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1 Introduction

The work of Andersen and Bollerslev (1998) has triggered a vast amount of research

on the use of high-frequency data to measure, model and forecast volatility of finan-

cial asset returns. Most empirical studies on this topic of ‘realized volatility’ focus

exclusively on the variance of individual asset returns, see Andersen, Bollerslev,

Diebold and Ebens (2001), Andersen, Bollerslev, Diebold and Labys (2001), Areal

and Taylor (2002), Thomakos and Wong (2003), Martens et al. (2004), Pong et al.

(2004), and Koopman et al. (2005), among others. Many financial applications such

as risk management and portfolio construction, however, require estimates or fore-

casts of the entire covariance matrix, making covariances or correlations between

returns on different assets at least as important. Yet only limited (empirical) re-

search has addressed the merits of high-frequency data for potential economic or

forecasting gains in a multivariate context. Andersen et al. (2003) use a vector

autoregressive (VAR) framework for the daily realized variances and covariance of

two exchange rates (DEM/USD and YEN/USD) based on 30-minute returns, but

they only consider the statistical accuracy of (co-)variance forecasts. Fleming et al.

(2003) use five-minute returns on three actively traded futures contracts (S&P 500

index, Treasury bonds, and gold) to show that a mean-variance efficient investor

would be willing to pay 50 to 200 basis points per annum for being able to use

daily covariance matrix forecasts based on high-frequency intraday returns instead

of daily returns. Similarly, Liu (2004) constructs and assesses the performance of the

minimum variance portfolio and the minimum tracking error portfolio (tracking the

S&P 500 index) using five-minute returns for the 30 Dow Jones index constituents.

These three studies have in common that they motivate the selected intraday

sampling frequency as a trade-off between accuracy and potential biases due to

market microstructure effects. The sensitivity of the results to the choice of sam-

pling frequency used in constructing realized covariances is not investigated though.

Martens (2004) demonstrates that non-trading, non-synchronous trading, and bid-

ask bounce are indeed crucial determinants of the optimal sampling frequency that

minimizes the Mean Squared Error (MSE) for measuring, and hence forecasting, the

covariance matrix. The MSE is the sum of the squared bias and the variance of the

realized (co-)variance. High sampling frequencies lead to a potentially large upward
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bias in realized variances due to bid-ask bounce and to a substantial downward bias

in realized covariances due to non-synchronous trading. On the other hand, the

variance of both realized variances and realized covariances usually decreases with

higher sampling frequencies. As the degree of non-trading, non-synchronous trading,

and bid-ask bounce varies widely across assets, the appropriate sampling frequency

in a particular application needs to be investigated carefully.1

In this study we examine the economic significance of determining the optimal

sampling frequency, in the context of constructing mean-variance efficient portfolios

from the individual constituents of the S&P 100 index. Our analysis builds on

the framework developed in Fleming et al. (2001, 2003). In particular, we consider

a risk-averse investor who constructs minimum variance portfolios and minimum

tracking error portfolios with daily rebalancing, where portfolio risk is minimized

either globally or subject to a fixed target return. We focus on pure volatility-

timing strategies, in the sense that the portfolio weights are determined exclusively

by forecasts of the daily conditional covariance matrix, which in turn is constructed

using the realized covariance matrix with the sampling frequency of intraday returns

ranging from one minute to 130 minutes. The economic value of using the optimal

sampling frequency is assessed by comparing portfolio performance across this range

of sampling frequencies. In particular, we consider the fee that the investor would

be willing to pay to switch from one frequency to another.

We also examine how different bias- and variance-reduction techniques affect the

choice of sampling frequency. First, we explore the usefulness of the two time-scales

estimator proposed by Zhang et al. (2005),2 which combines the realized covari-

ance matrix constructed using subsampling at a certain frequency and the realized

covariance matrix constructed using the highest possible sampling frequency. Sub-

sampling makes use of the fact that, for example, five-minute returns for a trading

session starting at 9:30 could not only be measured using the intervals 9:30-9:35,

9:35-9:40, . . ., but also using 9:31-9:36, 9:36-9:41, . . ., etc. As explained in more

1The issue of sampling frequency in the presence of market microstructure noise has also been
investigated in the context of univariate realized volatility measurement, see Aı̈t-Sahalia et al.
(2005), Bandi and Russell (2005a,b), Zhang et al. (2005), and Hansen and Lunde (2006), among
others.

2Zhang et al. (2005) focus solely on estimating the variance but here we apply their approach
to covariances as well, as suggested by Zhang (2005).
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detail below, subsampling can be used to reduce the variance of the realized covari-

ance estimator. However, subsampling still renders a biased estimate of the true

integrated covariance matrix with the bias being a function of the covariance matrix

of the microstructure noise component in the intraday returns. The two time-scales

estimator attempts to correct for this bias. Second, following the idea of Scholes

and Williams (1977) for estimating (illiquid) stock betas, we investigate the merits

of using leads and lags in measuring the realized covariances. For all these methods

we also consider the effects of transaction costs and the holding period or portfolio

rebalancing frequency.

Our main findings are as follows. For both minimum variance and minimum

tracking error portfolios, using daily conditional covariance matrix forecasts based

on high-frequency intraday returns instead of daily returns considerably improves

portfolio performance. For the global minimum risk portfolios, the optimal sam-

pling frequency for the S&P 100 constituents ranges between 30 and 65 minutes,

considerably lower than the popular five-minute frequency. The same result occurs

for minimum variance portfolios subject to a target return. Here, the Sharpe ratio

increases from 0.6 to 0.8 going from daily to intraday returns, and a risk-averse

investor would be willing to pay between 150 and 400 basis points per year to cap-

ture this gain in portfolio performance. In contrast, for the minimum tracking error

portfolio subject to a target return the optimal sampling frequency appears to be

much higher at one- to two-minutes. The performance gains are substantial, with

the information ratio increasing from 0.1 to 0.4. The fee a risk-averse investor might

pay for this enhanced performance ranges between 100 and 180 basis points per year.

The above findings are robust to the use of the two time-scales estimator and the

lead-lag bias correction procedure. Both of these techniques marginally improve the

performance for the minimum variance portfolios and the minimum tracking error

portfolios. However, selecting the appropriate sampling frequency appears to be

much more important than choosing between different bias- and variance-reduction

techniques for the realized covariance matrices.

For the target return portfolios we find that turnover is lower when using intraday

data, hence in the presence of transaction costs an investor is willing to pay even

more for covariance forecasts based on high-frequency data. The opposite is true for

the target excess return portfolios. Lowering the rebalancing frequency from daily
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to weekly or monthly obviously reduces transaction costs, while at the same time

having a similar or even better performance. Reducing the rebalancing frequency in

the presence of transaction costs is especially beneficial for the minimum tracking

error portfolios based on high-frequency data.

As noted above, the issue of the optimal sampling frequency in the presence of

market microstructure noise has been investigated quite heavily, but in the context

of univariate realized volatility measurement, see the references in footnote 1. In

concurrent and independent work Bandi et al. (2005) derive a theoretical expres-

sion for the optimal sampling frequency to compute realized covariances. Applying

this expression to our data we find an average3 optimal sampling frequency of 1.4

minutes, nowhere near the optimal 65 minutes. Apparently the assumptions under

which Bandi et al. (2005) derive their optimal sampling frequency estimator are not

appropriate for the S&P100 constituents.

The remainder of this paper is organized as follows. Section 2 describes the data

and the construction of the realized covariances. The mean-variance methodology

is presented in Section 3. Results are discussed in Section 4. Section 5 concludes.

2 Data

The data set was obtained from Price-Data.com4 and consists of open, high, low,

and close transaction prices at the one-minute sampling frequency for the June 2004

S&P 100 index constituents, covering the period from April 16, 1997 until June 18,

2004 (1804 trading days). We disregard stocks for which the price series start at a

later date, leaving 78 stocks for the analysis. The appendix provides a list of ticker

symbols and company names. The data also comprise all (tick-by-tick) transaction

prices of the S&P 500 index futures from April 16, 1997, through May 27, 2004.

We follow the conventional practice of using the futures contract with the largest

trading volume. This typically is the contract nearest to maturity, until a week

before maturity when the next nearest contract takes over. Since the stock files miss

3The approach of Bandi et al. (2005) considers each pair of stocks separately such that the
optimal sampling frequency may differ across (co)variances. The resulting realized covariance
matrix then is not guaranteed to be positive definite. Hence it is logical to employ an average
optimal frequency to be used for all stock pairs.

4http://www.price-data.com/
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April 9, 2003, and the futures files miss March 30, 2003 and May 3, 2004, this leaves

1788 common trading days from April 16, 1997, through May 27, 2004.

For each day t, we divide the trading session on the NYSE, which runs from

9:30 EST until 16:00 EST (390 minutes), into I intervals of equal length h ≡ 1/I,

normalizing the daily interval to unity for ease of notation. For example, I = 78 for

the five-minute sampling frequency. Let pt−1+ih denote the (N×1) vector of log close

transaction prices and let rt−1+ih,h ≡ pt−1+ih − pt−1+(i−1)h denote the (N × 1) vector

of returns for the ith intraday period on day t, for i = 2, . . . , I, where N = 78 is the

number of stocks. The return for the first intraday period, rt−1+h,h, is defined as the

difference between the log close and open transaction prices during that interval.

