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Introduction 1

Abstract: It is generally claimed that universities provide the scientific basis for future
technological progress. Still, empirical evidence of the impact of direct links between
universities and firms remains weak and is often at least inconsistent. This paper aims
at contributing to the literature by analyzing how direct academic involvement affects
the output of inventive activities of research teams in different organizational back-
grounds. By applying a unique dataset of German academic and corporate patents, we
find that boundary-spanning knowledge production with academic inventors raises the
innovative performance of SMEs and MNEs. Furthermore, geographical proximity be-
tween team members is generally shown to be valuable for team performance in terms
of the influence on future technological developments. At the same time, the results
indicate that academic involvement helps inventor teams to profit from spatially distant
knowledge sources.

1 Introduction

The literature on knowledge based economic development has made essential contri-
butions in proving that basic science fosters technological progress (Adams 1990; Jaffe
1989). A new generation of studies on networks and open science additionally reveals
an increasing importance of sourcing knowledge from external organizations in general
and from universities in particular (Cohen et al. 2002; Powell/Grodal 2005). However,
further understanding the links between university and industry has significant implica-
tions for public policy and the rationales beyond funding basic research in universities
as well as firms. In this context, knowledge creation and innovation are increasingly
seen as a socially embedded process, which is highly dependent on inter-
organizational and social networks. Particularly in collaborations between universities
and industry, the often tacit nature of advanced scientific and technological knowledge
makes relationship-based interactions highly relevant. R&D collaborations based on
relationships are the preferred ways of exchange, enabling regular face-to-face con-
tacts, reciprocal and bi-directional knowledge exchanges as well as the circulation of
ideas between theory and practice (Perkmann/Walsh 2007; 2009). In sum, boarder-
crossing team work and inter-organizational collaboration activities can be seen as one
of the most important mechanisms of knowledge flows from university to industry. This
finds further support in the fact that potential tensions and cultural barriers between
university and industry - due to different institutional norms governing public and private
knowledge - can be overcome in trust-based interactions where corporate and aca-
demic researchers act as boundary spanners (Bruneel et al. 2010).

However, although there is a huge body of literature on the ties between universities
and firms, few studies aimed at understanding the performance effect of direct industry-



2 Introduction

science links, especially on the invention or project level (Cassiman et al. 2008). Empir-
ical evidence on the impact of academic involvement in corporate inventive perfor-
mance remains weak (Ahrweiler et al. 2011). Quantitative studies, often based on sin-
gle sectors, use indirect ways to measure the impact of academic research on industri-
al innovation, e.g. spillover studies using a knowledge production function (Jaffe et al.
1993). Others employ patent citations to non-patent literature (NPL) as a proxy for sci-
ence linkages (Fleming/Sorenson 2004; Harhoff et al. 2003; Narin et al. 1997) and pro-
vide interesting, but at least partly inconclusive results (Cassiman et al. 2008). NPL-
citations, however, are a fragile measure for links to science. This is due to the fact that
NPL-citations remain indirect, i.e. the real link and the true contribution of science can-
not be observed, since searching and using codified scientific knowledge is fundamen-
tally different from relationship-based links. It is particularly the person-to-person inter-
action that matters in the transfer of highly advanced technological knowledge. Empiri-
cal approaches, using direct links to measure the influence of academic involvement,
however, are to our knowledge still missing.

Furthermore, existing literature has proven the spatially bounded nature of knowledge
in general, and from universities in particular (Ponds et al. 2007; Singh 2008). As face-
to-face contacts are an important condition for the generation and exchange of non-
standardized and complex knowledge, they are particularly applicable when advanced
technical and scientific knowledge is involved in interactions (van Oort et al. 2008).
Relations between university and industry are therefore claimed to benefit from spatial
proximity, since these often involve complex upstream basic research and require re-
ciprocal learning processes (D'Este/lammarino 2010). If sufficient cognitive and organi-
zational proximity between the partners prevail, spatial and social proximity make local
collaborations more likely (Boschma 2005). Nevertheless, this does not necessarily
mean that spatially bounded academic knowledge has greatest impact on inventions.
Academics and innovative firms usually search and exchange knowledge on an inter-
national scale (Hewitt-Dundas 2013; Manniche 2012) and distant knowledge is often
superior to that available locally (Laursen et al. 2011). Furthermore, non-proximate
actors are often equally, if not better, able to transfer and absorb complex knowledge
even across spatial boundaries, given an adequate network structure is in place (Hug-
gins et al. 2008). Thus, the question whether spatial proximity favors the innovative
performance of inventor teams is far from being resolved.

We focus on these fronts firstly by introducing the technological impulse on future tech-
nological progress as a new measure for the innovative performance of a team. It
builds on the frequently used technological impact (as measured by forward citations),
but enables us to further differentiate by accounting for the originality of an invention,
i.e. the amount of existing knowledge that an invention builds upon, indicated by back-
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ward citations. Secondly, employing a unique dataset, containing all German patents
with academic involvement between 2000 and 2005, enables us to observe direct sci-
ence-industry links. Complementing this with patents involving only inventors from
SMEs or MNEs, we are able to test the university-industry linked patents against two
control groups. The inventor and ownership information on patents serves as a proxy
for different compositions of inventor teams and their institutional-organizational back-
grounds, i.e. if the research team is composed of corporate inventors only or a mixture
of academic and corporate inventors (Bercovitz/Feldman 2011; Von Proff/Dettmann
2013).

Another often ignored aspect in the discussion on quality and technological impact of
patented inventions is the organizational framework in which inventions emerge
(Cassiman et al. 2008). Though both, academic and industrial researchers are inter-
ested in gathering new knowledge, the type and the ways to learn, operate and gener-
ate knowledge are fundamentally different. Academic environments focusing on basic
knowledge are mainly interested in pushing frontiers of research, understanding partic-
ular fundamental phenomena and to disseminate the gained analytical knowledge in
often exclusive globally configured epistemic communities (Manniche 2012; Stephan
2012). Industrial researchers are more interested in applied research and their motiva-
tion to collaborate with academic researchers is access to basic research results in
order to advance their explorative capabilities and research productivity. Nevertheless,
this depends on firms' existing abilities to a) participate in science, technology and in-
novation based modes of learning (Jensen et al. 2007) and b) to transfer basic re-
search into a sequence of technological applications (Cohen et al. 2002; Flem-
ing/Sorenson 2004; Trajtenberg et al. 1997). While particularly large R&D intensive
firms with large R&D departments (MNESs) are able to integrate, assimilate and exploit
science based knowledge, in the sense of advanced innovations (Todtling et al. 2009),
small and medium-sized firms (SMESs) are often, due to resource constraints, restricted
to applied and exploitative problem-solving activities. Their innovation behavior is main-
ly characterized by doing, using and interaction modes of learning, leading to incre-
mental innovations through novel combinations of existing knowledge (Jensen et al.
2007; Laursen/Salter 2004; Santoro/Chakrabarti 2002). Therefore, we will additionally
account for this basic picture in that inventions emerging in heterogeneous organiza-
tional and institutional frameworks are influenced by the researchers working environ-
ments.



4 Theory and hypotheses

In sum, this paper aims to answer the following questions:

How does direct involvement of academic inventors affect the impulse that inventions
exert on technological progress — in the light of heterogeneous organizational back-
grounds?

How does spatial proximity influence the impulse that inventions exert on technological
progress — in the light of heterogeneous organizational backgrounds?

The remainder of this paper is structured as follows. In the theoretical section, we will
lay out the theoretical framework and develop the hypotheses which are tested in the
empirical section. Section three composes theoretical backup for the technological im-
pulse, describes the data and the empirical strategy. Section four presents and dis-
cusses the results of our analyses. Section five concludes this paper.

