge construction involves a process that begins with the 

generation of the final value       then filling in the intermediate values’ amounts by 

simulating a Brownian Bridge from        to         Next,    
*
 

 
+
  is sampled, and 

values between times  
*
 

 
+ and    are filled in to simulate the Brownian Bridge from 

   
*
 

 
+
  to       and so on. 

In particular, the Brownian Bridge includes the generation of a tridimensional 

Brownian motion process 𝑿 with one of the variates truncated to emulate the 

precipitation behavior, where the drift   and the covariance matrix   must reflect such 

circumstances, 𝑿        . Thus, the Brownian motion process 𝑿 must be added to 

        at the first step of the independent one-dimensional construction to each one of 

the coordinates (Glasserman 2010). 

                             √                            (33) 

Where        and   is an independent         Thus, the drift   and the 

covariance matrix   are estimated by fitting the historical weather variables (maximum 

temperature, minimum temperature and precipitation) using the maximum likelihood 

estimation method. The parameters estimation is from a population with single truncated 

sample, normal       . and the truncation point at zero. Cohen (1991) shows the 

analytical solutions for  ̅ and  , derived using maximum likelihood estimation. When 

restriction occurs only in one of the variates of the multivariate distribution, such as in 

the case of precipitation; say              is the trivariate distribution with the 

following         equation.  

  𝑿             
    

                         (34) 
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For left truncated samples, the analytical solutions for the estimates  and 

  have closed form solutions. As Cohen (1991) shows solutions for    (truncated 

variate) can be calculated only from marginal data of   , without considering any other 

variate. 

 ̅  ∑
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     ̅  

 

 

   

 

     
    

       
 

     
    

      
 

   ̅         ̅     

              ̅     

(35) 

 

(36) 

 

(37) 

 

(38) 

(39) 

(40) 

Where   is the number of truncated rain-rate samples,       is the auxiliary 

estimation function, and      and      are probability distribution function and 

cumulative distribution function of the standard normal distribution, respectively. The 

parameters estimation for the remaining two variates and their correlation coefficients is 

the following. Consult Cohen (1991) for more details.  
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For                             . 
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(44) 

Since by definition      , the last equation for      becomes  

 ̂    
   

√*   ̂ (     
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(45) 

 