The realized covariance matrix Vt,h is defined as

Vt,h = rt,c−or
′

t,c−o +

I∑

i=1

rt−1+ih,hr
′

t−1+ih,h (1)

where rt,c−o is the (N × 1) vector of close-to-open (overnight) returns from day t− 1

(close) to day t (open).5 Martens (2002) documents that the overnight volatility

represents an important fraction of total daily volatility, hence incorporating the

cross-product of overnight returns as in (1) is important for accurately measuring

(co-)variances, see also Fleming et al. (2003) and Hansen and Lunde (2005) for

discussion. For the daily frequency the realized (co-)variance matrix Vt is defined

as the outer product of the daily (close-to-close) returns, denoted by rt, that is

Vt = rtr
′

t.

Table 1, Panel A, illustrates some characteristic features of the daily realized

variances and covariances by showing the mean (across stocks and across trading

days) and variance for sampling frequencies of 390h = 1, 2, 3, 5, 10, 15, 30, 65 and

130 minutes, such that in all cases the corresponding I intra-day intervals completely

cover the 390-minute trading day. Several familiar patterns arise. First, the average

realized variance increases with the sampling frequency (except for frequencies below

30 minutes). Bid-ask bounce induces negative autocorrelations in returns when

prices are sampled more frequently leading to an upward bias in the realized variance.

For example, the average variance using daily returns is 7.386 (corresponding to an

5For obvious reasons the overnight return from 10 to 17 September, 2001 (the first trading day
after 9/11) has been dropped.
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annualized standard deviation of about 43%), whereas it is 9.494 for one-minute

returns. Second, the average realized covariance decreases monotonically with the

sampling frequency, where this downward bias can be attributed to non-synchronous

trading, i.e. not every stock trades in each (intraday) interval or exactly at the end

of each interval. The average covariance using one-minute returns is 0.826, whereas

for daily data it is almost double at 1.568. Third, the variance of the realized (co-

)variances becomes smaller for higher frequencies, simply because more data points

are used. Hence in general for realized (co-)variances the bias increases and the

variance decreases for higher sampling frequencies.6

- insert Table 1 about here -

One way to reduce the variance of realized covariances, given a particular sam-

pling frequency, is to employ subsampling as first suggested in Zhang et al. (2005) in

this context. In particular, the grid of x-minute intervals can be laid over the trading

day in x different ways. For example, for the three-minute frequency rather than

starting with the interval 9:30-9:33 one could also start with 9:31-9:34 or 9:32-9:35.

In this way three ‘subsamples’ are created and each of these can be used to compute

the realized covariance matrix. The final realized covariance matrix is then taken

to be the average across subsamples. A practical problem with this procedure is

how to treat the loose ends at the start and the end of the trading session. Here

the start of the day is added to the overnight return, while the end of the day is

omitted. The covariances measured during the trading session are proportionally

inflated for the missing part of the trading session. Unreported summary statistics

for the realized (co-)variances that are obtained with this procedure show that, in

general, the effects of subsampling are ambiguous. There is a minor reduction in

the variance of the realized covariances for the two- to 30-minute frequencies, but an

increase in the variance of the realized variances, which becomes quite substantial

for the lower sampling frequencies.

Zhang et al. (2005) suggest a bias-correction procedure for the subsampling es-

timator as described above using the realized covariance matrix obtained with the

highest available sampling frequency. The essential argument is that subsampling

6An exception is the realized variance at the one- and two-minute frequencies, where also the
variance increases due to the increased importance of bid-ask bounce.
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still renders a biased estimate of the true integrated volatility with the bias being

a function of the (co-)variance of the noise in the return processes. In fact, the

realized (co-)variance estimator using the highest possible frequency consistently es-

timates this noise (co-)variance and can therefore be used to reduce and potentially

even eliminate the bias of the subsampling estimator. Based on this idea, the two

time-scales estimator V TTS
t,h is obtained as

V TTS
t,h =

IMax

IMax − 1

(
V SubS

t,h −
I

IMax
V Max

t,h

)
, (2)

where V SubS
t,h is the subsampling estimator using I returns over intervals of 390h

minutes as described above, and V Max
t,h is the realized covariance matrix based on

the highest possible sampling frequency with IMax intraday return observations. In

our case this is the one-minute frequency such that IMax = 390.

Summary statistics for the realized (co-)variances that are obtained with the

two time-scales estimator are presented in Panel B of Table 1. The bias-correction

procedure appears to work quite well, especially for the higher sampling frequencies,

in the sense that the mean realized (co)variances get much closer to the mean values

obtained with daily return observations. Note that this comes at the cost of increased

variance of the realized (co)variances though, except for the realized variances at the

one- and two-minute frequencies.

Finally, we examine whether the downward bias in the realized covariances can

be reduced by adding lead and lagged covariances to the contemporaneous cross-

product of returns in the spirit of Scholes and Williams (1977) and Cohen et al.

(1983). Similarly, this might reduce the upward bias in the realized variance due

to the negative autocorrelations in high-frequency returns, see Hansen and Lunde

(2005, 2006). In particular, let Γt,h,l denote the l-th order cross-covariance matrix

of intraday h-period returns, that is

Γt,h,l =

I−l∑

i=1

rt−1+ih,hr
′

t−1+(i−l)h,h.

The realized covariance matrix with lead and lags is then obtained as

V LL
t,h = Vt,h +

q∑

l=1

dl

(
Γt,h,l + Γ′

t,h,l

)
, (3)

where Vt,h is given by (1) and the weights dl for the leads and lags are taken to be

dl = 1 − l/(q + 1). The use of these Bartlett-kernel weights guarantees that the
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realized covariance matrix V LL
t,h is positive definite, see Newey and West (1987) and

Andrews (1991) for discussion of alternative weighting schemes that also achieve this

objective. Precisely for this reason we do not consider the equal-weighting scheme

(dl = 1 for all l = 1, . . . , q), as commonly used for estimating market betas of

illiquid stocks and suggested by Zhou (1996) and Hansen et al. (2005) in the context

of realized variance and covariances, respectively. Barndorff-Nielsen et al. (2004)

demonstrate that the Bartlett-kernel estimator (3) and the subsampling estimator

of Zhang et al. (2005) are almost identical.

Panel C of Table 1 present characteristics of V LL
t,h with q = 1.7 As expected, the

bias in both realized variances and realized covariances is reduced for all frequencies,

although to a lesser extent compared to the two time-scales estimator. For example,

the average realized variance based on one-minute returns is reduced to 8.525, still

considerably higher than the average daily squared return of 7.386. Similarly, the

average realized covariance at the one-minute frequency is increased to 1.025, which

comes closer to the average cross-product of daily returns (1.568) than the standard

case. Note, however, that again the reduction in bias generally comes at the cost

of increased variance. An exception is the one-minute frequency where not only the

average variance is reduced and closer to the average daily squared return, but at

the same time the variance is reduced from 597 to 533.

3 Methodology

3.1 Volatility-timing strategies

The benefits of high-frequency intraday data and the optimal way to employ these

will be gauged by their economic value in the context of portfolio construction. In

particular, we consider volatility timing strategies within the framework of condi-

tional mean-variance analysis. We construct the minimum variance portfolio as well

as the portfolio that minimizes variance given a set target return, which is denoted

µP , allowing for daily rebalancing. To be precise, we solve the following two opti-

7We experimented with alternative values for q, which led to qualitatively similar findings.
Detailed results are available upon request. The issue of determining the optimal value of q is
beyond the scope of this paper and is left for future research.
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mization problems for each day t:

min
wt

w′

tΣtwt (4)

s.t. w′

tι = 1

and

min
wt

w′

tΣtwt (5)

s.t. w′

tµt =µP and w′

tι = 1

where wt is the (N × 1) vector of portfolio weights, and ι denotes an (N × 1) vector

of ones. In addition, µt is the (N × 1) vector with conditional expected returns for

the individual stocks, that is µt ≡ E[rt|It−1], where It−1 denotes the information set

available at the end of day t−1. Similarly, Σt is the (N ×N) conditional covariance

matrix, that is Σt ≡ E[(rt − µt)(rt − µt)
′|It−1]. In order to concentrate on the use of

high-frequency data for estimating and forecasting (co-)variances, we assume that

µt is constant and, moreover, set it equal to the average returns in the complete

out-of-sample period.8 Hence, we consider pure volatility-timing strategies, in the

sense that the portfolio weights are determined exclusively by forecasts of the daily

conditional covariance matrix Σt. We return to these in Section 3.4 below.

The solution to the problem in (4), the weights for the fully invested minimum

variance portfolio, is given by

wt,MVP =
Σ−1

t ι

ι′Σ−1
t ι

. (6)

For the solution of the problem in (5) first weights for the maximum Sharpe ratio

portfolio are computed as

wt,MSR =
Σ−1

t µt

µ′

tΣ
−1
t µt

(7)

and the weights for the target return portfolio are then provided by

wt,P =
µt,MSR − µP

µt,MSR − µt,MVP

wt,MVP +
µP − µt,MVP

µt,MSR − µt,MVP

wt,MSR (8)

8As explained below, we require part of the sample period to initialize the conditional covariance
matrix estimates, which in our case equals 122 trading days. This implies that the effective sample
period available for portfolio construction and evaluation runs from October 8, 1997 until May 27,
2004 (1666 trading days).
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where µt,MVP = w′

t,MVPµt and µt,MSR = w′

t,MSRµt are the expected returns on the

minimum variance portfolio and the maximum Sharpe ratio portfolio, respectively.