2 Theory and hypotheses: Collaboration, distance
and the role of universities and firms for innovation

2.1 Collaborating with Science as a Trigger for Technolog-
ical Evolution

The introduction revealed a rather basic picture on the role that heterogeneous institu-
tional and organizational backgrounds play for innovative behavior. The question that
emerges from these considerations is how boundary-spanning interactions between
academic and corporate inventors influence the innovative performance compared to
pure SME, MNE or university teams. The basic assumption hereby is that scientific
basic knowledge enhances the inventor teams' research performance, its problem-
solving abilities and the likelihood to contribute to technological progress.

Two broad directions in which scientific knowledge helps industrial engineers to trigger
technological, more radical advancements can be identified. Firstly, radical advances
occur due to "presumptive anomalies” (Constant 1980). Assumptions from engineers
and researchers derived from scientific knowledge indicate that either the existing con-
ventional technology will fail to function properly or that a radically different technology
will do a better job. This is where scientific knowledge provides engineers with a kind of
map that helps them to systematically structure the search for technological knowledge
(Fleming/Sorenson 2004). Secondly, engineers become aware of actual functional fail-
ures, occurring when a technology is subject to increasing demand or is applied in new
situations and search actively for radical solutions (Vincenti 1990). In particular the lat-
ter points to the value of networks and bi-directional knowledge exchanges between
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academic and industrial researchers (Perkmann/Walsh 2009). On the one hand corpo-
rations, having a sense for system failures and the need for new and radical solutions,
and on the other hand academics, providing advanced technological knowledge, drive
the circulation of knowledge between applied and basic contexts. Confirming this, aca-
demic patents assigned to corporations are more frequently opposed, suggesting that
they are more likely to capture applied inventions with a higher market potential
(Czarnitzki et al. 2009). Therefore, particularly, inventions that emerge in collaboration
between both spheres might exert a strong impulse on future technological paths.

At the same time, at the firm-level, heterogeneous capacities to deal with scientific
knowledge are likely to prevail. Firstly, idiosyncratic firm-level competencies influence a
firm's ability to pursue particular technology paths. Secondly, firms must invest in scien-
tific knowledge to develop their "capacity to absorb" knowledge and exploit opportuni-
ties emerging from the state-of-the-art elsewhere (Cohen/Levinthal 1990). Therefore,
the capabilities to deal with scientific knowledge and to build cognitive proximity to aca-
demia are diverse, in particular for SMEs. While the majority of SMEs is, as discussed
above, engaged in incremental and less science-based interactions, some are as-
sumed to build heavily on academics as partners, particularly in science-based indus-
tries. Some SMEs, specialized on R&D activities, are highly innovative and most of the
people employed are skilled workers with a background in academic research. Their
primary purpose and business model is to translate basic research into applicable con-
texts. Those firms often are spin-offs from universities and large firms (Cohen et al.
2002) or other knowledge intensive business services (Laursen/Salter 2004). Thus, we
assume that those SMEs that engage in direct collaboration with universities develop a
particularly strong effect on future technological paths.

Hla: Inventions that emerge from mixed inventor teams with heterogeneous organiza-
tional backgrounds are likely to exert a stronger impulse on technological paths
than other inventions. This effect is likely to be particularly strong for SMEs.

Research in purely academic research teams is very likely to be complex and original -
in the sense that it basically aims at pushing the frontiers of research - and is conduct-
ed under intense competition (Stephan 2012). Striving for scientific reputation provides
strong incentives for academics to be inventive. Nevertheless, the primary goal of sci-
entists is not to apply knowledge to technological components, but to publish and to
discuss their ideas within academic communities. Purely academic and basic research
is probably neither directly inspired by application-based technological problems, nor it
is directed towards their solution. University inventions capture more basic research,
since they focus on solving scientific questions while industry R&D is directed at com-
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mercial success (Trajtenberg et al. 1997). Thus, inventions out of purely academic en-
vironments might lack direct short- and mid-term technological connectivity.

H1b: Research conducted in purely academic inventor teams is likely to be "original”,
i.e. building on a small stock of prior knowledge, while at the same time it is less
likely to be easily applicable to future technological paths.

2.2 Distance in collaborations and different organizational
backgrounds

The degree to which inventor teams combine new knowledge from new locations and
domains plays an important role in shaping the success in technological innovation
(Laursen 2012). Yet, from an individual's perspective, cognitive limitations make it im-
possible for single researchers and engineers to know and to evaluate every techno-
logical opportunity in relation to other options. Thus, searching along established paths,
networks, routines and heuristics is easier and therefore mostly conducted in familiar
and proximate neighborhoods (Malerba/Orsenigo 1993). Nevertheless, this may lead to
sub-optimal solutions as superior knowledge from non-local and cognitively more dis-
tant contexts is overlooked (Brokel/Binder 2007; Fleming/Sorenson 2004; Rosenkopf/
Nerkar 2001). Two distance dimensions appear to be relevant within this context. First-
ly, inventions combining larger shares of knowledge from distant knowledge domains
have been shown to exert a stronger technological impact (Fleming/Sorenson 2004;
Rosenkopf/Nerkar 2001). Thus, a higher technological distance is likely to enhance the
generated technological impulse.

H2a: A higher technological distance between the inventor teams' knowledge domain
and the knowledge source is likely to have a positive influence on the technologi-
cal impulse emanating from an invention.

Secondly, individual's bounded rationality is also likely to affect the spatial distance
over which researchers span their networks, search and exchange knowledge. The
basic argument here is that individuals do not perform exhaustive search processes
across an entire search space, but prefer - if other distant solutions are not known - the
spatially and socially most proximate and cognitively satisfying solutions. Thus, apply-
ing heuristics in search processes directs the focus of individuals towards their existing
social networks which are — favored by spatial proximity and face-to-face interactions —
often spatially biased (Brokel/Binder 2007). In line with this, previous empirical studies
have revealed that knowledge is spatially bounded and inventions mostly emerge from
regional partnerships (Ponds et al. 2007; Singh 2008). Therefore, the simple message
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is: Geography matters, but, does geography also influence the quality and performance
of collaborative activities?

The literature on collaborative teams has highlighted teamwork as an important ele-
ment of leveraging creativity, expertise and diversity of the teams' knowledge base.
Thus, it can enlarge the stock of information that is applied to the innovation process
(Dahlin et al. 2005; Giuri et al. 2010)). Nevertheless, teams are confronted with coordi-
nation and communication problems that can hinder the success of a research project.
The more complex, ambitious and innovative the project, the more this is the case. In
this context, face-to-face meetings can serve as social tools which reassure common
agreements, solve conflicts and define further milestones (Torre 2008). Face-to-face
contacts enable the exchange of non-verbal information, which is required to obtain the
complete picture of other researchers' social as well as competence profiles. Even
more importantly, they increase the likelihood of intense and intact relationships be-
tween team members, which are strong drivers for successful collaborations (Agrawal
et al. 2006; Von Proff/Dettmann 2013). In sum, successful collaborative relationships
must find a way to develop social, organizational and cognitive features that enable
them to reach their project goal. In this context, face-to-face contacts and spatial prox-
imity can facilitate the emergence of those relationship features (Boschma 2005). Thus,
we assume that more complex and ambitious research projects rely more on frequent
face-to-face encounters and the teams' innovative performance is more sensitive to
spatial distance.

H2b: A higher spatial distance between inventor teams is likely to have a negative in-
fluence on the technological impulse emanating from an invention.

