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Abstract
This paper deals with a system where batch arrivals wait in a station until a

server (a train) is available, at which moment it services all customers in wait-
ing. This is an example of a bulk server, which has many applications in public
transportation, telecommunications, computer resource allocation, and multi-
ple access telecommuncation networks, among others. We consider a subway
model and focus on a metro line serving a particular metro station. Denote the
planned inter-departure time of this line by θ. The metro station is served by
several other lines and passengers change trains at the station. Traveling times
of trains are assumed to be given by fixed times and an additional stochastic
noise. We perform a sensitivity analysis of the total delay of passengers wait-
ing for the “θ” line with respect to θ. We establish a smoothed perturbation
analysis (SPA), a measure–valued differentiation (MVD), and a score function
(SF) estimator. Numerical experiments are performed to compare the ensuing
estimators. It turns out that the SPA and MVD estimators are intrinsically
different and the model presented in this paper may serve as a counter–example
to the widespread belief that SPA and MVD yield similar estimators.

Keywords: sensitivity analysis, smoothed perturbation analysis, score func-
tion, measure–valued differentiation, bulk servers.
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1 Introduction

The current paper is a detailed extended version of the results in [12]. The
basic model that we will use in this paper is a transportation model suggested
by a subway problem. However the methodology introduced to calculate the
sensitivies with respect to frequencies is general and can be adapted to other
applications. For example in all-optical telecommunication systems, bursts are
created at the access networks and are sent to the core network. How to as-
semble the bursts in an optical burst switched network is still an open problem,
but conceivably one could propose to send the bursts by aggregating all the
packets that arrive over a given period of time requesting transmission. In such
schemes it would be essential to measure the sensitivity to changes in the fre-
quency of burst transmission, making the problem similar to the one under study
here. Systems with bulk services arise in a number of important applications. In
telecommunications, multiple access protocols (MAP) allocate a common server
to a number of sources, possibly with different service requirements. One such
scheme is similar to a computer sharing device called a “bus”, where the dif-
ferent sources waiting for service are visited in a route. When the server is at
a particular station, it serves all the packets or requests in waiting. In flexi-
ble manufacturing systems, automated vehicles also take and deliver parts to
different stations, yielding a similar model.

The analysis presented in this paper stems from a major research project on
the application of (on-line) control techniques to public transportation systems,
see [13, 15, 14]. Our model comes directly from [15]. Following the Montreal
subway system, the subway network operates without a fixed timetable and only
frequencies of trains are given at different day segments. Therefore the expected
train inter-departure times at the stations served by this line will be determined
by the “headway” at the initial station on the line (say, “trains depart every five
minutes”). At several major stations passengers can change trains running on
the lines of network. In [15], an analytical formula is obtained for the expected
waiting time of passengers that arrive at the given track according to a Poisson
process (as is customary to assume for those passengers arriving from outside).
Accordingly, in this paper we focus on the waiting time of all other passengers,
namely those in transfer from other lines in network. These passengers arrive in
bulks, and their inter-arrival times at the transfer track depend on the dynamics
of train departures at other lines. For such processes, there is no analytical
expression for the expected waiting time.

The main problem that we deal with in this paper is the following. At a
particular station, we consider a line the inter-departure times of which are
influenced by a parameter, say θ, and we call this line the “θ” line. The metro
station is served by several other lines and passengers change trains at the
station. The waiting time of a passenger for the “θ” line is the time that elapses
from the arrival of the passenger at the station until the next arrival of a “θ”
train. The performance indicator, denoted by L(θ), is the total accumulated
waiting time of passengers for the “θ” line over a fixed period of time, like a day
or the morning peak hours. We are interested in estimating the sensitivity of the
waiting time of passengers with respect to the headway θ. In order to facilitate
the on-line control for the “θ” line, it is necessary to estimate the sensitivity
of the accumulated waiting time with respect to θ. In [13] it was established
that the gradient (w.r.t. the headways) of the global perfomance function of
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the whole network can be reconstructed via local derivative estimation, which
lends the on-line control problem suitable for decentralised operation. In [15]
a decentralised stochastic approximation scheme is presented as a means for
adapting the subway frequencies to the changing and unpredictable passenger
demands. As shown there, the only derivatives that are required to control the
network using stochastic approximation are the local quantities of the form:

d

dθ
E[L(θ)]. (1)

This sensitivity represents the effect that small changes in the mean inter-
departure time of the “θ” line have on the overall expected accumulated waiting
time at the station of interest.

It is well known that if L(θ) is a.s. Lipschitz continuous in θ then the IPA
estimator (the stochastic derivative L′(θ)) is unbiased and often yields simple
and good derivative estimators. Unfortunately the performance L(θ) may have
discontinuities, as shown in Section 3.1. The main approaches to sensitivity
analysis that apply to the proposed problem are: smoothed perturbation analysis
(SPA), see [3, 2], the score function method (SF), see [8, 10], and measure–valued
differentiation (MVD), see [7, 4]. In order to identify a suitable sensitivity
estimator, we derive all three SPA, SF and a MVD estimators for the proposed
problem. A series of numerical experiments will be performed to investigate the
estimators.

Besides solving the problem on how to estimate the local derivatives required
for the decentralised adaptive control of a subway system, the contributions of
this paper are also of a theoretical nature. We provide an example where the
MVD estimator is not a particular implementation of smoothing, and it differs
considerably from the SPA estimator. In addition, we observed a pathological
behaviour of the SPA estimator, which we have identified in terms of the estima-
tion conditioned on rare events. The numerical instabilities caused by this can
be corrected, as we explain below, albeit at the price of a bias in the estimation.
While the SF estimator is easy to implement, we realised that it required many
months of observations before accurate estimates are obtained, which can hin-
der the tracking capabilities of the stochastic approximation operating in real
time. It is our development of the MVD code for the parallel computation of
the different “phantom” systems that permits computation of the derivatives
within reasonable times for adaptation.

The paper is organized as follows. Section 2 introduces the model. Section 3
addresses sensitivity analysis. In particular, the SPA estimator is presented in
Section 3.1, the SF estimator is established in Section 3.2 and Section 3.3 is
devoted to the MVD estimator. Numerical examples are given in Section 4.

2 The Metro Model

Consider the behaviour of the platform occupancy process of the “θ” line at a
particular transfer station, focusing only on the contribution from passengers
in transfer from other lines. A model for this process, called the “local” model,
was developed and tested in [14]. We summarize here the salient features of the
model without proofs. Let Θ = [a, b] ⊂ R, with 0 < a < b < ∞, “θ” trains
depart from the platform according to a renewal process Dθ = {Dθ(t) : t ≥ 0}

3



whose inter-jump times are i.i.d. with mean θ ∈ Θ. Denote the j-th inter-
departure time of trains by Yθ(j). We assume that the first “θ” train arrives at
time V (0) and the j-th train arrives at

Vθ(j) = V (0) +
j∑

i=1

Yθ(i) , j ≥ 1 .