In addition the above analysis is repeated using the conditional mean and covari-

ance matrix for stock returns in excess of the S&P 500 futures returns. The solution

to the problem in (4) then determines the minimum tracking error portfolio, i.e.

the portfolio of the 78 S&P 100 stocks that tracks the S&P 500 index most closely.

Similarly the solution to the problem in equation (5) then minimizes the tracking

error given a certain target level of active return (i.e. portfolio return in excess of

the S&P 500 return). The use of minimum tracking error portfolios is motivated by

the analysis in Chan et al. (1999) who demonstrate that based on minimum variance

portfolios it is difficult to distinguish between different covariance matrix estimates

in the presence of a dominant (market) factor. Eliminating the dominant factor, in

this case by switching to tracking error portfolios, largely solves this problem.

3.2 The economic value of volatility timing

The performance of the portfolios in the different volatility timing strategies is eval-

uated using the ex-post daily stock returns rt. For the minimum variance portfolio

we consider the standard deviation, and for the target return portfolios we monitor

the mean return, standard deviation, and Sharpe ratio, all based on ex-post returns.

Similarly, for the minimum tracking error portfolio we consider the tracking error,

and for the target active return portfolios we monitor the mean excess return, track-

ing error, and information ratio (excess return divided by tracking error), based on

the ex-post daily excess returns.

Following Fleming et al. (2001, 2003), for the target return portfolios we assess

the economic value of the different covariance matrix estimators in volatility timing

strategies by determining the maximum performance fee a risk-averse investor would

be willing to pay to switch from using one covariance matrix estimator to another.

In particular, we assume the investor has a quadratic utility function given by

U(rt,P ) = W0

(
1 + rt,P −

γ

2(1 + γ)
(1 + rt,P )2

)
, (9)

where rt,P = w′

t,P rt is the ex-post portfolio return, γ is the investor’s relative risk

aversion and W0 is initial wealth. In order to compare two volatility timing strategies

based on different covariance matrix estimators with portfolio returns denoted as
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rt,P1
and rt,P2

, we determine the maximum amount the investor is willing to pay to

switch from the first strategy to the second. That is, we determine the value of ∆

such that
T∑

t=1

U(rt,P1
) =

T∑

t=1

U(rt,P2
− ∆). (10)

We interpret ∆ as a performance fee and report estimates in terms of basis points

on an annual basis for γ = 1 and 10.

3.3 Transaction costs and rebalancing frequency

With daily rebalancing, the turnover of the volatility timing strategies is consider-

able, as shown in detail below. Hence, transaction costs play a non-trivial role and

should be considered in evaluating the (relative) performance of different strategies.

We handle this issue as follows.

After rebalancing on day t − 1, the i-th stock has been given a weight wi,t−1

in the portfolio, i = 1, . . . , N . The return on the i-th stock on day t is denoted

as ri,t such that the portfolio return is rt,P =
∑N

i=1 wi,t−1ri,t. At the moment just

before rebalancing, denoted as t−, the actual weight of the i-th stock in the portfolio

therefore has changed to wi,t− = wi,t−1
1+ri,t

1+rt,P
. The new weight wi,t for stock i follows

from solving the investor’s optimization problem, using time t information. The

change in weight, or the required rebalancing, at time t thus is equal to wi,t −wi,t− .

We assume that transaction costs amount to a fixed percentage c on each traded

dollar for any stock. Setting the initial wealth W0 equal to 1 for simplicity, total

transaction costs at time t are equal to

ct = c

N∑

i=1

|wi,t − wi,t− |,

such that the net portfolio return is given by rt,P − ct.

We report results for transaction cost levels between 2% and 20%, expressed in

annualized percentage points. Note that this would be the reduction in the annual-

ized portfolio return if the entire portfolio would have to be traded every day during

a whole year, that is
∑N

i=1 |wi,t − wi,t−| = 1 for t = 1, . . . , T .9

A closely related issue is that of the portfolio rebalancing frequency. If daily

turnover is substantial, transaction costs may eat away a considerable part of the

9Fleming et al. (2003) use a similar approach when assessing the effect of transaction costs.
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portfolio performance and it may be better to rebalance the portfolio less frequently.

In fact, given a certain level of transaction costs c one may attempt to determine

the optimal rebalancing frequency, where a trade-off has to be made between up-

dating the portfolio weights using the most recent covariance matrix information

and incurring higher transaction costs. We consider this challenging problem to be

beyond the scope of this paper, though. We do provide some insight into the effect

of the rebalancing frequency, by considering the portfolio performance if the holding

period is set equal to a week or a month (or five and 21 trading days, respectively),

as follows. We construct a new portfolio every day, but this is held on to for the next

five (21) days. Hence, at any point in time the strategies effectively hold five (21)

minimum variance portfolios, for example, each formed one day apart. To handle

the problems concerned with overlapping returns, we calculate the overall return on

day t as the average of all the portfolios that are held at that time.10

3.4 Conditional covariance matrix estimators

Implementation of the portfolio construction methods discussed above requires esti-

mates or forecasts of the conditional covariance matrix Σt. We closely follow Fleming

et al. (2001, 2003) by using rolling volatility estimators for Σt, building on the work

by Foster and Nelson (1996) and Andreou and Ghysels (2002). The general rolling

conditional covariance matrix estimator based on daily data is of the form

Σ̂t =

∞∑

k=1

Ωt−k ⊙ rt−kr
′

t−k (11)

where Ωt−k is a symmetric (N × N) matrix of weights, and ⊙ denotes element-by-

element multiplication. The weighting scheme is taken to be Ωt−k = α exp(−αk)ιι′,

such that (11) can be rewritten as

Σ̂t = exp(−α)Σ̂t−1 + α exp(−α)rt−1r
′

t−1. (12)

This choice is consistent with Foster and Nelson (1996) in that exponentially weighted

estimators generally produce the smallest asymptotic MSE. In addition using a single

10Note that our approach here differs from Fleming et al. (2003). Our method of holding multiple
portfolios simultaneously is commonly applied in the literature on stock selection, see Jegadeesh
and Titman (1993) and Rouwenhorst (1998), among many others.
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parameter (α) to control the rate at which the weights decay with lag length guar-

antees that Σ̂t is positive definite. One way of interpreting this weighting scheme is

as a restricted multivariate GARCH model.11 The optimal in-sample decay rate can

therefore be estimated using (quasi) maximum likelihood for the model

rt = Σ̂
1/2
t zt (13)

where zt ∼ NID(0, I) and Σ̂t is given by (12). We estimate α using observations

for the sample period October 8, 1997 until May 27, 2004 (1666 trading days). The

reason for not using the sample from the first available day, April 16, 1997, onwards

is that the covariance matrix estimate Σ̂t needs to be initialized. We use the first

122 observations as ‘burn-in’ period.

Given that the portfolios that subsequently are constructed using the weights

wMVP,t from (6) and wP,t from (8) are evaluated over the same period that is used

for estimating α, this raises the issue of data snooping. However, as noted by Fleming

et al. (2001), the statistical loss function used to estimate the decay parameter is

rather different from the methods used to evaluate the performance of the various

portfolios. Hence, look-ahead bias probably is not too big a problem. We return to

this issue in Section 4.4.

Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004) show that

intraday returns can be used to construct (co-)variance estimates that are more effi-

cient than those based on daily returns. Sticking to the concept of rolling estimators

and facilitating a direct comparison between daily and intraday data, it is most nat-

ural to replace the daily update rt−1r
′

t−1 in (12) by the realized covariance matrix

Vt−1, h, that is, the conditional covariance matrix is estimated using high-frequency

data as

Σ̂t,h = exp(−αh)Σ̂t,h + αh exp(−αh)Vt−1,h (14)

where αh can again be estimated by means of maximum likelihood for the model

(13), but now using Σ̂t,h instead of Σ̂t. In addition to the realized covariance matrix

Vt−1,h obtained from the ‘basic’ form given in (1), we implement (14) using the

11Fleming et al. (2003) show that actually using the (unrestricted) multivariate GARCH model
leads to a better fit of the data as expected, but the covariance matrix forecasts result in worse
portfolios than those obtained from the rolling covariance estimator. They cite the smoothness of
the rolling estimator as the main reason for this.
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two time-scales estimator V TTS
t−1,h given in (2) and the lead-lag corrected estimator

V LL
t−1,h given in (3). As mentioned before, we examine different sampling frequencies

to construct the realized covariance matrix Vt−1,h, dividing the 390-minute NYSE

trading session in (nonoverlapping) intervals of 1, 2, 3, 5, 10, 15, 30, 65 or 130

minutes.