Contrary to H2b, collaborations over distance can increase the opportunity to investi-
gate more distant — and potentially useful — possibilities (Laursen 2012). As discussed
above, knowledge networks and exchange are spatially biased and the knowledge
landscape is likely to be shaped by industry and region-specific institutional structures.
Thus, knowledge, being in large parts implicit and context-dependent, is not equally
distributed over space. Searching for non-local knowledge can add to innovation activi-
ties and help to avoid regional lock-in. Following Boschma (2005), the role of geo-
graphic proximity as a facilitator of knowledge interaction can be substituted by other
relationship features, namely cognitive, social, organizational, institutional proximity.
The need for geographical proximity is weakened when strong coordination mecha-
nisms are implemented and partners share cognitive experiences (Torre 2008). The
implications are twofold:
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Firstly, institutional and organizational proximity created in subsidiaries and contractual-
ly bound partners enables firms to access specific knowledge and personnel, making
spatial proximity between partners less important (Von Proff/Dettmann 2013). Due to
resource constraints, in small businesses only few people are familiar with the tasks in
R&D and knowledge management. They lack the resource-based backup of colleagues
and are likely to be more oriented towards their local environment if this provides suffi-
cient opportunities for local interactions. Thus, firms with more R&D personnel are
more likely to benefit from geographically dispersed inventor teams and organizational
backgrounds.

Secondly, the direct involvement of academics as team members might serve as an
entrance card into nationally and globally configured often exclusive and academic
"epistemic communities", where learning takes place by searching and researching,
both being intentional and directed. The knowledge resulting from this analytical
knowledge processing is to a large extent codified and can be transferred across
space. Nevertheless, particularly cognitive proximity and an adequate organizational
framework are indispensible for individuals to achieve correct interpretations of codified
knowledge and to obtain access to the usually stored knowledge (Manniche 2012). It is
therefore likely that research teams that involve academics as team members have a
higher likelihood to increase their performance by tapping into these mostly non-local
networks.

In sum, we assume that the organizational background of inventor teams provides het-
erogeneous opportunities for dealing with and efficiently integrating spatially distant
knowledge sources into the innovation process.

H2c: The influence of spatial distance on the technological impulse emanating from an
invention is highly dependent on the institutional and organizational background
of inventor teams.

3 Empirical strategy

3.1 Patent citations as a measure of technological im-
pulse: Two sides of the same coin

Building on previous studies dealing with the technological impact of an invention (Car-
penter et al. 1981; Fleming/Sorenson 2004; Harhoff et al. 2003; Trajtenberg 1990) we
use citations related to patents as indicators for innovation performance (Cassiman et
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al. 2008). Citations, provided either by the patent applicant or the patent examinerl, are
listed on a patent document and reflect references made to prior art, most commonly to
other patents but also to scientific literature. These citations can be counted from a
forward looking as well as a backward looking perspective. The forward looking indica-
tor is the number of citations a patent receives from subsequent patent filings, which
are commonly referred to as patent forward citations. The basic assumption is that the
number of forward citations measures the degree to which a patent contributes to fur-
ther developing advanced technology. Thus, it can be seen as an indicator of basic-
ness, novelty or technological significance of a patent in terms of spill-over effects
(Carpenter et al. 1981; Trajtenberg 1990). The backward looking indicator is patent
backward citations. Patent backward citations refer to previous patents and are mostly
used as an indicator of technological breadth and can give hints on the scope of a pa-
tent (e.g. Harhoff et al. 2003). Yet, it can also be interpreted as a measure of "originali-
ty": Patents with a large number of backward citations can be assumed to build on a
larger given pool of already existing knowledge, whereas patents with only few back-
ward citations have a small existing knowledge stock to build upon (Rosenkopf/Nerkar
2001). Thus, it is quite intuitive to state that a small number of references made to pre-
vious patents imply that the commercially used knowledge stock which can be built
upon is rather limited.

Based on these remarks, we combine the forward and backward looking perspective
as two sides of the same coin. This enables us to construct a general measure for the
originality of knowledge generation modes on the one hand and the technological sig-
nificance of a patent for the development of future advanced technologies on the other.
By relating the amount of knowledge a patent builds upon to the knowledge a patent
creates, so to say, the technological impulse of a patent (from its originality to its signif-
icance for future technologies) can be identified. With the help of this indicator, we are
able to measure the technological impulse of academic patents and compare it to the
technological impulse emanating from inventions filed by MNEs and SMEs. The exact
calculation of the indicator is described in section 7.3.2.

1 we are aware of the fact that the motives for citing previous patents might differ between
patent applicants and patent examiners. However, for our analysis, it is not necessary to di-
rectly link the senders and recipients of knowledge flows. We use patent citations to char-
acterize the knowledge stock comprised in an invention and thus a differentiation between
applicant and examiner citations is not necessary, as both indicate a given "stock" of prior
art.
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3.2 Dataset and variables

In this section, we will give an overview of the creation of our dataset, introduce the
variables and discuss their operationalization.

Dataset creation

In order to conduct our analyses, a patent level dataset based on the "EPO Worldwide
Patent Statistical Database" (PATSTAT) in its April 2012 version, which provides infor-
mation about published patents collected from 83 patent authorities worldwide, was
constructed. It is comprised of all academic patents as well as non-academic SME and
MNE patent filings from German applicants at the EPO between 2000 and 2005. It thus
covers all patents that are produced within or in cooperation with universities and not
only the ones that are filed by universities. In order to identify academic patents, the
method described in Dornbusch et al. (2013) was applied. The basic principle is an
algorithm that matches author names from scientific publications with inventor names
derived from patent filings. Estimates show that the search algorithm correctly identifies
academic patents with a high precision of over 93 percent.

Overall, we collected information on a total of 6,193 German academic patents filed at
the EPO between the priority years 2000 and 2005. All non-academic SME filings
(N=21.694) and a randomly drawn sample of 35,000 non-academic MNE filings were
added to this dataset. In order to create comparable groups and to avoid a possible
sample selection bias, a Propensity Score Matching (PSM) was applied ((Heinrich et al.
2010).2 In doing so, statistically comparable twins with regard to technology fields and
priority years were extracted. Consequently, we attained a balanced sample of 4,217
observations for each of the three groups, which leaves us with a final sample of
12,651 patents in total.3

Variables and operationalization

In order to operationalize the technological impulse (Techimp), which will form the ex-
plained part in our following regression models, we added the relevant citation related
indicators from the PATSTAT database, i.e. the number of patent forward citations - in

2 We apply a nearest neighbor matching without replacement and employ a calliper, serving
as a tolerance level of the maximum propensity score distance of two matched observa-
tions. This calliper reduces the risk of bad matches and is calculated as the standard devia-
tion of the estimated propensity score multiplied by 0.25 (Rosenbaum/Rubin 1985).

3 Tests comparing the PSM-created against a randomly drawn sample showed that field and
period specific distribution differences are significantly reduced.
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a 4-year citation window in order to leave all the patents the same amount of time to be
cited - and the number of patent backward citations stated on the patent application. As
for the modeling of the technological impulse we generated two dependent variables
(dVs):

The first is the ratio of the number of forward citations a patent receives from subse-
guent patents to the number of backward citations to previous patents that are stated
on a patent filing. This variable is supposed to capture the relation between an organi-
zations' innovation behavior in that it generates technological knowledge with a certain
degree of novelty and its reliance on already existing knowledge. However, the caveat
of this variable, although it is a handy indicator, is that it is not able to differentiate be-
tween patents that have a low number of backward citations as well as a low number of
forward citations on the one hand and a high number of backward citations as well as a
high number of forward citations on the other.

We thus generated a second variable with four categories, relocating a patent into a
matrix along the two dimensions: quantity of backward citations given and the quantity
of forward citations received. In order to differentiate between high and low, we used
the median of the respective variables. In the case of forward citations the median is 1,
meaning that all citations with one or fewer citations belong to the "low number of for-
ward citations" category and vice versa. For the backward citations, the median lies at
5, so all patents with five or less backward citations belong to the "low number of
backward citations" category and vice versa.