The jump epochs of Dθ are thus given by V (0), Vθ(1), Vθ(2), . . . . The initial
epoch V (0) is independent of θ because the first train departure is not af-
fected by the targetted inter-departure time within a particular segment of day.
Suppose that a target inter-departure time of five minutes is requested by the
controller, θ = 5. This control starts effectively at 10:00 AM, but V (0) is the
epoch of departure of the last train before 10:00 AM. For simplicity, set the
initial time at zero. The results in [14] establish that Yθ(j) are i.i.d. and ap-
proximately distributed according to a Normal distribution with mean θ and
standard deviation θσ, denoted by Nθ,(θσ)2 , for given σ > 0, where we choose σ
small enough so that the probability of the event Yθ(j) < 0 is negligibly small
for θ ∈ Θ. More precisely, the probability that Yθ(j) is lower than zero is equal
to the probability that a standard normal random variable is lower than −1/σ.
For example, if σ ≤ 0.3, then the probability that Yθ(j) is smaller than zero is
0.0005.

Without loss of generality, fix one of the incoming sources of transfer pas-
sengers, that is, a line with a different headway (say µ), whose trains stop at
the given station. Passengers from this line that transfer to the “θ” line arrive
in groups: at epochs S(k) the k-th group of transfer passengers arrives at the
track, and the size of the group k is independent of Dθ(·). Denote the total
number of arrival epochs of groups of passengers up to time t by A(t) and the
interarrival times of groups of passengers by T (k), with T (k) = S(k)−S(k−1),
for k ≥ 1, and S(0) = 0, where we assume T (k) to constitute an i.i.d. sequence
(for details on the model refer to [15]). Finally, departing trains have “infinite”
capacity (that is, all passengers waiting in a station can and do enter the next
“θ” train ready for departure). The quantity of interest is the accumulated wait-
ing time of passengers in transfer at the given track in the metro station. The
quantity of interest is the accumulated waiting time of passengers in transfer at
the given track of the “θ” line in the subway station. In [15] it is shown that
the expected wait of the k-th group, given the quantities S(k), T (k) is given
by ρT (k)(Vθ(j) − S(k)), where j = Dθ(S(k)) + 1 is the index of the train that
the group k takes. The constant ρ is the aggregate mean number of transfer
passengers per unit time. A surrogate (filtered) expression for the waiting time
is therefore:

L(θ) = ρ

Dθ(T )∑
j=1

A(Vθ(j))∑
k=A(Vθ(j−1))+1

(Vθ(j) − S(k))T (k) , (2)

where the the sums vanish if the lower bound is larger than the upper bound.
The platform occupancy process Xθ(t) records the number of passengers

waiting at the platform at time t, as shown. It is completely described in terms
of the model above, and the individual waiting times can be evaluated from the
sample paths.
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Figure 1: The Platform Occupancy Process

3 Sensitivity Analysis

Because θ is a scaling parameter of Yθ(j), we can use the representation:

Yθ(j)
L= θ ξ(j), Vθ(j)

L=V (0) + θ

j∑
i=1

ξ(i) , (3)

where ξ(j) is normally distributed with mean 1 and variance σ2 (and indepen-
dent of θ), and the symbol L= means that the random variables have the same
distribution. From (3) follows that dVθ(j)/dθ = (Vθ(j)−V (0))/θ. If the function
L(θ) were Lipschitz continuous in θ with probability one, then the stochastic
derivative, known as the IPA estimator:

L(IPA)(θ) =
ρ

θ

Dθ(T )∑
j=1

A(Vθ(j))∑
k=A(Vθ(j−1))+1

(Vθ(j) − V (0))T (k) , (4)

would be unbiased [11]. However, L(θ) fails to be Lipschitz continuous and the
discontinuities of this functional are easily described: a negative infinitesimal
perturbation of θ may shift Vθ(j) so that a particular arrival k∗ may get into
the j-th “θ” train for the non-perturbed process and wait for “θ” train j + 1 in
the perturbed process. Thus the difference in contribution to the accumulated
waiting time will be of order larger than O(∆θ). It is these discontinuities in
the sample performance that prevent the application of IPA. In the presence of
discontinuities, the following approaches can be applied in principle: smoothed
perturbation analysis (SPA), the score function method (SF) and measure–valued
differentiation (MVD). In the following we derive the corresponding different
gradient estimators for our model.

3.1 SPA

This section presents the formulation of an SPA estimator for

d

dθ
E[ L(θ) |V (0), S(0) ]

(recall that V (0) is the time of the first departure of a train and S(0) is the first
passenger arrival epoch). Write E0 to indicate the conditional expectation given
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the initial values V (0) and S(0). The model for SPA uses common random
variables {ξ(j)} in (3) for all θ, so that

Vθ−∆θ(j) =
(

1 − ∆θ

θ

)
Vθ(j) +

∆θ

θ
V (0) . (5)

We say that the k-th arrival is a critical event if it satisfies

V(θ−∆θ)(Dθ(S(k)) + 1) < S(k) ≤ Vθ (Dθ(S(k)) + 1) , (6)

in words: if arrival k is a critical event, then transfer passengers arriving in
group k get into train j = Dθ(S(k)) + 1 at the given platform for the nominal
process at θ, whereas they miss train j in the perturbed process at θ − ∆θ and
will have to wait until later, as represented in Figure 2.

V  (j-1)

V      (j) V   (j)θ−∆θ θ

Y  (k)

S(k-1)

θ

θ

S(k)

Figure 2: Critical Event

Recall that {Yθ(k)} are assumed to be i.i.d. normal with density

φθ(x) � φθ,(θσ)2(x) =
1√

2πσ2θ2
e−

(x−θ)2

2θ2σ2 (7)

and denote the cumulative density function (c.d.f.) of Yθ(j) by Φθ.

Theorem 1 If

E

[
sup
θ∈Θ

Dθ(T )
]

< ∞ and E
[
A(T )

]
< ∞ ,

then the SPA estimator

L(SPA)(θ) = ρ

Dθ(T )∑
j=1

A(Vθ(j))∑
k=A(Vθ(j−1))+1

T (k)

×
(

Vθ(j) − V (0)
θ

− (S(k) − V (0))φθ(S(k) − Vθ(j − 1))
1 − Φθ(S(k) − Vθ(j − 1))

)
is unbiased for the desired derivative, that is,

E0[ L(SPA)(θ) ] =
d

dθ
E0[ L(θ)] .