We close this section by noting that the conditional covariance matrix estimate

Σ̂t,h obtained from (14) may suffer from the biases in the realized covariance matrix

Vt−1,h due to market microstructure effects. For that reason, Fleming et al. (2003)

propose a bias-correction method based on scaling the elements of Σ̂t,h with factors

determined from the contemporaneous estimates of the daily-returns-based rolling

estimator Σ̂t obtained from (12), see also Hansen and Lunde (2005, 2006). Although

we considered this approach in our analysis, we were unable to obtain satisfactory

results. The key problem with this bias adjustment procedure is that it adjusts each

individual element in the covariance matrix separately, with a possibly different

correction factor. Hence, whereas the unadjusted covariance matrix Σ̂t,h obtained

from (14) is guaranteed to be positive definite, this does not hold for the bias-adjusted

matrix. In the empirical application considered in Fleming et al. (2003) concerning

three highly-liquid future contracts, this issue turns out not to be relevant, but for

our application to the 78 S&P 100 stocks we ran into this problem quite frequently

due to the large number of stocks. We tried to address this in several different ways

but to no avail.

4 Results

4.1 Optimal decay rates

Table 2 shows the optimal decay rates α and αh that maximize the likelihood of

the model in equations (13) with (12) for daily returns and with (14) for intraday

returns at the different sampling frequencies considered. Starting with total returns

(as opposed to returns in excess of the S&P 500 return) and the standard case

(no two time-scales, no lead-lag correction), the optimal decay parameter increases

monotonically from 0.0070 for daily data to 0.2106 for the one-minute frequency.

This pattern implies that the update Vt−1,h in (14) is given more weight when it

is measured, presumably more accurately, at higher sampling frequencies. Fleming
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et al. (2003) report decay parameters of 0.031 and 0.064 for daily returns and five-

minute returns, respectively, for the three liquid futures contracts they consider. The

lower decay parameters at these frequencies obtained here for the 78 S&P 100 stocks

are likely to be caused by having relatively more noise in the intra-day returns data

and a well-known phenomenon in multivariate GARCH models (for daily returns)

that the larger the number of assets, the lower the decay parameter, see Engle and

Sheppard (2001) and Hafner and Franses (2003) for discussion.

- insert Table 2 about here -

The two time-scales estimator and the lead-lag correction reduce the bias but

increase the variance of the realized covariance matrix for a particular sampling

frequency. It appears that for both methods the latter is more important here, given

that the decay parameters are lower for the corrected covariance matrices compared

to the standard case. Note that the log-likelihood is improved, however, except

when using the lead-lag correction for the lowest sampling frequencies. The decay

parameters in Panel B, considering excess returns, are in general slightly higher in

all instances, but otherwise the findings correspond to those for the total returns.

4.2 Portfolio performance

Table 3 shows the performance of the overall minimum variance portfolio, with

weights defined in (6), and the minimum variance portfolio given an annualized

target return of 10%,12 with weights given by (8). For the overall minimum variance

portfolio the optimal sampling frequency turns out to be 65 minutes in the standard

case. The annualized standard deviation of 12.16% compares favorably to the 14.00%

for daily data. For the popular five-minute frequency the standard deviation is

12.68%, clearly above the minimum. Also for the target return portfolios the 65-

minute frequency is optimal, resulting in a Sharpe ratio of 0.786 compared to 0.596

for daily returns and 0.626 for five-minute returns. In terms of the performance fees

(∆γ), an investor with low relative risk aversion (γ = 1) would be willing to pay

155 basis points per year to switch from the covariance matrix estimate based on

12We examined the sensitivity of our results to the target return level by varying µP between
2% and 18%. These alternative target return levels led to qualitatively similar conclusions as those
reported below. Detailed results are therefore not shown here, but are available on request.
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daily returns to the realized covariance matrix obtained with 65-minute returns. An

investor with high relative risk aversion (γ = 10) would be willing to pay even 399

basis points.

- insert Table 3 about here -

The results in Panel B of Table 3, using the two time-scales estimator, show

only a marginal improvement for the overall minimum variance portfolio with a

standard deviation of 12.10% compared to 12.16% before, both at the 65-minute

sampling frequency. The same conclusion holds for all other frequencies except 15

minutes. For the target return portfolios, however, the results are ambiguous, in

the sense that for sampling frequencies of 10 minutes and higher the two time-scales

estimator leads to a higher Sharpe ratio but for lower sampling frequencies portfolio

performance worsens. At the optimal frequency of 130 minutes the Sharpe ratio is

lower at 0.711, compared to 0.786 for the 65-minute frequency in the standard case.

The performance fees ∆γ show the same pattern.

The lead-lag correction in (3) leads to a higher optimal sampling frequency of

30 minutes for the minimum variance portfolio. The 12.01% annualized standard

deviation is slightly better than the 12.16% and 12.10% at the optimal 65-minute fre-

quency in the standard and two time-scales cases, respectively. In fact, the lead-lag

bias-correction leads to a reduction in volatility of the minimum variance portfolio

at all frequencies, such that the 10-minute sampling frequency now leads to ap-

proximately the same level of volatility as the optimal 65-minute frequency in the

standard case. Hence, using the lead-lag correction allows for a substantially higher

sampling frequency before the increased noise level due to the use of leads and lags

offsets this advantage. For the target return portfolios, the optimal sampling fre-

quency remains at 65 minutes as in the standard case, although the corresponding

Sharpe ratio is somewhat higher (0.797 compared to 0.786). The same applies to

the performance fees ∆γ, which increase to 168 and 412 basis points per year for low

and high relative risk aversion, respectively (compared to 155 and 399).

The performance of the minimum tracking error portfolios is shown in Table 4.

Using the standard realized covariance matrix, the tracking error is minimized at

4.43% using the 30-minute frequency compared to 4.75% for daily data and 4.92% at

the popular five-minute frequency. The two time-scales estimator provides a further
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improvement with the minimum tracking error equal to 4.18% at the 65-minute

frequency. Finally, using one lead and lag results in a higher optimal sampling

frequency of 15 minutes as for the minimum variance portfolio, with a marginally

lower tracking error at 4.35%. Hence here we do observe that bias-correction further

improves the performance.

- insert Table 4 about here -

Table 4 also demonstrates that for the active portfolio manager with an annu-

alized target excess return of five percent the optimal sampling frequency is much

higher than for total returns. The ex-post information ratio (excess return divided

by tracking error) is optimal for the two-minute frequency in the standard case at

0.436 compared to an information ratio of 0.110 at the daily frequency. Risk-averse

investors would be willing to pay between 151 and 181 basis points per year to make

use of the two-minute frequency realized covariance matrix. The optimal frequency

using one lead and one lag is even the one-minute frequency, but it results in a

slightly lower information ratio of 0.406 and slightly lower performance fees of 136

and 161 basis points. The two time-scales estimator also results in an optimal fre-

quency of two minutes but with an information ratio of 0.414 and performance fees

of 138 and 172 basis points, below the optimum in the standard case. Comparing

the information ratios at other frequencies with the corresponding results in the

standard case, again we find ambiguous results. The information ratio declines for

sampling frequencies of 15 minutes and higher, but it increases for lower sampling

frequencies, while the same is observed for the performance fees ∆γ . Note that this

pattern is the complete opposite of that found for the target return portfolios in

Panel B of Table 3.

In sum, the general conclusion from Tables 3 and 4 when computing the minimum

variance portfolio or minimum tracking error portfolio is that the two time-scales

estimator and the lead-lag bias correction marginally improve the out-of-sample

performance. We emphasize, however, that selecting the appropriate sampling fre-

quency appears to be much more important than choosing between different bias-

and variance-reduction techniques for the realized covariance matrices. For example,

the reduction in volatility of the minimum variance portfolio when going from the

popular five-minute frequency to the optimal 65-minute frequency in the standard
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case (from 12.68% to 12.16%) is more than three times as large as the additional re-

duction achieved by applying the lead-lag bias correction at the 30-minute frequency

(which further reduces volatility to 12.01%).

In general we would like to express a warning note on the target return results

in Tables 3 and 4. The actual return pattern at the various frequencies is anything

but smooth and hence subject to a certain degree of ‘luck’. Obviously these results

depend both on the quality of the expected (excess) returns and the covariance ma-

trix forecasts, making a direct comparison of the quality of the covariance forecasts

more difficult than is the case for the minimum variance and minimum tracking error

portfolios.

4.3 Transaction costs and rebalancing frequency

Table 3 shows that daily turnover in the volatility timing strategies is considerable,

ranging between 12 and 17 percent for most sampling frequencies. In case the

‘standard’ realized covariance matrix or the lead-lag correction is used at the one-

minute sampling frequency, turnover increases even to around 25%. For the tracking

error portfolios in Table 4, turnover is below 10% for sampling frequencies below five

minutes, but rapidly increases when returns are sampled more frequently. Given that

the optimal sampling frequency for the target excess return portfolios was found to

be two minutes, transaction costs may be substantial and should be taken into

account when assessing the portfolio performance.

Panel A of Table 5 shows the performance of the target return portfolios with

daily rebalancing for transaction cost levels (c in the first column) between 2% and

20%, in annualized percentage points as explained before. Results are shown for

portfolios based on covariance matrix estimates obtained with daily returns and

with intraday returns at the optimal frequency, which turns out to be 65 minutes

irrespective of the transaction costs level. No bias-corrections are applied to the

realized covariance matrix in this case. As expected, transaction costs reduce the

portfolio return while the portfolio variance is largely unaffected, leading to a mono-

tonic decline of the Sharpe ratio as the level of transaction costs increases. Note

that the reduction in returns and Sharpe ratio is larger for the portfolios based on

covariance matrix estimates obtained with daily returns. Therefore the difference in

Sharpe ratios with the portfolios based on high-frequency intraday returns actually
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becomes larger, such that the performance fees increase to 245 and 487 basis points

for γ = 1 and 10 in case transaction costs amount to 20%. This is not surpris-

ing of course, given that daily turnover for these portfolios equals 16.8 and 13.2%,

respectively (see Table 3).