In order to make the handling easier and to improve readability, we decided to give
each group a distinct name:

e The first category of "Mavericks" (coded "0") has a low number of forward and a low
number of backward citations. Inventions are based on a small stock of existing
knowledge, but also have a weak connectivity to future technological paths. "Maver-
icks" are weakly connected into both directions.

e The second category of "Pioneers" (coded "1) is characterized by a high number of
forward and a low number of backward citations. It relies on a small stock of existing
knowledge, yet has a strong significance for the following technological trajectory. It
opens or at least contributes to the opening of a new technological path.

¢ The third category labeled "Adopters" (coded "2") has low number of forward and a
high number of backward citations. This indicates a strong reliance on existing
knowledge, but only a weak impact on future paths.

o The fourth category of "Enablers" (coded "3") has a high number of both, forward
and backward citations. Enablers thus rely on a large stock of existing knowledge,
but are also able to generate impact on future technological paths.
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In order to test our hypotheses, we use three sets of explanatory variables:

1. Organizational background and university-industry collaboration (ORG): To
differentiate between organizational backgrounds, a manually created classification of
the patent applicants was employed.4 Corresponding to the German SME definition,
applicants with more than 500 employees (Glnterberg/Kayser 2004) and more than
three patent filings in a three-year time window between the priority years 1996 and
2008 were classified as MNEs. The remaining applicants with more than three patent
filings in the given time window and less than 500 employees were classified as SMEs.

In sum, our dataset differentiates between five different organizational backgrounds
(see Table 1): Patents emerging from purely corporate backgrounds are either defined
as purely MNE (case 1) or purely SME (case 2). Furthermore, we define patents that
are filed with academic participation by MNEs as mixed MNE (case 3.1) or as mixed
SME (case 3.2). Finally, purely academic patents are those filed by UNI (case 3.3).
Note that other applicants of academic patents (private applicants and other PROSs) are
collapsed in a fourth category. This differentiation is used to test the organizational
backgrounds' influence on the technological impulse.

Table 1:  Sample description

Case 1: Case 2: Case 3: Academic patents
Non—aca'demic Non—aca'demic Case 3.1: filed Case 3.2: filed Case 3.3: filed
patents filed by patents filed by by MNEs by SMEs by the university

A= slilEs itself (UNI)

Source: Own compilation

2. Geographical distance (GD): Furthermore, we added a variable representing the
average geographical distance between the inventors named on a patent filing. The
distances were calculated based on the coordinates> belonging to each of the postal
codes of the inventors' home addresses.

3. Technological distance (TD): Finally, in order to indicate the technological distance
of a patent application, we included the share of backward citations to patents in for-

4 The name and legal status of an applicant (e.g. Inc., AG, GmbH, S.R.L, etc.) as well as the
difference between the name of the applicant and the name of the inventor show if the ap-
plicant is a company (compare also Frietsch et al. 2011).

5 The coordinates were retrieved from http://opengeodb.org/wiki/OpenGeoDB.
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eign technology fields to the sum of foreign and home-field citations.6 In order to do so,
we included a differentiation indicating whether a citation listed on a patent document
referred to a patent outside the technology field of the original patent within the 34
WIPO classes (Schmoch 2008), which are based on the International Patent Classifica-
tion (IPC) (foreign-field citation).

As for the control variables, we include the number of IPC-classes that are stated on a
patent application to control for technological breadth as well as the number of inven-
tors listed on a patent application to control for a possible effect of team size on the
technological impulse of a patent application. As discussed above, references to non-
patent literature are frequently used to indicate the closeness to science. We leave
them out in the construction of our dependent variable, but control for their influence.
Furthermore, we add the family size of a patent application, i.e. the number of distinct
patent offices where a patent has been filed. It indicates the breadth of international
market coverage, which is also associated with rather high patenting costs and might
thus also influence the technological impulse variable. Finally, we add dummy variables
for the time periods (2000-2005) to control for period-specific effects as well as field
dummies alongside the 34 WIPO classes. A summary of the variables used for our
regression models can be found in Table 2.

6 A patent can be classified into two or more technological fields and be double-counted. We
thus use the sum of foreign-field and home-field citations as the denominator for the con-
struction of the variable in order to make sure it runs from 0 to 1.
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Table 2:  Overview of the variables and summary statistics

Variable Obs. Mean Std.Dev. Min Max
Technological impulse
Ratio: forward citations/backward citations 12,190 0.43 1.13 0 33
Forward/Backward Index 12,651 1.36 1.18 0 3
low forward/low backward 3,508 0 0
high forward/low backward 1,928 1 1
low forward/high backward 3,301 2 2
high forward/high backward 2,873 3 3
Organizational type 12,651 1.00 0.82 0 2
Purely MNE (MNE filing) 4,217 1 1
Purely SME (SME filing) 4,217 2 2
Academic Patent 4,217 0 0
Mixed MNE 2,045 0 1
Mixed SME 933 0 1
Purely academic (UNI) 415 0 1
Mixed OTHER 625 0 1
Distance Variables
Technological distance 12,190 0.42 0.19 0 1
Geographical distance 9,421 81.11 108.11 0 727
Control Variables
Number of inventors 12,651 3.24 2.20 1 50
Number if IPC-classes 12,651 2.06 1.22 1 12
Family size 12,651 6.42 4.66 1 40
Number of NPL-citations 12,651 4.98 14.08 0 462

Source: EPO — PATSTAT, own calculations

3.3 Econometric modeling

In order to test our hypotheses, we set up a formal model estimating the technological
impulse of a patent by means of regression techniques. In a first step, we isolate the
effect of the basic organizational background on the technological impulse and test if
the operationalization of Techlmp fits the basic picture derived from the literature. Our
basic model can (in a simplified form) be described as follows:

TeChImpi = GliORGbaSiCi+Ggi|PCi+03i|NVi+G4iFAMi+G5iN PL+ Xi,Bi+ € (1)
with i=1,...n

where Techlmp; denotes the technological impulse of patent i, ORGbasic; differentiates
the basic organizational backgrounds (purely MNE, purely SME, academic), respec-
tively, IPC; is the number of IPC classes of patent i and INV; is the number of inventors
listed on the respective patent application. FAM; denotes the patent's family size and
NPL; the number of NPL-citations. x;" is a vector of field and period specific control var-
iables and ¢; idiosyncratic errors.
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Based on this basic approach, we subsequently add three explanatory parameters to
the regression in order to test our hypotheses. The extended model is described as
follows:

TeChImpi = GliORGeXti+Ggi|PCi+Ggi|NVi+G4iFAMi+G5iNPLi+G6iGDi+G7iTDi+Xi’Bi+ € (2)
with i=1,...n

where ORGext; now denotes the organizational backgrounds of the inventor team of
patent i, but is extended and differentiates the academic patents alongside the cases
3.1-3.3 (mixed MNE; mixed SME; purely academic) in Table 1. This extension allows
us to test if organizational border-crossing (directly measured by inventor team compo-
sition) influences the technological impulse emanating from an invention (Hla & H1b).
GD; denotes the geographical distance (H2b & H2c) and TD; the technological distance
(H2a).

As stated above, we employ two different dependent variables measuring the techno-
logical impulse that is generated by an invention. The first one, i.e. the ratio of forward
to backward citations, is a continuous variable. As its numerator has an excessive
number of zeros, this variable is left-censored. In this case an OLS model might result
in inconsistent parameter estimates. The Tobit-model is designed to estimate linear
relationships between variables when there is either left- or right-censoring in the de-
pendent variable (Wooldridge 2002). In order to further differentiate and obtain addi-
tional information from our explanatory variables we complement our analyses with a
Multinomial-Logit-Model (MLM) on the categorical dV. We choose the "mavericks"-
category as the base category. In order to ease interpretation and comparison of the
coefficients, we calculate average marginal effects (Williams 2011). Non-constancy in
the residual variance of the variables is controlled by employing robust standard errors
in all our models (White 1980).