Proof: The SPA estimator will be built using the limit of the finite differences:

E0

[
L(θ) − L(θ − ∆θ)

∆θ

]
, ∆θ �= 0 .
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Consider the filtration F(k) = σ(S(1), . . . , S(k); Vθ(1), . . . , Vθ(Dθ(S(k))) ) which
contains the history of the process up to arrival epoch S(k). Call Ω∆θ(k) ⊂
Ω, k = 1, 2, . . . , the event set where the k-th arrival is the first critical event of
the process, and call Ω∗(∆θ) = Ω\ ∪k Ω∆θ(k) the set of all trajectories where
no discontinuities occur. Then

E0

[
L(θ) − L(θ − ∆θ)

∆θ

]

= E0

[
E

[
L(θ) − L(θ − ∆θ)

∆θ

∣∣∣∣Ω∗(∆θ)
]

P(Ω∗(∆θ))
]

︸ ︷︷ ︸
[a]

+ E0


A(T )∑

k=1

E
[
L(θ) − L(θ − ∆)

∣∣∣Ω∆θ(k)


 P(Ω∆θ(k))

∆




︸ ︷︷ ︸
[b]

. (8)

In order to calculate the limit as ∆θ → 0 for expression [b], we calculate the
contribution from each of the critical events, conditioning on the history of the
process, that is, the limits of the form:

lim
∆θ→0

E

[
E
[
L(θ) − L(θ − ∆θ)

∣∣Ω∆θ(k),F(k)
] P(Ω∆θ(k)|F(k) )

∆θ

]
,

for each k. The above limit is evaluated in two steps, first calculation of the
critical rates:

pθ(k) = lim
∆θ→0

P(Ω∆θ(k)|F(k) )
∆θ

,

and then calculation of the limiting value of the difference process: L(θ)−L(θ−
∆θ), given the critical event.

Critical rates: We now calculate the probability of a critical event given the
history up to the k-th arrival. The critical event Ω∆θ(k) conditions on the fact
that the Dθ(S(k))-th train was the most recent departure. Let Y ∗

θ be the inter-
departure time Yθ(Dθ(S(k))) conditioned on the event that the departure of the
next train (that is train Dθ(S(k)) + 1) takes place after epoch S(k), that is, it
has the conditional distribution of Yθ conditioned on the event that Yθ is greater
than S(k)−Vθ(j), for j = Dθ(S(k)). Recall that Φθ denotes the c.d.f. of Yθ(k).
It holds that:

P(Ω∆θ(k) |F(k) )
(6)
= P

{
V(θ−∆θ)(Dθ(S(k)) + 1) < S(k) ≤ Vθ(Dθ(S(k)) + 1)

∣∣F(k)
}

(5)
= P

{(
1 − ∆θ

θ

)
(Vθ(j) + Y ∗

θ ) +
∆θ

θ
V (0) < S(k) ≤ Vθ(j) + Y ∗

θ |F(k)
}

=
P
{(

1 − ∆θ
θ

)
(Vθ(j) + Yθ) + ∆θ

θ V (0) < S(k) ≤ Vθ(j) + Yθ |F(k)
}

P{Yθ > S(k) − Vθ(j)} .

Observe that S(k) ≤ Vθ(j) + Yθ is equivalent to S(k) − Vθ(j) ≤ Yθ, and that(
1 − ∆θ

θ

)(
Vθ(j) + Yθ

)
+

∆θ

θ
V (0) < S(k)

7



is equivalent to

Yθ ≤
(

θ

θ − ∆θ

)(
S(k) − ∆θ

θ
V (0)

)
− Vθ(j) .

Hence,

P(Ω∆θ(k) |F(k) )

=
P
{

S(k) − Vθ(j) < Yθ ≤
(

θ
θ−∆θ

) (
S(k) − ∆θ

θ V (0)
)− Vθ(j)

∣∣Fk

}
1 − Φθ(S(k) − Vθ(j))

.

Use now the Taylor series expansion θ/(θ−∆θ) ≈ 1 + ∆θ/θ +O(∆θ2) together
with the fact that Yθ has a bounded density to obtain:

lim
∆θ→0

P(Ω∆θ(k)|F(k) )
∆θ

= lim
∆θ→0

Φθ(S(k) − Vθ(j)) − Φθ

(
S(k) − Vθ(j) + (S(k) − V (0))∆θ

θ

)
∆θ [1 − Φθ(S(k) − Vθ(j))]

+ O(∆θ)

=
(

S(k) − V (0)
θ

)
φθ(S(k) − Vθ(j))

1 − Φθ(S(k) − Vθ(j))
. (9)

The above result implies that

lim
∆θ→0

P(Ω∆θ(k)) = lim
∆θ→0

E
[
P(Ω∆θ(k)

∣∣F(k))
]

= 0 ,

for a proof use the fact that S(k) ≤ T a.s. in (9), together with Dominated Con-
vergence. Using that each term P(Ω∆θ(k)) is uniformly bounded and E[A(T )] <
∞, we obtain

lim
∆θ→0

P(Ω∗(∆θ)) = 1 − E


A(T )∑

k=1

lim
∆θ→0

P(Ω∆θ(k))


 = 1 .

In addition to that, if E
[
supθ∈Θ Dθ(T )

]
is finite, then the term [a] inside the

expectation E0 in equation (8) converges to the IPA derivative (4), L(IPA)(θ),
that is,

E0

[
L(IPA)(θ)

]
= lim

∆→0
[a] . (10)

Difference process: Given Ω∆θ(k) and F(k), all passengers in arrivals m < k
take the same train and the contribution to the difference process is

T (m) (Vθ(Dθ(S(m)) + 1) − S(m)) − T (m)(V(θ−∆θ)(Dθ(S(m)) + 1) − S(m)) ,

which is of order O(∆θ), because all passengers in arrivals m < k take the
same train, namely Dθ(S(m)) = Dθ−∆θ(S(m)) and the difference in their wait
is infinitesimal. Provided that the perturbation is small enough, the definition
of the critical event implies that passengers arriving in train k board train
Dθ(S(k)) + 1 in the nominal trajectory have to wait for train Dθ(S(k)) + 2 in
the perturbed path. Thus the contribution to ∆L is

ρ E0[T (k) [Vθ(Dθ(S(k)) + 1) − V(θ−∆θ)(Dθ(S(k)) + 2)] |Ω∆θ(k),F(k) ]
= −ρ θT (k) + O(∆θ) .
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For passengers in future trains k +m, m > 0, the contribution is again infinites-
imal, even if k + m happens to be a secondary critical event. By a secondary
critical event we mean that given Ω∆θ(k), the passengers arriving in incoming
trains k + l board the same outgoing train in both trajectories, for l < m, but
those arriving at time S(k+m) just missed train Dθ(S(k)+1) in the perturbed
trajectory. While the contribution to the expected wait of those passengers is
proportional to ρθT (k + m) (using the same calculation as before), it can be
shown that the probability of a secondary critical event given Ω∆θ(k) and F(k)
is O(∆θ). Hence, the contribution of a second critical event (whenever it may
occur) is zero. Applying an induction argument it follows that the contribution
of any sample path with more than one critical event to the derivative is zero
and thus

lim
∆θ→0

E0[L(θ) − L(θ − ∆θ) |Ω∆θ(k),F(k)] = −ρθ T (k) . (11)

Finalizing: From (9) and (11), it now follows that

lim
∆θ→0

E0




A(T )∑
k=1

E0[L(θ) − L(θ − ∆θ)|Ω∆θ(k),F(k) ]
P(Ω∆θ(k) |F(k) )

∆θ




= −ρE0




A(T )∑
k=1

T (k) (S(k) − V (0))
φθ(S(k) − Vθ(Dθ(S(k))

1 − Φθ(S(k) − Vθ(Dθ(S(k))))




for the SPA contribution of the derivative estimator. Following (8), combining
the above SPA contribution with the IPA contribution (10) completes proof.