- insert Table 5 about here -

Panel A of Table 6 reveals that transaction costs have more dramatic effects

for the target excess return portfolios. Daily turnover for the portfolio based on

covariance matrix estimates obtained with the optimal two-minute returns is more

than four times as high as for the portfolio based on daily returns, at 22.4% com-

pared to 5.2%. The reduction in the mean active return and the information ratio

therefore is much more pronounced for the intraday returns based strategy, such

that the performance fee actually becomes negative for transaction costs in excess

of 10%. Hence, if transaction cost levels are considerable, it does not pay off to use

high-frequency intraday returns to estimate the covariance matrix. Also note that

the optimal sampling frequency becomes lower at three minutes for high levels of

transaction costs.

- insert Table 6 about here -

Transaction costs may be reduced by rebalancing the portfolio less frequently.

The effects on portfolio performance are shown in Panels B and C of Table 5 for the

target return portfolios. First note that, as expected, the volatility of the portfolio

increases when the portfolio holding period increases, but only slightly. Somewhat

surprisingly, the portfolio return increases considerably and comes much closer to the

target return of 10% when the rebalancing frequency decreases. This corresponds

with the findings of Fleming et al. (2003). Turning to the effects of transaction

costs, we find that the reduction in returns and Sharpe ratio is indeed much less

pronounced when rebalancing the portfolio weekly or monthly rather than daily.

Again, turnover is higher for the portfolios based on covariance matrix estimates

obtained with daily returns, such that the maximum fee investors are willing to pay

to switch to covariance matrix estimates obtained with intraday returns increases

with the level of transaction costs. Also note that the magnitude of the performance

fee ∆γ declines when the rebalancing frequency becomes lower. This is due to the fact
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that the improvement in performance when going from daily to weekly or monthly

rebalancing is relatively larger for the portfolio based on daily returns.

In order to assess the economic value of rebalancing less frequently more directly,

we compute the performance fee ∆γ that an investor is willing to pay to switch from

daily rebalancing to weekly (or monthly) rebalancing for a given level of transaction

costs. For the daily and weekly rebalanced portfolios based on intraday returns at

the optimal sampling frequencies and annualized transaction costs equal to 10%, we

find that ∆γ is equal to 94 and 47 basis points for γ = 1 and 10, respectively. These

performance fees even increase to 128 and 64 points when comparing the daily and

monthly rebalancing frequencies.

Finally, the benefits of rebalancing less frequently become very clear from Panels

B and C of Table 6 for the target excess return portfolio. Although the active return

is still reduced due to transaction costs in case of weekly or monthly rebalancing,

it remains higher for the portfolio based on intraday returns than for the daily

returns portfolio even in case of transaction costs up to 20%. Given that the levels

of ex-post tracking error do not differ very much, the IR remains higher as well,

and investors are willing to pay considerable fees to make use of the high-frequency

returns portfolio.

Again we compute the performance fee ∆γ using portfolios with daily and weekly

(or monthly) holding periods for a given level of transaction costs to evaluate the

economic gains from rebalancing less frequently directly. With annualized transac-

tion costs equal to 10%, we find that an investor is willing to pay 200 basis points to

switch from daily to weekly rebalancing for both low and high relative risk aversion.

Comparing the daily and monthly rebalancing frequencies, ∆γ is equal to 280 and

276 basis points for γ = 1 and 10, respectively. It would be interesting to include

the rebalancing frequency in the portfolio optimization problem. Obviously this is

difficult to achieve and beyond the scope of this paper.

4.4 Genuine out-of-sample forecasting

Fleming et al. (2001, 2003) suggest that determining the decay parameters α and αh

in (12) and (14), respectively, using maximum likelihood on the full sample does not

lead to serious data snooping problems because the final evaluation criterion (max-

imizing return or minimizing risk) differs from the likelihood objective function. To
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test the validity of this argument, and to test a true out-of-sample strategy, we pro-

ceed as follows. First we find the decay parameters that maximize the performance

of the various portfolios over the first 250 days following the initial burn-in period,

i.e. the values of α and αh that minimize the (relative) variance or maximizes the

Sharpe (or information) ratio. These decay parameters are then used to estimate the

conditional covariance matrices Σ̂t and Σ̂t,h for the first day following the in-sample

period, for which optimal portfolio weights are then constructed using (6) and (8).

This procedure is repeated using an expanding in-sample estimation window where

each time a new observation is added. This not only implies that the decay pa-

rameter varies over time, but also that the portfolio performance thus obtained is

truly out-of-sample. Since we lose an additional 250 days at the start of the sample,

for comparison we re-estimated the decay parameter using maximum likelihood for

the shorter sample of 1416 trading days and constructed the corresponding portfolio

weights and performance.

- insert Table 7 about here -

The results are presented in Table 7. For both the minimum variance and min-

imum tracking error portfolios the results are re-assuring, in the sense that the

optimal sampling frequency is still 65 and 30 minutes, respectively. Also the per-

formance itself is similar to that of the standard case. By contrast, for the target

return portfolios the results do change considerably. In the total return case the

optimal sampling frequency is now 10 minutes instead of 65, and the Sharpe ratio

has deteriorated from 0.640 to 0.554. In the excess return case the optimal sam-

pling frequency is now one minute instead of two, but with a better information

ratio at 0.457 versus 0.373. Perhaps most revealing, the optimal decay parameters

are much lower when determined using in-sample portfolio performance than when

estimated with maximum likelihood (except for the target return portfolios, when

performance is measured by the Sharpe ratio). This holds especially for the higher

sampling frequencies. To verify that this is not an artefact of using different decay

rates over time, we also did a datasnooping exercise with a constant decay parame-

ter equal to the value that maximizes performance (rather than the log-likelihood)

over the entire out-of-sample period. These results (not reported here) confirm

that performance-based decay rates are much lower than the ones based on the log-
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likelihood. In addition, this enhances the performance at those frequencies. Hence

the log-likelihood procedure tends to give too much weight to the updates. A logical

explanation for this is that the noise pattern of the updates suits the log-likelihood

when standardizing equally noise daily returns, but more smoothing is needed (lower

decay parameters) for forecasting the covariance matrices.

5 Conclusion

Existing studies that use high-frequency intra-day data to measure and forecast the

daily covariance matrix make ad-hoc choices with regard to the sampling frequency.

The presence of bid-ask bounce and non-synchronous trading creates a trade-off

between higher sampling frequencies leading to lower variances of the (co-)variance

measures due to having more data, and lower sampling frequencies reducing the

impact of these market microstructure effects. Popular ad-hoc choices to strike a

balance between the resulting bias and variance of the realized covariance estimates

are the five- and 30-minute sampling frequencies.

In this study we show that choosing the optimal sampling frequency is crucial for

the out-of-sample performance of portfolios constructed using realized covariances.

Even for the relatively liquid stocks that comprise the S&P 100 index the optimum

is more likely to be in the neighbourhood of an hour rather than five or 30 minutes.

We also investigated the use of bias- and variance-reduction methods for com-

puting the realized covariances. Both the two time-scales estimator and the lead-lag

bias-correction procedure result in a marginal improvement over the standard re-

alized covariance matrix estimator at the same frequency. Transaction costs were

shown to affect portfolio performance considerably, and in particular they imply that

rebalancing the portfolio less frequently may be beneficial.

Several interesting topics for further research come to mind. First, it would be

interesting to explore other ways to correct for biases in realized covariances due

to non-synchronous trading. Second, it may be worthwhile to allow the sampling

frequency to vary over time, to take into account changes in trading intensity. The

S&P stocks considered here, for example, were traded much more frequently at

the end of the sample period than in the beginning, see also Bandi et al. (2005).

Third, Andersen et al. (2003) suggest that with more and more assets eventually
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a factor model will be needed, see Andersen, Bollerslev, Diebold and Ebens (2001)

and Hafner et al. (2005) for additional motivation and discussion and Bollerslev

and Zhang (2003) for an application using the Fama-French three-factor model.

Fourth, it would be interesting to examine the effects of restrictions on the portfolio

weights, which we did not consider here. As shown by Jagannathan and Ma (2003),

imposing short-selling constraints and a maximum weight constraint, for example,

may enhance portfolio performance, even if the restrictions are wrong. Finally,

in this study we considered the popular approach that makes use of artificially

constructed equidistant prices in calendar time, in part because the empirical data

set was constrained to the close of each minute rather than all transaction prices. It

would be interesting to see empirical work on the scale of this paper with many stocks

that considers transaction time sampling rather than calendar time sampling, for

example using the covariance estimators of Harris et al. (1995), De Jong and Nijman

(1997) and Hayashi and Yoshida (2005). Martens (2004) provides an overview and

comparison in a simulation setting, while Hansen et al. (2005) discuss theoretical

issues related to such estimators including bias correction procedures.
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Appendix: S&P 100 constituents on June 18, 2004

The 100 constituents of the S&P 100 index on June 18, 2004. The 78 stocks marked with a ∗ are

included in the analysis. For these stocks there is a complete set of one-minute open-high-low-close

prices from April 16, 1997, through May 27, 2004 (1788 trading days).