4 Results and discussion

4.1 Descriptive analyses

This section provides first insights on how far the explained variables resemble the
basic picture of learning and innovation shaped by different organizational back-
grounds. Table 3 provides an overview of the differences in the average forward and
backward citation rates between academic, MNE and SME filings. Academic patents
on average receive 0.61 more citations from subsequent patents than SMEs. MNEs
are located in the middle with a value of 2.33. The two-sided t-tests in the lower part of
the table show that these differences are significant over all categories. Also in accord-
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ance with existing literature, academic patents refer to about 1.3 previous patents less
than MNEs. Here, SMEs are located in the middle with a value of 8.76. Yet, the differ-
ence between academic patents and SME filings is not significant. All in all, this results
in a ratio of forward to backward citations of 0.53 for academic patents, 0.39 for MNE
filings and 0.36 for SME filings. The differences between academic patents and SME
and MNE filings are highly significant for this indicator, which forms the core dependent
variable for our models measuring the technological impulse.

Table 3:  Forward and backward citations across types of organizations (SME, MNE,

UNI)
Mean values

Academic MNE SME
Number of forward citations 2.51 2.33 1.90
Number of backward citations 8.57 9.74 8.76
Ratio: forward citations/backward citations 0.53 0.39 0.36

T-Tests
Acad'\jmzc VS. AcadSeMmIi:c VS SME vs. MNE

Number of forward citations -1.914* -6.864*** -5.040***
Number of backward citations 4,341 0.724 -3.691***
Ratio: forward citations/backward citations -5.591*** -6.172%** -1.068

Source: EPO-PATSTAT, own calculations
Note: Significances levels: ***p<0.01, **p<0.05, *p<0.1

Complementing on these findings, Figure 1 shows the average number of forward cita-
tions by backward citations over the different types of organizations. Academic patents
are located in the lower right-hand corner of the graph, indicating a high number of for-
ward citations and a comparably lower number of backward citations on average. In
sum, the graph closely resembles the basic picture of learning as discussed in the in-
troduction, implying that the technological impulse differs between academic and indus-
try patents.
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Figure 1: Average number of forward citations by backward citations over type of
organization (SME, MNE, UNI)
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Source: EPO — PATSTAT, own calculations

4.2 Multivariate analyses

In this section, we will present and discuss the results of our multivariate models. First,
we focus on the basic model (M1 & M2 in Table 4) with the set of dummy variables
indicating the organizational type of a patent application (UNI, MNE, SME). The prima-
ry aim here is to further confirm the basic picture on the roles played by different organ-
izational backgrounds. This is followed by a test of our hypotheses on collaborations
between university and industrial research teams (H1la& Hlb; M3 & M4 in Table 4) as
well as on the role of distance for the innovative performance of an inventor team and
their application in different organizational backgrounds (H2a-H2c; M5 — M10 in Table
4 & Table 5). The interpretation of the coefficients always starts with the Tobit-model
and then goes into more detail by taking the more differentiated MLM into account. Yet,
before interpreting our explanatory variables, we will briefly turn to the effects of the
control variables.

Control variables

As the coefficient in M1 shows, the number of inventors has a significantly positive ef-
fect on the technological impulse of a patent application on average. This is resembled



18 Results and discussion

in M2, where the "pioneering” and the "enabling"-categories are positively affected by
the size of an inventor team. As for the number of IPC-classes, however, we only find a
weakly significant positive coefficient, implying that the technological breadth of a pa-
tent filing in terms of IPC-classes only marginally affects its technological impulse on
average. Yet, the family size of a patent application, indicating the breadth in terms of
market coverage, has a significantly positive effect on the technological impulse. Inter-
estingly, the number of NPL-citations listed on a patent application has a significantly
negative coefficient. A closer look at M2 reveals that the coefficient is only negative in
the case of the inventions that build on a small stock of knowledge, while those building
on a larger stock of knowledge are positively affected.

Academic vs. corporate backgrounds: A basic differentiation

Turning our attention to the basic organizational variables, it can be observed that the
technological impulse is lower for SME filings compared to MNE filings. It can also be
found that SME filings significantly more often fall into the category of "Mavericks" and
"Adopters" than filings by MNESs. Inventions created in pure SME teams are also less
likely to act as "Enablers". Pure SME-backgrounds thus are less likely to provide the
organizational and institutional framework under which inventor teams generate high
quality inventions (in the sense of future technological connectivity), regardless of
whether they draw on a large or small stock of existing knowledge. MNEs fall in the
middle between SME filings and academic patents (M1). MNE patents are less likely to
belong to the "Mavericks"-category, while they have the highest probability to act as
"Enablers”. In sum, this indicates that MNEs are more likely to combine the search and
absorption of existing knowledge while at the same time they translate this into future
technological paths.

With regard to academic patents, a positive effect on Techimp is observed in M1, im-
plying a higher technological impulse of academic patents than MNE patents on aver-
age. Most notably, the probability that an invention belongs to the "pioneering"-
category is highest for academic patents. However, we also find a highly significant
positive effect for the "Mavericks"-category. This indicates the existence of two contrary
types of inventions emerging from an academic background: The first one has a strong
connection to future technologies, whereas the second one shows a low connectivity.
Yet, both are relying on a small stock of existing knowledge. We can state that direct
academic involvement in inventor teams makes inventions more original, in that they
generally build on a small stock of existing knowledge. "Adopting" or "enabling" inven-
tions, however, are less often created within academic backgrounds.
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One interesting side-result is notable here. As described above, NPL citations show a
counter-rotating effect to that of direct and personal academic involvement in inventor
teams. This only partially supports the findings by Fleming and Sorenson (2004), who
found that scientific knowledge derived from NPL (basically scientific publications) pro-
vides inventors with maps which lead them to promising new knowledge combinations.
Our results add a new dimension to their findings. It seems that codified scientific
knowledge mainly helps to structure knowledge searches if a large amount of existing
knowledge is at hand ("adopting" as well as "enabling” inventions). They can thus help
to make search processes maore efficient. However, if the existing knowledge base is
small, NPL citations can negatively influence the connectivity to future technological
paths ("pioneers"). This might indicate that scientific publications as knowledge sources
do not serve as a good starting point for finding innovative solutions unless they are not
embedded into a broader (technical/applied) knowledge context.

In sum, the results of M1 and M2 confirm our assumption of the role the different or-
ganizational backgrounds play in the process of knowledge production and dissemina-
tion. SMEs are less likely to generate inventions with a strong technological impulse
and are more likely to adopt current technological trends. They engage in more incre-
mental and less original innovations. MNEs on average fulfill their role as "enablers".
They manage a larger spectrum of activities ranging from exploitative and incremental
modes of innovation to more explorative ones. Thus, they are more likely to integrate
existing knowledge and connect this to future technological paths. An academic back-
ground, however, provides the institutional frame in which the strongest technological
impulse is generated. This highlights the importance of academic scientists and their
research as a seedbed for new technological paths. Yet, we also find that academic
involvement leads to patents with a low connectivity into both directions. A further dif-
ferentiation of academic patents, which will be provided from M3 onwards, therefore
yields the potential to gain a better understanding of the ongoing processes by consid-
ering mixed organizational and institutional backgrounds.

University-Industry collaboration

The previous results on the role of academic patents left us with the somewhat ambig-
uous finding that academic involvement might either lead to weakly connected "maver-
icks" or to "pioneering” patents with a strong connection to future technological paths.
M3 and M4 provide the results for the differentiation of academic patents by their dif-
ferent backgrounds. In line with Hla, M3 shows that collaborations between firm and
academic inventors (mixed MNE & mixed SME) indeed raise the likelihood that the
patent filing exerts an impulse on future technological paths. M4 shows that this is par-
ticularly driven by positive effects in the "pioneering" inventions category.
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Also in line with H1a, the coefficient for mixed SME-teams in M3 is higher than that of
mixed MNE-teams. Thus, the influence of academic involvement indeed is stronger
than in the case of MNEs. Mixed SME patents have a high probability to be "pioneer-
ing", whereas, as shown above, SME-filings without academic involvement on average
fall more often into the "adopters" or "mavericks" categories. This confirms our as-
sumption that SMEs that collaborate with universities are specialized in doing so. It is
likely that these are often spin-offs, either from universities or MNESs, as e.g. potentially
VCs-funded and outsourced R&D-Ventures.