Qed

By Theorem 1, a sufficient condition for unbiasedness of the SPA estimator
is E0 [supθ∈Θ Dθ(T ) ] < ∞ and E0[A(T )] < ∞, which is satisfied for the metro
model.

3.2 Score Function

The score function estimator is presented in the following theorem.

Theorem 2 If

E

[
sup
θ∈Θ

(Dθ(T ))2
]

< ∞ ,

then the score function estimator

L(SF) =


 1

θ3σ2

Dθ(T )+1∑
i=1

(
(Yθ(i))2 − θ Yθ(i)

)
− Dθ(T ) + 1

θ


 L(θ) (12)

is unbiased for the derivative (1).

Proof: Within this proof only, we shall adopt the more compact notation
(Y1, . . . , Yn), dropping the dependency in θ. The proof is performed in two
stages. First, we use the fact that for any adapted stopping time τ the event

9



{τ = n} can be determined with the knowledge of the history up to time n,
i.e. (Y1, . . . , Yn). The following change of measure holds:

E
[
h(τ ; Y1, . . . , Yτ )

]
= E

[
Lθ(τ̃ ; Ỹ1, . . . , Ỹτ )h(τ̃ ; Ỹ1, . . . , Ỹτ )

]
(13)

for any real valued function h, where Ỹi are i.i.d. normal N (1, σ2) and the
Radon–Nikodym derivative Lθ is defined by:

Lθ(n; Ỹ1, . . . , Ỹn) =
n∏

i=1

φθ(Ỹi)
φ1(Ỹi)

.

Notice that the density φ1(·) is simply the normal density with mean 1 and vari-
ance σ2, see (7). This result follows from the Monotone Convergence Theorem.
Indeed, it holds that

E
[
h(τ ; Y1, . . . , Yτ )

]
= E

[
lim

n→∞

n∑
i=1

h(τ ; Y1, . . . , Yn)1{τ=n}

]

= lim
n→∞ E

[
n∑

i=1

h(τ ; Y1, . . . , Yn)1{τ=n}

]

= lim
n→∞

n∑
i=1

E
[
h(n; Ỹ1, . . . , Ỹn)1{τ̃=n}Lθ(n; Ỹ1, . . . , Ỹn)

]
= E[h(τ̃ ; Ỹ1, . . . Ỹτ̃ )Lθ(τ̃ ; Ỹ1, . . . , Ỹτ̃ )],

which establishes (13).
The proof of the theorem is completed by noticing that under the change of

measure the stopping time τ̃ as well as the sample performance h are indepen-
dent of θ. Therefore, the random variable

h(τ̃ ; Ỹ1, . . . Ỹτ̃ )Lθ(τ̃ ; Ỹ1, . . . , Ỹτ̃ )

is a.s. Lipschitz continuous in θ, which follows from the assumption that θ ∈
Θ = [a, b], 0 < a < b < ∞, implying that the normal densities φθ(·) have
a uniformly bounded Lipschitz constant. Using Dominated Convergence to
interchange derivative and expectation, one obtains:

d

dθ
E[h(τ̃ ; Ỹ1, . . . Ỹτ )Lθ(τ̃ ; Ỹ1, . . . , Ỹτ̃ )]

= E

[
h(τ̃ ; Ỹ1, . . . , Ỹτ̃ )

d

dθ
Lθ(Ỹ1, . . . , Ỹτ̃ )

]

= E


h(τ̃ ; Ỹ1, . . . , Ỹτ̃ )

(
d

dθ

τ̃∏
i=1

φθ(Ỹi)

)(
τ̃∏

i=1

φ1(Ỹi)

)−1

 .

Notice that

d

dθ

τ̃∏
i=1

φθ(Ỹi) =

(
d

dθ
ln

τ̃∏
i=1

φθ(Ỹi)

)
τ̃∏

i=1

φθ(Ỹi)
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and applying the same kind of change of measure as in the first part of the proof
yields

E


h(τ̃ ; Ỹ1, . . . , Ỹτ̃ )

(
d

dθ

τ̃∏
i=1

φθ(Ỹi)

)(
τ̃∏

i=1

φ1(Ỹi)

)−1



= E

[
h(τ, Y1, . . . , Yτ )

(
d

dθ
ln

τ∏
i=1

φθ(Yi)

)]

= E

[
h(Yθ(1), . . . Yθ(τ))

(
1

σ2θ3

τ∑
i=1

[Yθ(i)2 − θYθ(i)] − τ

θ

)]
,

where we have used the fact that d
dθ (ln φθ(x)) = (x2 − θx)/σ2θ3 − 1/θ, which

completes the proof of the claim, identifying τ = Dθ(T ) + 1 (notice that Dθ(T )
is not a stopping time because it cannot be determined from the observation of
only (Y1, . . . , YDθ(T ))).

Qed

By Theorem 2, a sufficient condition for unbiasedness of the estimator is
that

E0

[
sup
θ∈Θ

(Dθ(T ))2
]

< ∞ .

For the metro model the passenger arrival process is obtained via a convolution
of fluctuations in the travel time of trains and can be modeled as a renewal
process, with a renewal time distribution possessing a finite moment generating
function. Because the departure process is also a renewal processes with a.s finite
second moment, this condition is satisfied.

3.3 MVD

We now turn to the MVD estimator. In order to obtain a MVD estimator, the
metro model has to be described by a (general state-space) Markov chain. The
resulting estimator is then obtained from differentiating the Markov kernel. In
the following, we describe the Markov chain model for the metro line and then
state the resulting estimator.

Two events are possible: the departure of a “θ” train and the arrival of
(groups of) passengers. Let τn denote the time of the n-th occurrence of an
event, with τ0 = 0. Denote the residual time until the next arrival of a group of
passengers just after τn by RA(n) and the residual time until the next departure
of a “θ” train by RD(n). For example, RA(0) > RD(0) indicates that the
first event is a departure of a “θ” train, whereas RA(0) < RD(0) indicates
that the first event is constituted by the arrival of passengers. The number
of passenger arrivals that have taken place since the last departure of a “θ”
train is denoted by Xθ(n). We describe the system through the Markov chain
Zθ(n) = (Xθ(n), RA

θ (n), RD
θ (n)), n ≥ 0, and denote its Markov kernel by Pθ.