Symbol Issue name Symbol Issue name
AA* ALCOA INC IBM* INTL BUS MACHINE
AEP* AMER ELEC PWR INTC* INTEL CORP
AES* THE AES CORP IP INTL PAPER CO
AIG* AMER INTL GROUP JNJ* JOHNSON&JOHNSON
ALL* ALLSTATE CP JPM* JP MORGAN CHASE
AMGN* AMGEN KO* COCA COLA CO
AOL AOL TIME WARNER LEH* LEHMAN BROS
ATI ALLEGHENY TECH LTD* LIMITED BRANDS
AVP AVON PRODS INC LU* LUCENT TECH
AXP* AMER EXPRESS CO MAY* MAY DEPT STORES
BA* BOEING CO MCD* MCDONALDS CORP
BAC* BANK OF AMERICA MDT* MEDTRONIC INC
BAX* BAXTER INTL INC MEDI MEDIMMUNE INC
BCC* BOISE CASCADE MER* MERRILL LYNCH
BDK* BLACK & DECKER MMM* 3M COMPANY
BHI* BAKER HUGHES INC MO* ALTRIA GROUP
BMY* BRISTOL MYERS SQ MRK* MERCK & CO
BNI* BURL NTHN SANTA MSFT* MICROSOFT CP
BUD* ANHEUSER BUSCH MWD MORGAN STANLEY
C* CITIGROUP NSC* NORFOLK SOUTHERN
CCU* CLEAR CHANNEL NSM* NATL SEMICONDUCT
CI* CIGNA CORP NXTL* NEXTEL COMMS
CL* COLGATE PALMOLIV ONE* BANK ONE CORP
CPB* CAMPBELL SOUP CO ORCL* ORACLE CORP
CSC COMPUTER SCIENCE PEP* PEPSICO INC
CSCO* CISCO SYSTEMS PFE* PFIZER INC
DAL* DELTA AIR LINES PG PROCTER & GAMBLE
DD* DU PONT CO ROK* ROCKWELL AUTOMAT
DIS* WALT DISNEY CO RSH RADIOSHACK
DOW DOW CHEMICAL CO RTN RAYTHEON CO
EK* EASTMAN KODAK S* SEARS ROEBUCK
EMC* EMC CORP SBC* SBC COMMS
EP EL PASO CORP SLB* SCHLUMBERGER LTD
ETR* ENTERGY CP SLE* SARA LEE CORP
EXC EXELON CORP SO* SOUTHERN CO
F FORD MOTOR CO T* AT&T CORP
FDX FEDEX CORP TOY* TOYS R US CORP
G* GILLETTE CO TXN* TEXAS INSTRUMENT
GD* GENERAL DYNAMICS TYC* TYCO INTL
GE* GENERAL ELEC CO UIS* UNISYS CORP
GM* GENERAL MOTORS USB US BANCORP
GS GOLDM SACHS GRP UTX* UNITED TECH CP
HAL* HALLIBURTON CO VIAb VIACOM CL B
HCA HCA INC VZ VERIZON COMMS
HD* HOME DEPOT INC WFC* WELLS FARGO & CO
HET* HARRAHS ENTER WMB* WILLIAMS COS INC
HIG* HARTFORD FINL WMT* WAL-MART STORES
HNZ* H J HEINZ CO WY WEYERHAEUSER CO
HON* HONEYWELL INTL XOM EXXON MOBIL
HPQ* HEWLETT-PACKARD XRX* XEROX CORP
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Table 1: Mean and variance of the realized (co-)variance

Frequency Realized Variance Realized Covariance
Mean Variance Mean Variance

Daily 7.386 1763 1.568 93.58

Panel A: Standard
130 minutes 7.369 689.7 1.394 31.94
65 minutes 7.324 624.3 1.357 22.46
30 minutes 7.311 563.5 1.316 16.48
15 minutes 7.463 545.8 1.307 14.46
10 minutes 7.614 547.2 1.305 13.25
5 minutes 7.912 531.7 1.239 11.49
3 minutes 8.193 527.6 1.136 10.34
2 minutes 8.525 537.1 1.025 9.60
1 minute 9.494 597.0 0.826 8.73

Panel B: Two time-scales
130 minutes 7.836 1090.6 1.462 37.05
65 minutes 7.295 760.9 1.418 22.94
30 minutes 7.150 606.4 1.414 16.82
15 minutes 7.233 570.1 1.420 14.97
10 minutes 7.315 562.8 1.407 13.90
5 minutes 7.446 554.9 1.361 12.24
3 minutes 7.500 534.5 1.297 11.32
2 minutes 7.524 521.4 1.231 10.80

Panel C: 1 lead and 1 lag

130 minutes 7.422 758.6 1.418 36.73
65 minutes 7.368 667.0 1.389 26.27
30 minutes 7.329 595.6 1.351 18.97
15 minutes 7.342 552.7 1.332 15.51
10 minutes 7.420 545.6 1.334 14.23
5 minutes 7.611 532.3 1.300 12.67
3 minutes 7.812 538.3 1.257 11.56
2 minutes 8.020 536.3 1.193 10.70
1 minute 8.525 533.4 1.025 9.47

Notes : The table shows mean and variance of the realized (co-)variances at various
sampling frequencies for 78 constituents of the S&P100 index from April 16, 1997,
through May 27, 2004 (1788 trading days). For the realized variance the mean reflects
the average taken over all 78 stocks and over all 1788 trading days. The variance is the
average taken over the 78 sample variances of the realized variances. For the realized
covariance the mean reflects the average taken over all 3003 pairs of stocks and over all
1788 trading days. The variance is the average taken over the 3003 sample variances of
the realized covariances. In Panel A the “standard” realized covariance matrix Vt−1,h

given in (1) is used. Panel B is based on the two time-scales estimator V TTS
t−1,h given

in (2), while Panel C shows results for the lead-lag corrected estimator V LL
t−1,h given in

(3), with Bartlett-kernel weights dl = 1 − l/(q + 1) and q = 1.
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Table 2: Optimal decay parameters

Frequency Standard Two time-scales 1 lead, 1 lag
α LogL α LogL α LogL

Panel A: Total Returns
Daily 0.0070 −300, 492 0.0070 −300, 492 0.0070 −300, 492

130 minutes 0.0119 −276, 376 0.0129 −275, 476 0.0111 −276, 939
65 minutes 0.0149 −274, 580 0.0156 −273, 578 0.0137 −274, 782
30 minutes 0.0204 −273, 747 0.0200 −272, 644 0.0179 −273, 519
15 minutes 0.0273 −273, 802 0.0256 −272, 707 0.0231 −273, 186
10 minutes 0.0329 −274, 121 0.0293 −273, 071 0.0273 −273, 261
5 minutes 0.0481 −275, 004 0.0356 −274, 024 0.0375 −273, 774
3 minutes 0.0678 −275, 975 0.0386 −274, 939 0.0493 −274, 407
2 minutes 0.1025 −276, 985 0.0385 −275, 729 0.0643 −275, 164
1 minute 0.2106 −278, 971 0.1255 −276, 723

Panel B: Excess Returns
Daily 0.0070 −298, 480 0.0070 −298, 480 0.0070 −298, 480

130 minutes 0.0119 −274, 455 0.0130 −273, 449 0.0112 −275, 033
65 minutes 0.0151 −272, 712 0.0158 −271, 507 0.0138 −272, 907
30 minutes 0.0208 −271, 926 0.0204 −270, 572 0.0183 −271, 669
15 minutes 0.0282 −272, 100 0.0263 −270, 702 0.0238 −271, 381
10 minutes 0.0342 −272, 516 0.0304 −271, 133 0.0282 −271, 522
5 minutes 0.0514 −273, 562 0.0373 −272, 238 0.0393 −272, 157
3 minutes 0.0757 −274, 663 0.0406 −273, 293 0.0529 −272, 925
2 minutes 0.1178 −275, 675 0.0402 −274, 192 0.0713 −273, 751
1 minute 0.2468 −277, 537 0.1440 −275, 393

Notes : The table shows the decay rates (α) that maximize the likelihood of the model in (13) and
(12) for daily data and (13) and (14) for intraday data. In Panel A the model is estimated for total
returns, whereas in Panel B the model is estimated for excess returns (stock returns minus S&P500
returns). The second and third column show the optimal decay rates and accompanying log-
likelihood values when the covariance updates are based on the standard realized (co-)variances,
the fourth and fifth column when the updates are based on the two time-scales estimator, and the
final two columns when 1 lead and 1 lag of the (co-)variances are added to the contemporaneous
(realized) covariances.
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Table 3: Out-of-sample performance - total returns