Interestingly, purely academic patents (UNI) are strongly significant for the "mavericks"-
category, but we do not find a significant effect for the "pioneering"-category. This sup-
ports hypothesis H1b, which states that inventions that emerge in purely academic in-
ventor teams have a higher likelihood of being more original, but they also lack the
connectivity to future technological developments.

In sum, our results generally confirm the picture drawn in the theoretical section. Com-
bining the perspectives from academic and industrial backgrounds in inventor teams
provides the largest potential to contribute to new technological paths. The output from
collaborative work between industrial and academic inventor teams shapes future
technologies, while connecting existing knowledge and future paths is likely to take
place against MNE-backgrounds. SMEs play a very special role. The ones that include
academic inventors into their research teams often act as pioneers in establishing new
pathways for technological developments. For purely academic inventor teams, how-
ever, we find that the impact of their patented inventive activities lacks the usefulness
of those done in collaboration with industry. Yet, this explains the observed diverging
effect of academic patents in the previous section and has severe policy implications,
which will be discussed in the conclusion.

Technological distance

Introducing the technological distance variable in M5 and M6 only slightly changes the
coefficients of the organizational variables in M4. While the technological distance is
not significant in M5, it shows significant effects in M6. Searching in foreign technology
fields raises the likelihood of belonging to the "adopters" and "enablers" categories. If
inventions rely on small amounts of existing knowledge ("mavericks" and "pioneers"),
searching in foreign technology fields reduces the likelihood of belonging to either one
of both categories.

In sum, we have to reject H2a. A broad strategy to search for technological knowledge
does not positively affect the technological impulse. If an invention is more original in
nature, it rather reverts to (a smaller amount of) existing knowledge from its own tech-
nology field.



Table 4:  Multivariate results I: University — Industry collaboration and technological distance
BASIC University-1ndustry Collaboration Technological Distance
M1 M2 M3 M4 M5 M6
TOBIT Mfx: 0Techlmp / 0X (4CAT) TOBIT Mfx: 0Techlmp / 0X (4CAT) TOBIT Mfx: dTechlmp / 0X (4CAT)
Techlmp Maverick Pioneer  Adopter Enabler Techlmp Maverick Pioneer  Adopter Enabler Maverick  Pioneer Adopter Enabler
dv = Oy/ox (Kat0)  0y/ox (Katl) 0y/0x (Kat2) dy/ox (Kat3) 0y/ox (Kat0)  0y/ox (Katl)  0y/ox (Kat2) Oy/ox (Kat3) 0y/ox (Kat0) dy/ox (Katl) y/ox (Kat2) 0y/ox (Kat3)
Purely: SME -0.0756** [0.0201** -0.0031 0.0223**  -0.0393***|-0.0774** [0.0210** -0.0031 0.0222**  -0.0401***|-0.0774** |0.0214**  -0.0043 0.0235**  -0.0406***
Academic patent (all) 0.1465*** [0.0403*** 0.0343*** -0.0332*** -0.0414***
Mixed: MNE/Acad 0.1741***10.0233*  0.0298*** -0.0339*** -0.0192* ]0.1741***(0.0219* 0.0274*** -0.0318*** -0.0175
Mixed: SME/Acad| 0.2283***0.0154 0.0547*** 0,0213 -0.0488***0.2283*** |0.0076 0.0570*** -0.0171 -0.0475***
Purely: Academic/UNI 0.1175 0.0633*** 0,0317 -0.0331 -0.0619***|0.1174 0.0467* 0031 -0.0233 -0.0544***
Mixed: OTHER/Acad -0.0382 0.1184*** 0.0305*  -0.0480*** -0.1009***|-0.0382 0.1126*** 0.0257 -0.0401** -0.0982***
Techological_dist 0.0014 -0.1172*** -0.0622*** 0.0832*** (0.0962***
Number of inventors 0.0876*** |-0.0101***  0.0068*** -0.0072***  0.0105***  [0.0862*** |-0.0087***  0.0066***  -0.0078***  0.0099***  |0.0862*** |-0.0078***  0.0064***  -0.0085***  0.0098***
Number if IPC-classes  |0.0540*  |0.0034 0.007 -0.0077 -0.0027 0.0570**  0.0024 0.0065 -0.0074 -0.0015 0.0570**  {0.0008 0.0059 -0.0064 -0.0003
Family size 0.0295*** |-0.0189***  0.0009 0.0071***  0.0109***  0.0286***  |-0.0185***  0.001 0.0071***  0.0103***  |0.0286*** |-0.0182***  0.001 0.0068***  0.0104***
Number of NPL-citations [-0.0034*** |-0.0148***  -0.0042*** 0.0097***  0.0093***  |-0.0033*** |-0.0155*** -0.0041***  0.0101***  0.0096***  |-0.0033*** |-0.0167***  -0.0046***  0.0110***  0.0103***
Constant -0.9551*** -0.9469*** -0.9473***
Field Dummies YES
Time Dummies YES
N 12190 12651 12008 12452 12008 12008
Pseudo R? 0.024 0.072 0.024 0.074 0.024 0.075
F/Wald Chi? 6.187 1527.05 5.734 1537.9 5.622 1509.26
aic 32217.69 31768.37 31764.229 31235.872 31766.228 30178.207
bic 32565.88 32795.85 32133.895 32328.028 32143.288 31287.206
Prob > F/Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000

Source: EPO — PATSTAT, own calculations
Significance Level: ***p<0.01, **p<0.05, *p<0.1, robust standard errors

Note: MNE filing serves as a base outcome for the variables SME filing and academic patent as well as the mixed types in the extended ORG
variable. N is lower in the ratio calculation since there are patents with no backward citations for which no ratio could be calculated.
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Different organizational backgrounds and the specific role of geographical
distance

When including the average geographical distance among inventor teams into our re-
gressions, the overall picture stays largely consistent with the previous models de-
scribed above. However, two differences can be observed. First, pure SME-filings lose
significance in the Tobit-model as well as in the "mavericks"-category and second,
purely academic filings now show a weakly significant coefficient for the "pioneering"-
category, slightly softening our findings regarding H1b.

Regarding the influence of distance, both regressions (M7 & M8) show no significant
effects. Yet, the sensitivity of inventor teams is likely to be dependent on the resource-
infrastructure and the institutional configuration derived from their organizational back-
ground. Therefore, we assumed a causal relation between both explanatory variables
and included an interaction term (ORG*GD) in both regressions. The Tobit-model (M9)
as well as the MLM (M10) provide significant effects for the interaction terms as well as
the main factors. Thus, as hypothesized in H3c, we can basically state that there is a
significant moderating effect from ORG on GD.7

The marginal effects provide us with two basic findings. Firstly, after including the inter-
action term, the geographical distance between the members of an inventor team (M9)
exerts a significantly negative effect on Techimp as well as for "pioneering"-patents in
the MLM (M10), which confirms H2b. Geographical distance as a barrier to face-to-face
contacts generally has a negative influence on the output of collaborative activities.
Therefore, geography matters not only for the formation of networks. Geographical
proximity also increases the innovative performance of inventor teams, as measured by
the technological impulse. This underlines the assumption that collaborative work
which is conducted under spatial proximity is more likely to produce "high quality out-
put", particularly in ambitious research projects leading to rather radical and new solu-
tions.

7 For further interpretation, we solely refer to the marginal effects, as the effects derived from
an interaction term cannot be interpreted in isolation from the main factors. The STATA
margins command provides the first order derivatives of the regression equation and takes
the causality between ORG and GD into account (Williams 2011).