Remark: {Xθ(n)} is the embedded jump chain of the platform occupancy pro-
cess {Xθ(t)} depicted in Figure 1. In particular, {Xθ(n)} is a generalized Semi-
Markov chain (and {Xθ(t)} the corresponding generalized Semi-Markov process)
and {Zθ(n)} is the associated Markov chain, see, for example, [16].
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The state space of Zθ(n) is Z = N × [0, T ]2 and we equip Z with its Borel
field. We denote the total number of arrivals of passengers and departures of
“θ” trains in the interval [0, t] by Nθ(t) � Dθ(t) + A(t), for t ≥ 0. Note that
the time between the n–th and (n + 1)st event is given by min(RA

θ (n), RD
θ (n)).

Setting

l(x, rA, rD) = xmin(rA, rD) , (x, rA, rD) ∈ Z ,

the accumulated “ersatz” waiting time of (2) reads

L̂(θ) =
Nθ(T )∑
n=1

ρ l(Zθ(n)) ,

with L̂(θ) = L(θ) a.s.
For Zθ(n) = z = (x, rA, rD) ∈ Z we distinguish between two cases. If

rD > rA, then next event will be the arrival of a group of passengers. In this
case the state dynamic is independent of θ, which yields

rD > rA =⇒ d

dθ
E[ h(Zθ(n + 1)) |Zθ(n) = z = (x, rA, rD) ] = 0 ,

for any measurable bounded function h from Z to R. On the other hand, if
rA ≤ rD, then the transition of Zn depends on θ. Recall that the density of
the inter–departure time of “θ trains is denoted by φθ := φθ,(θσ)2 , see (7) for a
formal definition. Straightforward calculation yields

d

dθ
E[ h(Zθ(n + 1)) |Zθ(n) = z ]

=
d

dθ

∫ ∞

0

E[ h(Zθ(n + 1)) |Zθ(n) = z, RD
θ (n + 1) = y ] φθ(y) dy

=
∫ ∞

0

E[ h(Zθ(n + 1)) |Zθ(n) = z, RD
θ (n + 1) = y ]

d

dθ
φθ(y) dy .

As shown in the Appendix, the derivative of φθ can be written as scaled differ-
ence between two densities, denoted by φ+

θ and φ−
θ , respectively, in formula:

d

dθ
φθ(x) = cθ

(
φ+

θ − φ−
θ

)
, (14)

where

cθ =
1 + σ

√
2π

θσ
√

2π
,

see the Appendix for the definition of φ+
θ and φ−

θ . Inserting (14) into the above
expression for the derivative of E[ h(Zθ(n + 1)) |Zθ(n) = z ] yields

d

dθ
E[ h(Zθ(n + 1)) |Zθ(n) = z = (x, rA, rD) ]

= 1{rD≤rA} cθ

(∫ ∞

0

E[ h(Zθ(n + 1)) |Zθ(n) = z, RD
θ (n + 1) = y ]φ+

θ (y) dy

−
∫ ∞

0

E[ h(Zθ(n + 1)) |Zθ(n) = z, RD
θ (n + 1) = y ]φ−

θ (y) dy

)
.

12



In words, when the transition of Zθ(n) is triggered by the departure of a train,
the derivative of E[h(Zn+1) |Zn = z, RD

θ (n+1) = y] with respect to θ is obtained
as the difference of two scenarios. For the “+” scenario, the new inter-departure
time of the train is, with probability

pµ =
1

1 + σ
√

2π
,

equal to the constant θ plus an additional stochastic noise that follows a Weibull-
(2, (0.5(θσ)−2)–distribution and, with probability 1−pµ the new inter-departure
time is governed by a Maxwell–(θ, (θσ)2)–distribution. For the “−” scenario,
the new inter-departure time equals, with probability pµ, the constant θ minus
an additional stochastic noise that follows a Weibull-(2, 0.5(θσ)−2)–distribution
and, with probability 1 − pµ the new travel time is governed by the Normal–
(θ, (θσ)2)–distribution.

Let P+
θ denote the transition kernel describing the “+” scenario and let P−

θ

describe the “−” scenario. Recall that he transition dynamic is independent of
θ whenever the transition is triggered by the arrival of a (group of) passengers;
more formally, for z = (x, rA, rD) ∈ Z, it holds that

rA < rD =⇒ Pθ
+(·; z) = Pθ

−(·; z) = Pθ(·; z) .

With this notation, we can state our above result in concise way by writing

d

dθ
Pθ = cθ

(
Pθ

+ − P−
θ

)
.

Such a representation is called a measure–valued derivative in [4]. More pre-
cisely, the above line of argument is independent of the particular performance
function h and thus holds for any bounded measurable mapping, and to in-
dicate the range of performance functions the above derivative representation
applies to, we call it a L1(Z)–derivative, where L1(Z) denote the set of bounded
measurable mappings from Z to R.

For n ≥ 1, let Z+
θ (n; j) denote a Markov chain with transition kernel Pθ

expect for the transition from the (j−1)st to the j–th state. For this particular
transition, the kernel is P+

θ . In the same vein, let Z−
θ (n; j) denote a Markov

chain with transition kernel Pθ expect for the transition from the (j − 1)st to
the j–th state and for this particular transition let the kernel be equal to P−

θ .
For the Markov chain Z+

θ (n; p) (resp. Z−
θ (n; p)) we observe D+

θ (T ; p) (resp.
D−

θ (T ; p)) departures of “θ” trains in [0, T ] and we denote their departure times
by V +

θ (j; p) (resp. V −
θ (j; p)). We define the MVD estimator as follows

L(MVD)(θ) = ρ cθ

Dθ(T )∑
p=1


D+

θ (T ;p)∑
j=1

A(V +
θ (j;p))∑

k=A(V +
θ (j−1;p))+1

(V +
θ (j; p) − S(k))T (k)

−
D−

θ
(T ;j)∑

n=1

A(V −
θ

(j;p))∑
k=A(V −

θ (j−1;p))+1

(V −
θ (j; p) − S(k))T (k)


 .

In words, L(MVD)(θ) is the difference between the performance of the “+” ver-
sion and that of the “−” version re–scaled by (1 + σ

√
2π)/(θσ

√
2π).
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Theorem 3 If

E

[(
sup
θ∈Θ

Nθ(2T )
)3
]

< ∞ ,

then

E0

[
L(MVD)(θ)

]
=

d

dθ
E0[L(θ)] .

Proof: We give a sketch of the proof. The key ingredient of the proof is to
show that E0

[
L(MVD)(θ)

]
is finite. To see this, observe that the “+” and “−”

versions are obtained by changing one inter-departure time. The most impact
this can have on the number of events is that it reduces an inter-departure time
to one that is very small (≈ 0). However, this will cause a shift of at most
T time units to the left in the departure process of “θ” trains and thus the
number of departures for the perturbed versions is bounded by Dθ(2T ) and it
holds that Dθ(2T ) ≤ Nθ(2T ). Furthermore, the total number of arrivals of pas-
sengers between departures of “θ” is bounded from above by Nθ(T ). It holds
that Nθ(T ) < Nθ(2T ) and, using standard results from [4, 5], it follows that
the intergrability of (supθ∈Θ Nθ(2T ))3 implies finiteness of E0

[
L(MVD)(θ)

]
(and

thus unbiasedness of the estimator).