Min. variance
Target return portfolio portfolio

Frequency µP σP SR ∆1 ∆10 TO σMVP TO

Daily 8.84 14.83 0.596 16.8 14.00 16.4

Panel A: Standard
130 minutes 10.24 13.13 0.780 163.3 376.9 13.5 12.46 12.9
65 minutes 10.12 12.87 0.786 154.5 399.1 13.2 12.16 12.5
30 minutes 8.16 12.99 0.628 −42.8 187.4 13.4 12.17 12.7
15 minutes 8.82 13.12 0.673 22.0 237.3 13.8 12.21 13.0
10 minutes 8.29 13.30 0.623 −33.9 160.1 14.2 12.38 13.4
5 minutes 8.56 13.69 0.626 −11.5 135.4 15.6 12.68 14.7
3 minutes 8.48 13.92 0.610 −22.7 95.6 17.4 12.84 16.5
2 minutes 7.67 14.18 0.541 −107.6 −22.3 21.1 13.06 20.0
1 minute 7.89 14.44 0.546 −89.6 −38.3 28.6 13.33 26.9

Panel B: Two time-scales
130 minutes 9.27 13.04 0.711 67.8 292.6 13.2 12.26 12.7
65 minutes 8.82 12.88 0.685 25.0 268.3 12.4 12.10 11.9
30 minutes 8.16 12.88 0.633 −41.4 201.8 12.1 12.13 11.6
15 minutes 8.42 13.04 0.646 −17.3 208.0 12.4 12.24 11.8
10 minutes 8.78 13.17 0.667 17.3 226.2 12.6 12.33 12.0
5 minutes 9.18 13.49 0.680 52.1 222.5 12.9 12.57 12.2
3 minutes 9.14 13.73 0.665 44.9 186.2 12.8 12.73 12.0
2 minutes 9.21 13.91 0.662 49.8 168.3 12.4 12.88 11.6
1 minute

Panel C: 1 lead and 1 lag

130 minutes 10.23 13.11 0.780 162.8 378.8 13.6 12.44 13.0
65 minutes 10.25 12.87 0.797 168.0 412.9 13.3 12.16 12.6
30 minutes 9.07 12.81 0.708 50.8 302.7 13.2 12.01 12.6
15 minutes 8.41 12.89 0.653 −16.3 226.3 13.4 12.05 12.7
10 minutes 7.81 13.01 0.600 −78.2 149.6 13.7 12.15 12.9
5 minutes 8.54 13.28 0.643 −8.9 187.0 14.4 12.35 13.6
3 minutes 8.50 13.55 0.627 −15.9 147.6 15.6 12.57 14.8
2 minutes 8.05 13.80 0.583 −64.6 68.6 17.1 12.75 16.2
1 minute 8.06 14.10 0.571 −68.2 27.0 23.2 12.99 22.0

Notes : The table shows the out-of-sample performance of the overall minimum variance portfolio,
with weights given in (6), and the minimum variance portfolio given a target level of return of 10%,
with weights given in (8), constructed using rolling covariance matrix forecasts based on various
sampling frequencies and based on different ways of measuring the realized covariance matrix
(standard, two time-scales, and 1 lead and 1 lag). For the target return portfolios, we report the
mean return (µP ) and standard deviation (σP ) in annualized percentage points, the Sharpe ratio
(SR), the annualized basis points fee (∆γ) an investor with quadratic utility and constant relative
risk aversion of γ would pay to switch from the daily returns covariance matrix estimate to the
intraday returns of the optimal portfolios, and average daily turnover (TO) in percentage points.
For the minimum variance portfolios, we report the standard deviation (σMVP) in annualized
percentage points average daily turnover (TO) in percentage points.
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Table 4: Out-of-sample performance - excess returns

Min. TE
Target active return portfolio portfolio

Frequency µP TEP IR ∆1 ∆10 TO TEMTE TO

Daily 0.52 4.77 0.110 5.2 4.75 5.2

Panel A: Standard
130 minutes 0.45 4.55 0.099 −6.4 3.0 6.2 4.53 6.2
65 minutes 0.28 4.51 0.063 −22.7 −11.9 6.7 4.48 6.7
30 minutes 0.09 4.48 0.019 −42.4 −30.1 7.6 4.43 7.5
15 minutes 0.57 4.52 0.127 6.2 16.9 8.8 4.46 8.8
10 minutes 0.75 4.67 0.161 23.2 27.8 9.8 4.59 9.8
5 minutes 0.89 4.99 0.179 35.7 26.3 12.6 4.92 12.6
3 minutes 1.85 5.23 0.353 129.9 109.3 16.6 5.18 16.6
2 minutes 2.36 5.42 0.436 180.5 150.8 22.4 5.40 22.5
1 minute 1.39 5.79 0.241 81.7 33.3 36.2 5.78 36.3

Panel B: Two time-scales
130 minutes 0.54 4.26 0.126 3.7 24.4 4.4 4.24 4.4
65 minutes 0.44 4.21 0.105 −5.7 17.1 4.4 4.18 4.3
30 minutes 0.49 4.22 0.116 −0.9 21.5 4.7 4.19 4.6
15 minutes 0.20 4.32 0.046 −30.4 −11.8 5.5 4.28 5.4
10 minutes 0.56 4.43 0.126 5.0 19.1 6.2 4.38 6.1
5 minutes 1.13 4.78 0.236 60.5 60.1 7.9 4.72 7.9
3 minutes 1.81 5.16 0.351 126.9 109.6 9.5 5.11 9.5
2 minutes 2.28 5.51 0.414 172.1 138.0 11.1 5.45 11.1
1 minute

Panel C: 1 lead and 1 lag

130 minutes 0.18 4.58 0.038 −34.0 −25.9 6.2 4.56 6.1
65 minutes 0.32 4.50 0.071 −19.0 −7.8 6.3 4.48 6.3
30 minutes 0.41 4.44 0.092 −9.9 3.9 6.8 4.40 6.8
15 minutes 0.62 4.40 0.141 11.4 26.8 7.5 4.35 7.5
10 minutes 0.63 4.48 0.140 11.7 24.1 8.1 4.42 8.0
5 minutes 0.72 4.58 0.156 20.1 28.1 9.4 4.51 9.4
3 minutes 1.57 4.77 0.329 104.7 104.7 11.4 4.71 11.3
2 minutes 1.95 4.97 0.394 142.2 133.7 13.7 4.91 13.7
1 minute 2.16 5.33 0.406 161.3 135.9 22.2 5.31 22.3

Notes : The table shows the out-of-sample performance of the overall minimum tracking error
portfolio, with weights given in (6), and the minimum tracking error portfolio given a target
level of return of 5%, with weights given in (8), constructed using rolling covariance matrix
forecasts based on various sampling frequencies and based on different ways of measuring the
realized covariance matrix (standard, two time-scales, and 1 lead and 1 lag). For the target active
return portfolios, we report the mean active return (µP ) and tracking error (TEP ) in annualized
percentage points, the information ratio (IR), the annualized basis points fee (∆γ) an investor
with quadratic utility and constant relative risk aversion of γ would pay to switch from the
daily returns covariance matrix estimate to the intraday returns of the optimal portfolios, and
average daily turnover (TO) in percentage points. For the minimum tracking error portfolios,
we report the tracking error (TEMTE) in annualized percentage points average daily turnover
(TO) in percentage points.
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Table 5: Transaction costs and rebalancing frequency - total returns

Daily returns Intraday returns
c µP σP SR µP σP SR h ∆1 ∆10

Panel A: Daily rebalancing
0 8.84 14.83 0.596 10.12 12.87 0.786 65 154.5 399.1
2 8.49 14.83 0.572 9.84 12.87 0.765 65 162.7 407.0
4 8.12 14.83 0.548 9.56 12.87 0.743 65 171.0 415.1
6 7.75 14.82 0.523 9.27 12.87 0.720 65 179.6 423.5
8 7.37 14.82 0.497 8.98 12.87 0.698 65 188.3 431.9

10 6.98 14.82 0.471 8.68 12.87 0.674 65 197.2 440.6
12 6.58 14.82 0.444 8.37 12.87 0.651 65 206.3 449.5
14 6.18 14.82 0.417 8.06 12.87 0.626 65 215.6 458.6
16 5.76 14.82 0.389 7.74 12.87 0.601 65 225.1 467.9
18 5.33 14.82 0.360 7.41 12.87 0.576 65 234.9 477.4
20 4.90 14.81 0.330 7.08 12.87 0.550 65 244.9 487.2

Panel B: Weekly rebalancing
0 9.62 14.88 0.646 10.36 13.17 0.787 130 98.4 314.8
2 9.43 14.88 0.634 10.22 13.17 0.776 130 103.1 319.4
4 9.25 14.88 0.621 10.08 13.17 0.766 130 107.9 324.2
6 9.05 14.88 0.608 9.94 13.17 0.755 130 112.8 329.0
8 8.86 14.88 0.595 9.80 13.17 0.744 130 117.8 333.9

10 8.66 14.88 0.582 9.65 13.17 0.732 130 122.9 339.0
12 8.45 14.88 0.568 9.49 13.17 0.721 130 128.1 344.1
14 8.24 14.88 0.554 9.34 13.17 0.709 130 133.5 349.4
16 8.03 14.88 0.540 9.18 13.17 0.697 130 138.9 354.8
18 7.81 14.88 0.525 9.01 13.17 0.684 130 144.5 360.3
20 7.58 14.88 0.510 8.85 13.17 0.672 130 150.3 366.0