Table 5;

Multivariate results Il: Geographic distance and its dependency on the organizational background

Geographical Distance

Interaction term: Organizational background & Geographical distance

M7 M8 M9 M10
TOBIT Mf: 0Techlmp / 80X (4CAT) Mfx/ TOBIT | TOBIT Mf: 0Techlmp / 0X (4CAT) MLM (4CAT)
Techimp Maverick Pioneer Adopter Enabler Techimp | Techimp Maverick Pioneer  Adopter  Enabler Pioneer Adopter Enabler
dv = 0y/0x (Kat0)  0y/ox (Katl)  0y/dx (Kat2)  0y/ox (Kat3) 0y/0x (Kat0)  0y/ox (Katl) Jy/ox (Kat2) 0y/0x (Kat3) (Kat1) (Kat2) (Kat3)
Purely: SME -0.0675 0.0195 -0.004 0.0226*  -0.0381***-0.0514 -0.1096* |0.0169 -0.0014 0.0229*  -0.0384*** -0.1575 -0.0597 -0.2945%**
Mixed: MNE/Acad 0.1931**%0.0239*  0.0328*** -0.0379*** -0.0187 0.1951*** (0.0964 0.0191 0.0312*** -0.0333** -0.0169 -0.0428 -0.1518 -0.1196
Mixed: SME/Acad 0.2560**%0.0124 0.0618*** .0.0153 -0.0589***]0.2709*** 0.2005 0.0153 0.0630*** -0.0162 -0.0622%** z 007 -0.2355 -0.5119%**
Purely: Academic/UNI  |0.1527 0.0484*  0.0377*  -0.0189 -0.0672***0.1546 0.0067 0.0489*  0.0368*  -0.0204 -0.0653***| 2  -0.2046 -0.3749*  -0.4521**
Mixed: OTHER/Acad  ]-0.018 0.1176*** 0.0370*  -0.0522** -0.1024***]-0.0009 -0.065 0.1153*** 0.0403** -0.0528***-0.1028*** § -0.2241 -0.6528*** -0.7977***
Geographical _dist -0.0256 -0.0002 -0.0027 0.0029 0.0000 -0.0381** [-0.1024***|0.0023 -0.0069* 0.0038 0.0009 § -0.1924** -0.0197 -0.0307
SME X geo_dist| B(SME*GD) 0.0723 B(SME*GD) n 01174 0.0938 0.0902
A_MNE X geo_dist| B(A_MNE*GD)[0.1226** B(MNE*GD) S 0.2387** 00846 -0.0395
A_SME X geo_dist| B(A_SME*GD)|(0.0876 B(A_SME*GD) 5 0.3000**  0.1101 0.1986*
UNI X geo_dist B(UNI*GD) [0.1838** B(A_UNI*GD) g 0.3564**  0.1235 -0.0346
A_OTHER X geo_dist| B(A_OT*GD) [0.0796 S(A_OTHER*GD) ¥ 01821 0.0265 -0.1363
Techological_dist 0.0114 -0.1183***-0.0609** 0.0743*** 0.1050*** |0.0112 0.0112 -0.1189*** -0.0600** 0.0728*** 0.1062*** § 0.0074 0.7474*** 0.9208***
Number of inventors 0.0866*** (-0.004 0.0054***  -0.0095***  0.0082***  |0.0866*** 0.0866***  |-0.0041* 0.0055***  -0.0094***  0.0081*** S 00do8vr 00227 0.0479***
Number if IPC-classes [0.0355 0.0025 0.0032 -0.0051 -0.0005 0.0349 0.0349 0.0022 0.0029 -0.0048 -0.0004 0.0116 -0.0276 -0.011
Family size 0.0279*** 1-0.0156***  0.0006 0.0049***  0,0101*** 0.0281*** 0.0281***  1-0.0157***  0.0007 0.0049***  0,0101*** 0.0560*** 0.0765***  0.1013***
Number of NPL-citations|-0.0037*** [-0.0153***  -0.0047***  0.0098***  0.0103*** |-0.0037***  [-0.0037*** |-0.0153***  -0.0047*** 0.0098***  0.0103*** 0.0201 0.0963***  0.1032***
Constant -1.0400*** -0.9973*** -1.5617***  -1.2930***  -1.9510%**
Field Dummies YES
Time Dummies YES
N 8892 8892 8892 8892
Pseudo R2 0.021 0.075 0.021 0.076
F/Wald Chi2 4.294 1122 4.028 1122
aic 25002.062 22623.376 25005.699 22625.051
bic 25370.893 23708.591 25409.995 23816.659
Prob > F/Prob > chi2 0.000 0.000 0.000 0.000

Source: EPO — PATSTAT, own calculations
Significance Level: ***p<0.01, **p<0.05, *p<0.1, robust standard errors

Note: MNE filing serves as a base outcome for the variables SME filing and academic patent as well as the mixed types in the extended ORG
variable. N is lower in the ratio calculation since there are patents with no backward citations for which no ratio could be calculated. N is further
reduced because distance is only calculated for patents on which at least two inventors are listed.
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Secondly, the influence of spatial distance depends on the organizational background
of the inventor team (H2c). In order to attain the full picture, however, we calculated the
marginal effect for each team background at representative values of distance. Figure
2 shows how responsive the distance is to the moderating effect of a team's organiza-
tional embedding. Only significant slopes are displayed. For the sake of simplicity, we
focus on the ratio of forward over backward citations.8 In sum, for projects that
emerged with academic participation, distance has a positive effect on the technologi-
cal impulse. Thus, under certain conditions, distance between the members of a re-
search team can also increase their innovative performance. This is contingent on the
involvement of academics in the team and might be due to two interrelated reasons.
Firstly, academic inventors are highly mobile, even compared to other highly skilled
workers (Maier et al. 2007). Secondly, recent research has shown that social and cog-
nitive proximity helps to substitute the need for spatial proximity in later knowledge ex-
changes (Boschma 2005). Academics maintain former local relationships to academia
and industry, which provide the personalized infrastructure for interregional knowledge
transfer. They provide an antenna function and serve inventor teams as bridging
agents into distant knowledge sources providing access to often exclusive and (mostly)
non-local epistemic communities. Thus, academic involvement in the team seems to
extend the search scope and screening capability.

For mixed academic-corporate teams, Figure 2 shows that MNEs profit more from col-
laborations with academics over distance than SMEs. Again, it seems reasonable to
assume that they simply have more resources available to co-ordinate networks into
distant knowledge domains. Mixed SMEs which have the largest effect in shorter dis-
tances might represent a "spin-off"-effect, in that those which often stay in proximity to
their parent organization are active in interactions with local scientists (Helm/Mauroner
2007). Purely academic inventor teams are by nature cognitively and socially better
embedded into epistemic communities. Thus, it is not surprising that they seem to gain
the largest profits from distant collaborations. This at first comes into play from a cer-
tain threshold onwards (ca. 110km). This is reasonable since purely academic inventor
teams tend to collaborate more over shorter distances than mixed teams (Von
Proff/Dettmann 2013), but if distant inventors are involved, these come from another
university, which is usually not in the direct neighborhood.

8  We performed analogous analyzes for the "pioneering” category with very similar results.
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Figure 2: Predicted marginal effects of cross-institutional and purely academic
teams on the technological impulse at values of geographical distance
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5 Summary and conclusions

This paper aimed at analyzing how direct academic involvement in inventor teams af-
fects the impulse that inventions exert on technological paths and how distance in a
spatial as well as technological sense influences the outcome of inventive activities.
Our results firstly confirm the expected clear-cut picture that has been derived from the
literature review. Our citation-based indicator clearly reflects the different modes of
learning and capabilities in technological innovation of the three institutional domains:
SMEs, MNEs and universities. While SMEs are more likely to adapt to current techno-
logical trends, we find that MNEs manage a larger spectrum of activities, ranging from
the exploitation of existing knowledge to connecting this to future technological paths.
Inventions with an academic background are more likely to influence future technolo-
gies, while relying on a small stock of existing knowledge. We thus empirically observe
the expected division of labor in technological innovation.