Qed

By Theorem 3, a sufficient condition for unbiasedness of the estimator is
that E0

[
supθ∈Θ(Nθ(2T ))3

]
< ∞. This condition is the same as in Theorem 2

and for reasons put forward in the preceding section the condition is satisfied
for the metro model.

4 Numerical Examples

In this section we present the numerical results obtained for simulations with
D = 15 trains. In all our numerical examples below, θ = 4.0 and σ = 0.1. The
passenger bulk arrivals to the “θ” line originate from another line in the metro
system (say the “µ”-line) and transfer at the particular station under study
towards the chosen platform. Let q represent the number of stations from the
one under study where the actual station is located along the “µ” line. The k-th
inter-arrival T (k) at the chosen track under study is therefore obtained from the
time between the arrival (at the given transfer station) of “µ”-trains k − 1 and
k. Let {δl(k)} be sequence of zero mean random variables. We model by µδ0

a zero-mean perturbation in the first station where the k-th “µ”-train starts its
sojourn, and the fluctuations µδi(k) represent small perturbations in travel and
passenger boarding and walking times of the k-th “µ”-train at the i-th track
along its path (which is of length q). For details please refer to [15].

In all our numerical examples below, µ = 7.3, q = 4 and {δl(k)} are i.i.d.
uniformly distributed on (−0.1, 0.1). The passenger bulk arrival process is char-
acterized by the inter-arrival times generated using T (k) = µ + µ∆(k), where:

∆(k) = δ0(k) +
9∑

i=1

(δi(k) − δi(k − 1)) .
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An experiment with finite differences (which required 107 simulated days)
gave an estimate of

E[L(θ)] = 111.53± 0.016

and
d

dθ
E[L(θ)] = 54.59 ± 2.23

We will use these values as a benchmark for comparison1.

4.1 The SPA Estimator

The SPA estimator L(SPA) of Section 3.1contains the term:

φθ(S(k) − Vθ(j − 1))
1 − Φθ(S(k) − Vθ(j − 1))

,

which is the hazard rate function evaluated at the point S(k) − Vθ(j − 1): the
elapsed time between departure of a train and arrival of a passenger group. If
1 − Φθ(x) is small, then the above fraction can cause a numerical instability in
the SPA estimator. Hence, if the critical event is a rare event, then the SPA
estimator runs into numerical difficulties. For distributions with decreasing
hazard rate, however, if 1 − Φθ(x) ≈ 0 then φθ(x)/(1 − Φθ(x)) ≈ 0 and we
therefore may replace the critical rate by

1{1−Φθ(S(k)−Vθ(j−1))>ε}
φθ(S(k) − Vθ(j − 1))

1 − Φθ(S(k) − Vθ(j − 1))
,

where ε > 0 becomes a design parameter of the estimator. Denote the resulting
SPA estimator by L(SPA)ε

(θ) and notice that L(SPA)ε
(θ) is biased. We performed

a series of experiments to illustrate the effect of the choice of ε on the estimator.
The results in Table 1 were all obtained with N = 104 simulated days.

ε L(SPA)ε

0.001 2.293± 10.56
0.05 25.251± 9.82
0.08 39.223± 9.50
0.01 5.645± 10.39
0.1 51.079± 9.20
0.12 60.935± 8.91
0.15 72.509± 8.68

Table 1: SPA Etimation

4.2 The SF Estimator

The SF estimator L(SF) can be implemented straightforwardly and no numerical
instabilities arise. Table 2 shows the results of several experiments with different
sample sizes in terms of the simulated days N .

1For σ = 0.1 the probability of Yθ(k) ≤ 0 equals 0.7 × 10−23.
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N L(SF)

10000 47.879± 22.0028
50000 61.347± 9.8675
100000 55.425± 6.9826

Table 2: SF Estimation

4.3 The MVD Estimator

The construction of L(MVD) in Section 3.3 requires generation of two phantom
processes (V ±(j; p), j = 1, . . . , D±(T ; p)), for each term p in the sum. There
are several ways to implement the MVD estimator, according to the choice of
random variables with the required distributions. In the present work we have
used common random numbers (crn) for the passenger arrival sequence S(k) for
all the phantom processes. The plus and minus processes are calculated using
the same sequence of (observed) passenger arrivals S(k) and the train departure
processes defined by:

V ±
θ (j; p) =




Vθ(j) j < p

Vθ(p − 1) + Y ±(p) j = p

Vθ(p − 1) + Y ±(p) +
∑j

i=p+1 Yθ(i) j > p

,

where the phantom inter-departure variables Y ±(p) are calculated as follows.
Let (Up; p = 1, . . . , Dθ(T )) be a sequence of i.i.d. uniform variates, (Zθ(p); p =
1, . . . , Dθ(T )) a sequence of i.i.d. Weibull(2, 0.5(θσ)−2), and (Mθ(p); p = 1, . . . , Dθ(T ))
a sequence of i.i.d. double Maxwell with parameters (θ, (θσ)2) ( refer to the
Appendix for the algorithms necessary for the generation of these random vari-
ables). These sequences are also mutually independent. When a train p is sched-
uled for departure in the main simulation, the code generates Yθ(p) L=N (θ, (θσ)2),
and the p-th phantom processes are started by setting:

Y +(p) =

{
θ + Zθ(p) Up ≤ pµ

Mθ(p) otherwise
, (15)

Y −(p) =

{
θ − Zθ(p) Up ≤ pµ

Yθ(p) otherwise
. (16)

Remark: For our model we have chosen the distribution of the inter–departure
times such that the probability of observing a negative inter–departure time is
negligible. The MVD estimator however introduces new distributions for the
inter–departure times. For example, for the “−” scenario, the inter–departure
time may be equal to θ − Zθ(p), where Zθ(p) follows a Weibull W(2,0.5(θσ)−2)

distribution. Hence, P ( θ − Zθ(p) ≤ 0 ) = W(2,0.5(θσ)−2)(θ). For the numerical
values in our example, we obtain P ( 4.0 − Y −(p) ≤ 0 ) = W(2,3.125)(4.0) ≤
2.0 × 10−21. For the Maxwell variable we obtain P (Mθ(p) ≤ 0) ≤ 1.0 × 10−20.

4.4 Randomized MVD

As explained in the Appendix, sampling from a Maxwell distribution can be
as much as four times as expensive as sampling from the Weibull distribution.
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A biased version of the MVD estimator uses only the Weibull and can be jus-
tified under our assumption that σ is relatively small. Indeed, the weight of
the sensitivity with respect to the mean is dominant, i.e. pµ ≈ 1, and the sen-
sitivity with respect to the standard deviation can be neglected. Disregarding
the contribution of the partial derivative with respect to the standard deviation
simplifies the implementation of the estimator and decreases the variance. In-
deed if σ ≈ 0, pµ ≈ 1 and most of the time only the Weibull scenario will be
chosen for the phantom trains. In our case σ = 0.1 (and pµ = 0.79957).