Panel C: Monthly rebalancing
0 10.53 14.95 0.704 10.36 13.31 0.779 130 7.0 217.1
2 10.43 14.95 0.698 10.29 13.31 0.774 130 9.3 219.4
4 10.34 14.95 0.691 10.22 13.31 0.768 130 11.6 221.7
6 10.24 14.95 0.685 10.15 13.31 0.763 130 14.0 224.1
8 10.14 14.95 0.678 10.07 13.31 0.757 130 16.4 226.5

10 10.04 14.95 0.671 9.99 13.31 0.751 130 18.9 229.0
12 9.93 14.95 0.664 9.91 13.31 0.745 130 21.5 231.5
14 9.83 14.95 0.657 9.83 13.30 0.739 130 24.1 234.1
16 9.72 14.95 0.650 9.75 13.30 0.733 130 26.7 236.7
18 9.60 14.95 0.642 9.67 13.30 0.727 130 29.5 239.4
20 9.49 14.95 0.635 9.58 13.30 0.720 130 32.3 242.2

Notes: The table shows the out-of-sample performance of the the minimum variance portfolio given
a target level of return of 10%, with weights given in (8), constructed using rolling covariance matrix
forecasts based on daily returns and on intraday returns at the sampling frequency that maximized the
information ratio, based on the ‘standard’ way of measuring the realized covariance matrix. We report
the mean return (µP ) and standard deviation (σP ) in annualized percentage points, the Sharpe ratio
(SR), and the annualized basis points fee (∆γ) an investor with quadratic utility and constant relative
risk aversion of γ would pay to switch from the daily returns covariance matrix estimate to the intraday
returns of the optimal portfolios. The column headed c indicates the level of transaction costs, expressed
in annualized percentage points, which correspond with the reduction in the annualized portfolio return
if the entire portfolio would have to be traded every day during the whole year. The column headed h
indicates the optimal sampling frequency, expressed as the length of the corresponding return interval
in minutes.
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Table 6: Transaction costs and rebalancing frequency - excess returns

Daily returns Intraday returns
c µP TEP IR µP TEP IR h ∆1 ∆10

Panel A: Daily rebalancing
0 0.52 4.77 0.110 2.36 5.42 0.436 2 180.5 150.8
2 0.41 4.77 0.085 1.91 5.42 0.352 2 146.6 116.7
4 0.29 4.77 0.061 1.44 5.42 0.266 2 111.9 81.9
6 0.17 4.77 0.035 0.97 5.42 0.178 2 76.5 46.4
8 0.05 4.77 0.010 0.48 5.43 0.089 2 40.3 10.1

10 −0.08 4.76 −0.017 0.08 5.24 0.015 3 13.5 −7.7
12 −0.21 4.76 −0.044 −0.30 5.24 −0.057 3 −11.3 −32.7
14 −0.34 4.76 −0.072 −0.68 5.24 −0.131 3 −36.7 −58.2
16 −0.48 4.76 −0.100 −1.08 5.24 −0.206 3 −62.7 −84.3
18 −0.61 4.76 −0.129 −1.48 5.24 −0.283 3 −89.3 −111.1
20 −0.76 4.76 −0.159 −1.90 5.24 −0.362 3 −116.6 −138.5

Panel B: Weekly rebalancing
0 0.23 4.81 0.048 2.36 5.29 0.447 2 211.0 189.3
2 0.17 4.81 0.035 2.16 5.29 0.408 2 196.6 174.9
4 0.11 4.81 0.023 1.96 5.29 0.369 2 182.0 160.2
6 0.05 4.81 0.010 1.74 5.29 0.330 2 167.0 145.2
8 −0.01 4.81 −0.002 1.53 5.29 0.289 2 151.7 129.9

10 −0.08 4.81 −0.016 1.30 5.18 0.251 3 135.8 119.5
12 −0.14 4.81 −0.029 1.13 5.18 0.217 3 124.7 108.3
14 −0.21 4.81 −0.043 0.95 5.18 0.183 3 113.3 96.9
16 −0.27 4.81 −0.057 0.76 5.18 0.147 3 101.7 85.3
18 −0.34 4.81 −0.071 0.57 5.18 0.111 3 89.8 73.3
20 −0.42 4.81 −0.086 0.38 5.18 0.073 3 77.5 61.1

Panel C: Monthly rebalancing
0 0.22 4.88 0.044 3.45 5.28 0.654 1 321.5 303.0
2 0.19 4.88 0.038 3.36 5.28 0.636 1 315.2 296.7
4 0.16 4.88 0.032 3.27 5.28 0.619 1 308.8 290.3
6 0.13 4.88 0.026 3.17 5.28 0.601 1 302.3 283.8
8 0.10 4.87 0.020 3.07 5.28 0.582 1 295.6 277.1

10 0.07 4.87 0.013 2.97 5.28 0.563 1 288.8 270.3
12 0.03 4.87 0.007 2.87 5.28 0.544 1 281.8 263.3
14 0.00 4.87 0.000 2.77 5.28 0.524 1 274.7 256.2
16 −0.03 4.87 −0.007 2.66 5.28 0.504 1 267.4 248.9
18 −0.07 4.87 −0.014 2.55 5.28 0.483 1 259.9 241.4
20 −0.10 4.87 −0.021 2.44 5.28 0.462 1 252.3 233.7

Notes: The table shows the out-of-sample performance of the the minimum tracking error portfolio given a
target level of return of 5%, with weights given in (8), constructed using rolling covariance matrix forecasts
based on daily returns and on intraday returns at the sampling frequency that maximized the information ratio,
based on the ‘standard’ way of measuring the realized covariance matrix. We report the mean active return
(µP ) and tracking error (TEP ) in annualized percentage points, the information ratio (IR), the annualized
basis points fee (∆γ) an investor with quadratic utility and constant relative risk aversion of γ would pay to
switch from the daily returns covariance matrix estimate to the intraday returns of the optimal portfolios.
The column headed c indicates the level of transaction costs, expressed in annualized percentage points, which
correspond with the reduction in the annualized portfolio return if the entire portfolio would have to be traded
every day during the whole year. The column headed h indicates the optimal sampling frequency, expressed
as the length of the corresponding return interval in minutes.

33



Table 7: Out-of-sample α’s

Target return portfolio Minimum risk portfolio
αh SR/IR αh σP /TEP

Frequency Mean St.Dev Perf. LogL Mean St.Dev Perf. LogL

Panel A: Total Returns
Daily 0.001 0.003 0.507 0.482 0.004 0.002 13.770 13.669

130 minutes 0.069 0.037 0.534 0.626 0.014 0.002 12.534 12.229
65 minutes 0.087 0.107 0.262 0.640 0.018 0.003 11.937 11.945
30 minutes 0.035 0.020 0.436 0.519 0.024 0.003 11.986 11.972
15 minutes 0.097 0.130 0.261 0.603 0.034 0.005 12.061 12.034
10 minutes 0.352 0.034 0.554 0.561 0.042 0.006 12.220 12.207
5 minutes 0.312 0.086 0.434 0.597 0.047 0.005 12.471 12.466
3 minutes 0.223 0.189 0.471 0.578 0.080 0.030 12.592 12.556
2 minutes 0.215 0.194 0.452 0.526 0.107 0.076 12.797 12.755
1 minute 0.361 0.116 0.478 0.516 0.124 0.076 13.002 12.971

Panel B: Excess returns
Daily 0.041 0.004 0.357 −0.031 0.006 0.001 4.858 4.871

130 minutes 0.004 0.006 0.167 0.122 0.008 0.003 4.593 4.581
65 minutes 0.002 0.002 0.298 0.161 0.008 0.004 4.595 4.554
30 minutes 0.002 0.009 0.181 0.096 0.011 0.005 4.512 4.477
15 minutes 0.001 0.001 0.376 0.198 0.012 0.006 4.516 4.483
10 minutes 0.004 0.012 0.203 0.312 0.012 0.006 4.630 4.629
5 minutes 0.001 0.002 0.395 0.234 0.010 0.005 4.814 4.949
3 minutes 0.009 0.010 0.239 0.348 0.010 0.005 4.970 5.220
2 minutes 0.024 0.041 0.269 0.373 0.011 0.005 5.095 5.514
1 minute 0.031 0.028 0.453 0.184 0.015 0.006 5.249 5.864

Notes : The table shows the out-of-sample performance of the overall minimum volatility (tracking
error) portfolio, with weights given in (6), and the minimum variance portfolio given an annualized
target level of (active) return of 10% (5%), with weights given in (8), constructed using rolling co-
variance matrix forecasts based on various sampling frequencies and based on the ‘standard’ realized
covariance matrix. Panel A shows results for total returns and Panel B for excess returns (stock
returns minus S&P 500 returns). The optimal decay parameters are determined by optimizing port-
folio performance using an expanding window period (starting with 250 days). Columns 2 and 3,
and 6 and 7, report the mean and standard deviation of the resulting estimates of αh. Columns 4
and 8, headed ‘Perf.’, show the Sharpe ratio and volatility (panel A) or the information ratio and
tracking error (panel (B) for the resulting portfolios. Columns 5 and 9, headed ‘LogL’, show the
SR/IR and σP /TEP for portfolios constructed with decay parameters for the conditional covariance
matrix that are estimated by maximizing the log-likelihood over the complete out-of-sample period.
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