Our second finding differentiates the role that academic backgrounds have in determin-
ing the influence of inventive activities on future technological paths. Our results sug-
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gest that inventions from cross-institutional backgrounds in mixed inventor teams pro-
vide the largest potential to contribute to new technological paths. This highlights and
adds empirical evidence to the importance of university-industry collaboration for put-
ting the innovative potential of science into force. Particularly the innovativeness of
SMEs is positively affected by collaborations with academic inventors. This indicates
the importance of spin-offs and small R&D-intensive firms as actors in knowledge
transfer from universities, especially for the valorization of radical inventions. Thus, our
results also add empirical evidence to the role of innovative SMEs as drivers for tech-
nological innovation. Overall, we can conclude - and confirm the simulation-based find-
ings by Ahrweiler et al. (2011) - that co-operating universities raise the knowledge and
competence levels among firms in technology generation. From a policy perspective,
this strengthens the arguments for improving and supporting university-industry interac-
tions as well as spin-off formation.

However, the effectiveness of such interventions will depend on how these interaction
patterns are implemented and managed (Perkmann/Walsh 2007). In this vein, the re-
sults at least question the importance of university patenting for technology transfer. In
Germany, the legal regime was changed from professor's privilege to institutional 1P
ownership in 2002. This was accompanied by several funding initiatives, following the
1980 US role model - the "Bayh-Dole Act" -, aiming at increasing the patenting and
exploitation activities of universities. Here our results indicate that increasing universi-
ties' filing activities should be considered with caution, since the largest share of purely
academic patents seems to lack connectivity to both future technological developments
as well as current technologies, at least in the short-term.

This gives further reason to concern that an increasing focus on commercialization may
induce researchers to shift resources towards disclosing and patenting of lower quality
inventions. However, we should keep in mind that our observation period as well as the
operationalization of our variables might play a role. Firstly, one should remember that
forward citations are counted within a time-window of four years. Thus, these inven-
tions might gain importance in the long-term. Secondly, evidence from the US shows
that the quality of inventions did decline after 1980 due to the entry of universities with
little patenting experience, not to a general decline in quality of inventions patented by
all universities (Mowery/Sampat 2004). This might imply that German universities
should improve their competencies in technology management, the patenting process
and their intellectual property portfolio. Another implication from a university and policy
perspective is that technology transfer offices and funding programs should take the
inter-organizational and inter-personal boundary-spanning networks between academ-
ics and firms into account and focus on supporting bottom-up-driven networking activi-
ties.
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The third main finding highlights the importance of geographical proximity for the output
generated by inventor teams. Our results contribute to the ongoing discussion on the
role of spatial proximity in that it matters not only for the formation of collaborations, but
also for the success of collaborative activities. Teamwork that is conducted under spa-
tial proximity is likely to produce a higher quality output in terms of technological im-
pulse. At the same time, tapping into distant knowledge sources is beneficial if it is ac-
companied by academic inventors. Thus, we provide new evidence by showing that the
effect of involving academics raises the spatial search scope of an inventor team and
increases the technological impulse that is emanating from its inventions. The findings
show that intra-corporate networks and communities of practice profit from localized
interaction in pursuing existing technological paths, but tapping in geographically dis-
tant knowledge is significantly enhanced by academic involvement. This highlights the
role of academic inventors as bridging agents and carriers of inter-regional knowledge
transfers. As members of epistemic communities, they are able to connect often local-
ly-oriented inventor teams to inter-regional knowledge streams and to facilitate access
to distant knowledge.
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Appendix: Robustness checks

We perform additional robustness checks to test if our results for academic patents and
SME filings compared to MNE filings remain robust over different specifications of the
dependent variables. All of the robustness checks are performed on the basis of the
model specification of the base model (M1) (Table 4).

As a first step towards testing the robustness of our model, we run models on the num-
ber of forward citations as well as on the number of backward citations in order to find
out if the differences between SME and MNE filings and academic patents we found in
our descriptive analyses hold when including the control variables as well as field- and
period specific effects in our models. It can be shown that the humber of forward cita-
tions is significantly lower for SME filings compared to MNE filings. As for the academic
patents, however, on average we find no significant differences between the numbers
of forward citations compared to MNEs. With regard to the backward citations however,
academic patents have a significantly lower coefficient than MNE filings, implying that
academic patents on average refer more seldom to previous patents than filings by
MNEs. As for the SME filings, we also find a negative coefficient, which is in line with
the results from our descriptive analyses.

In a second step, we replace the ratio of the number of forward citations to backward
citations by the difference between the two variables. This results in a continuous vari-
able that can be estimated via an OLS model. Although this variable is also not able to
differentiate between patents that have a low number of forward and a low number of
backward citations and a high number of forward and a high number of backward cita-
tions, it provides an alternative specification of our model. The coefficients show that
SME filings on average have a higher difference between forward and backward cita-
tion than MNE filings. Academic patents, however, show the largest difference by far
between forward and backward citations, which is consistent with the effects of our
original model specification.

Third, in order to control for the effect that patent applicants as well as patent examin-
ers might have the tendency to cite previous patents of the same applicant, which
might drive-up the number of citations especially for large applicants, we re-calculated
the ratio between forward and backward citations, yet excluded the number of self-
citations within the backward citations. Besides the fact that the coefficients of the main
explanatory variables become slightly smaller in size, they neither change signs nor
lose significance compared to our original specification. In order to control for the fact
that a given type of patent applicant might have the tendency to provide more citations
on its patent at the filing stage, which naturally would increase the number of backward
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citations, we finally excluded the number of citations provided by the applicant within
our calculation of the dependent variable and re-ran our model. Also in this specifica-
tion, the coefficients slightly change, however, they do not lose significance or change
signs.

Table 6: Robustness checks: Coefficients of the main explanatory variables for the
modified models

Academic
Dependent variable (dV) SME filing Patent Model
Ratio: forward citations/backward
citations (original specification) -0.0756** 0.1465*** Left-censored Tobit
Number of forward citations -0.139*** -0.002 Negative binomial
Number of backward citations -0.105*** -0.192%** Negative binomial
Difference: forward citations —
backward citations 0.484** 1.801*** OoLS
Ratio: forward citations/backward
citations (without self-citations) -0.0637* 0.1168*** Left-censored tobit
Ratio: forward citations/backward
citations (without applicant-citations) -0.1365*** 0.134*** Left-censored tobit

Source: EPO — PATSTAT, own calculations
Significance Level: **p<0.01, **p<0.05, *p<0.1, robust standard errors

Note: Only the coefficients for the relevant explanatory variables are shown. The full results of
the models can be consulted in the annex.MNE filing serves as a base outcome for the varia-
bles SME filing and academic patent.

In addition to the robustness checks on the ratio variable, we experimented with differ-
ent specifications of the categorical variable on technological impulse, i.e. we used the
75% quantile instead of the median for the differentiation of high and low numbers of
forward and backward citations, defined only "no forward citations” and "no backward
citations" as belonging to the "low" category and finally implemented a mix of "no for-
ward citations" and the median of backward citations for the definition of the "high" and
"low" number of citations. Except for the specification where "no backward citations"
and "no forward citations" were defined as forming the "low" category, which suffered
the problem of having only a low number of observations within two categories of the
dependent variable, the coefficients of the variables "academic patent" were compara-
ble in size and did not show changes in significance compared to the original specifica-
tion.

In sum, we conclude that our model seems to deliver robust results over several differ-
ent specifications of the dependent variable.
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