The formula for the estimator L(MVD) requires to add up D terms (con-
ditioned on having D departures), each corresponding to a difference process
where one inter-departure time has been phantomized, creating the plus and
minus phantom processes. One implementation of the method would store all
the arrival epochs S(k), as well as the train departure times Vθ(j) for the whole
day. Next, for each p = 1, . . . , D a simulation is executed reading all the rele-
vant quantities from memory and generating only the required phantom values
Y ±(p). While this is straightforward, when simulating the dynamics of 15 trains
as we did, the program required excessive CPU time because 30 similar scenarios
were recreated in series for each simulated day.

To verify the behaviour of the estimation and its approximation using pµ = 1,
we used the so-called Randomized MVD [1]. Instead of adding up all the contri-
butions, the method first chooses one index p uniformly amongst the D possible
trains. Only the term for this random index is evaluated, and the result is mul-
tiplied by D. This is a common implementation when dealing with MVD esti-
mators, and its validity stems from the fact that, E[

∑D
j=1 W (j)] = DE[W (p)],

where p is a random index chosen uniformly in {1, . . . , D} and {W (k)} any
sequence of integrable random variables. Table 3 shows the results of the esti-
mation using the randomized version of the MVD estimation method.

Weibull Weibull / Maxwell
N L(MVD) L(MVD)

5000 55.50± 10.34 49.51± 12.88
10000 59.89± 7.31 52.37± 8.98
50000 58.26± 3.28 54.26± 4.03

Table 3: Randomized MVD Estimation

4.5 Averaged MVD

The MVD estimator is built by calculating the difference between the waiting
times (or any other performance of interest) in the “+” and the “−” versions
of the process, which differ only in one train inter-departure time. Although
seemingly two simulations for each term p in L(MVD) are required in parallel,
the phantom methodology can be used to integrate the difference process and
calculate the estimator directly using only one sample path, without the need
for storing information or performing off-line simulations. We now describe in
more detail the algorithm.

Fix an index p and consider the plus and minus p-th departure processes
V ±

θ (j; p). For ease of notation, we will drop the dependency on θ as well as the
explicit dependency on the chosen index p, whenever it is redundant. Each pas-
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senger group k = 1, . . . , A(T ) will contribute to the difference of the processes
an amount:

∆Wk(p) = ρ Tk(V +(κ+
k (p); p) − V −(κ−

k (p); p)1{p>Dθ(Sk)},

where κ±
k (p) is the index of the train in the plus (or minus) p-process that

passenger group k takes, that is:

κ±
k (p) = min(j ≥ p : V ±(k; p) ≥ Sk) .

The indicator 1{p>Dθ(Sk)} considers only the arrivals after the perturbation
occurs. For each train p = 1, . . . , Dθ(T ) at most two random variables are
generated to define ∆V ±(p) = Vp − V ±

p (p), and notice that ∆V ±(p) can be
either positive or negative, regardless of whether it is the “+” or the “−” p
process.

In our simulations, once we have evaluated the process up to departure
of train Vθ(j), we generate first Yθ(j + 1), and next we generate all the ar-
rivals within the period (Vθ(j), Vθ(j = 1)], that is: S(k), for A(Vθ(j − 1) <
k ≤ A(Vθ(j)). Call Fj the history generated by all the available information:
(Vθ(1), . . . , Vθ(j); S(k); k ≤ A(Vθ(j)). The goal is to write the MVD estima-
tor in terms of an adapted process, which means that we can write the code
to establish a pathwise estimator that only needs to simulate (or observe) the
nominal process to calculate the derivative. To do so, we introduce the concept
of stochastic domination for this model. Because of the use of crn’s, the ini-
tial shift ∆±(p) = V ±(p; p) − Vθ(p) will carry over all other future departures:
∆±(p) = V ±(j; p) − Vθ(j); j ≥ p.

Definition 1 A phantom process {V ±(j; p)} is a dominating process if ∆±(p) >
0 (equivalently if Y ±(p) > Yθ(p)). Otherwise it is called a dominated process.

For all the dominating processes the corresponding index κ±
k (p) can be easily

computed given Fj , for al passenger groups that take train j in the nominal
process, that is, Vθ(j − 1) ≤ S(k) < Vθ(j). Indeed for a dominating process
∆±(p) > 0 so that for all these passengers, κ±

k (p) ≤ j w.p.1, as depicted in
Figure 3.

V  (j-1)θ
 V   (j)θ

 V  (j+1)θ

S(k)S(k-1) S(k+1)

∆

Figure 3: Dominating process

To search for the appropriate index requires simply to keep the index κk(p),
and perform the following pseudo-code (we have omitted the label of whether
it is a plus or a minus process):

18



1. κk−1[p] is known, p ≤ j

2. Generate Vθ(j + 1)

3. At arrival epoch S(k) find the index of the phantom trains:

4. For all p ≤ j (all phantoms created so far):

k = κk−1[p],

WHILE (Vθ(k) + ∆[p] < S(k)) DO

k := k + 1

κk[p] = k

• Add contribution to difference process

5. Initialise κk[j + 1] = j + 1

The contribution of all the phantom processes that affect each of these passenger
groups, that is, in the interval [Vj−1, Vj) we add the contribution:

j∑
p=1

A(Vθ(j))∑
k=A(Vθ(j−1))+1

Tk(±V ±(κ±
k (p); p))1{∆±(p)>0}.

For a dominated process a bit more bookkeeping is necessary in the pro-
gram, because knowing Fj is not enough to know what the contribution will be
regarding any passenger group S(k) ∈ (Vθ(j − 1), Vθ(j)] because it may be that
S(k) > V ±(j; p) = Vθ(j)+∆±(p). To evaluate κ±

k (p) we look for the list of past
passenger groups that take the j-th train in some phantom process p:

lj = {k : ∃p ≤ j such that ∆±(p) < 0 and Vθ(j − 1) < S(k) + ∆±(p) ≤ Vθ(j)},
which naturally may contain passenger groups in the past, for which S(k) <
Vθ(j − 1). Because all these passenger groups satisfy j = κ±

k (p), the corre-
sponding contribution to the MVD estimator is:∑

k∈lj

∑
p : Vθ(j−1)<S(k)+∆±(p)≤Vθ(j)

Tk(±V ±(j; p))1{∆±(p)>0}.

In our computer program we have chosen to optimize the list updating struc-
tures in order to save both memory and computing time. A final correction must
be considered: at the end of the day all passenger groups that arrived after the
last train should be allowed to leave the metro. It may be necessary to generate
the last trains for the dominated processes or force the last train to empty the
station at the closing time T . On the other hand, a dominating process may
have spanned the horizon T before train Dθ(T ) so a corresponding correction
must be included in the program. Table 4 shows the results of the program
with all the contribution of the phantom systems using the Maxwell/Weibull
mixture distribution. changed:

L(MVD)Comparing with the SF estimator, similar precision is obtained here 20 times
faster. The improvement in variance reduction compared to the randomized
estimation is not very dramatic, however, and we are currently studying methods
for variance reduction that will make it possible to update the subway system
as frequently as every month.
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N L(MVD)

5000 58.722± 5.9205
10000 58.277± 4.1704
50000 56.671± 1.8858

Table 4: Averaged MVD Estimation

4.6 Overview on Results

Based on the numerical experiments, we summarize our results in Table 5.

Table 5: Overview on Numerical Experiments

Numerical Stability Low Variance Weak Conditions Easy Implementation
SPA - + + -
SF + - - +

MVD + + - -

5 Conclusion

We have derived an SPA, SF and an MVD estimator for a problem in public
transportation. For our model the SPA and MVD sensitivity estimators turn
out to be intrinsically different and our analysis may serve as a counter-example
to the folk belief that SPA and measure-valued differentiation yield in principle
equivalent estimators. Efficient implementations of the SPA and MVD estima-
tors suffer from the problem of biasedness, whereas the SF estimator can be
implemented without difficulty in its unbiased form. When it comes to sample
variance, the MVD estimator outperforms the others. In addition to that it
turned out that the MVD analysis provided more structural insight.
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Appendix

Sampling the Distributions

For the MVD estiamtor it is necessary to generate variables from the Weibull(2, 1/2θσ)
and from a double-Maxwell(θ, σθ). The Weibull–(α, β)–distribution is generated
using the inverse function method (see [9]). The density is

wα,β(x) = αβxα−1e−βxα

,
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so, for α = 2 and β = 1/(2θσ), if U is a uniform variate, then

Zθ =
√
−2θσ ln(1 − U) (17)

has the required distribution. For the double Maxwell distribution with param-
eters (µ, s), it is enough to devise an algorithm to generate a standard variable
X (zero mean and unit variance), because sX +µ has the required distribution.
For the case µ = 0, s = 1, we use first a composition argument: the distribution
is symmetric around zero, so it is enough to be able to generate X conditioned
on X ≥ 0, for which the density is:

fpos
0,1 (x) =

2√
2π

x2 e−x2/2.

Generation of this random variable can now be performed with the accep-
tance/rejection test (see [9] for example), using a Weibull(2, 1/4), whose density
is w2,1/4(y) = 1

2y e−y2/4, so that the ratio of the densities is uniformly bounded:

c = max
y∈R

(fpos(y)/w2,1/4(y)) = 4/
√

eπ = 1.368793 ,

which gives an acceptance probability of 73%. The test function is:

R(y) =
fpos(y)

w2,1/4(y)

√
eπ

4
=
√

e/2 y e−y2/4 .

We generate the Weibull as we did in (17): let U be a uniform variate, and set
Y =

√−4 ln(1 − U). The A/R test then can be simplified by evaluating the
algebra: R(Y ) =

√
e/2Y (1 − U). The pseudo-code is as follows:

1. DO

U1 = Rand, set Y =
√

4 ln(U1)

U2 = Rand, independent of U1

WHILE (U2 >
√

e/2Y U1)

2. U3 = Rand

3. If U3 < 0.5 set X = µ + sY , otherwise X = µ − sY .

Figure 4 shows the Maxwell density against the empirical historgram using
our code. To create the histogram we divided the interval (−4.0, 4.0) into 41
subintervals and pereformed 105 calls to the generator.

Derivation of MVD Formulas

Let Nµ,s2 be a Normal distribution with mean µ and variance s, with s2 > 0.
Denote the density of Nµ,s2 by

φµ,s2 =
1

s
√

2π
e−

1
2 ( x−µ

s )2
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Figure 4: Generation of the double Maxwell(0, 1) distribution

Furthermore, denote by

mµ,s2(x) =
1

s3
√

2π
(x − µ)2e−

1
2 ( x−µ

s )2

the density of a double-sided Maxwell distribution with mean µ and shape pa-
rameter s, and denote the corresponding distribution by Mµ,s2 . Moreover, recall
that

wα,β(x) = αβxα−1e−βxα

denotes the density of a Weibull distribution with parameter α and β, and
denote the distribution function by Wα,β. If Y is distributed according to
Weibull–(α, β)–distribution, then we denote the distribution of the random vari-
able Y + δ by W(+,δ)

α,β and that of the random variable δ − Y by W(−,δ)
α,β . The

corresponding densities are denoted by w(+,δ)
α,β and w(−,δ)

α,β , respectively. It is
well known that

d

dµ
φµ,s2(x) =

1
s
√

2π

(
w(+,µ)

2,(2s2)−1(x) − w(−,µ)

2,(2s2)−1(x)
)

and

d

ds
φµ,s2 (x) =

1
s

(
mµ,s2(x) − φµ,s2(x)

)
,

see [7, 6]. Applying the chain rule of calculus therefore yields

d

dθ
φθ,(θσ)2(x) =

1
θσ

√
2π

(
w(+,θ)

2,(2θ2σ2)−1(x) − w(−,θ)
2,(2θ2σ2)−1(x)

)
+ σ

1
θσ

(
mθ,(θσ)2(x) − φθ,(θσ)2(x)

)
.

Let

cθ =
1

θσ
√

2π
+

1
θ

=
1 + σ

√
2π

θσ
√

2π
,
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and set

pµ =
1
cθ

1
θσ

√
2π

=
1

1 + σ
√

2π

ps =
1

cθ θ
=

σ
√

2π

1 + σ
√

2π
,

then

d

dθ
φθ,(θσ)2(x) = cθ

(
pµ
(
w(+,θ)

2,(2θ2σ2)−1(x) − w(−,θ)
2,(θ2σ2)−1(x)

)
+ ps

(
mθ,(θσ)2(x) − φθ,(θσ)2(x)

))
.

In words, the derivative of the distribution Nθ,(θσ)2 with respect to θ is the
sum of the derivative of Nθ,(θσ)2 with respect to the mean and the derivative of
Nθ,(θσ)2 with respect to the standard deviation. Rearranging terms yields

d

dθ
φθ,(θσ)2(x) = cθ

(
φ+

θ,(θσ)2(x) − φ−
θ,(θσ)2(x)

)
,

where

φ+
θ (x) := φ+

θ,(θσ)2(x) = pµw(+,θ)
2,(2θ2σ2)−1(x) + ps mθ,(θσ)2(x)

and

φ−
θ (x) := φ−

θ,(θσ)2(x) = pµw(−,θ)
2,(2θ2σ2)−1(x) + ps φθ,(θσ)2(x) .

The above result allows for the following interpretation: we may interpret the
derivative as the mixture of the partial derivatives with respect to the mean and
the standard deviation, respectively.
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