
Moraga-Gonzalez, Jose Luis; Sandor, Zsolt; Wildenbeest, Matthijs R.

Working Paper

Nonparametric Estimation of the Costs of Non-Sequential
Search

Tinbergen Institute Discussion Paper, No. 07-102/1

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Moraga-Gonzalez, Jose Luis; Sandor, Zsolt; Wildenbeest, Matthijs R. (2008) :
Nonparametric Estimation of the Costs of Non-Sequential Search, Tinbergen Institute Discussion
Paper, No. 07-102/1, Tinbergen Institute, Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/86383

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/86383
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


TI 2007-102/1 
Tinbergen Institute Discussion Paper 

 

Nonparametric Estimation of the 
Costs of Non-Sequential Search 

 José Luis Moraga-González1 

Zsolt Sándor2 

Matthijs R. Wildenbeest3 

 

1 University of Groningen, and CESifo; 
2 Universidad Carlos III de Madrid; 
3 Kelley School of Business, Indiana University. 

 



  

Tinbergen Institute 
The Tinbergen Institute is the institute for 
economic research of the Erasmus Universiteit 
Rotterdam, Universiteit van Amsterdam, and Vrije 
Universiteit Amsterdam. 
 
Tinbergen Institute Amsterdam 
Roetersstraat 31 
1018 WB Amsterdam 
The Netherlands 
Tel.: +31(0)20 551 3500 
Fax: +31(0)20 551 3555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 
 
 
Most TI discussion papers can be downloaded at 
http://www.tinbergen.nl. 
 



Nonparametric Estimation of the Costs of

Non-Sequential Search ∗
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Zsolt Sándor‡

Matthijs R. Wildenbeest§

December 2007

Abstract

We study a consumer non-sequential search oligopoly model with search cost heterogeneity.
We first prove that an equilibrium in mixed strategies always exists. We then examine the
nonparametric identification and estimation of the costs of search. We find that the sequence
of points on the support of the search cost distribution that can be identified is convergent to
zero as the number of firms increases. As a result, when the econometrician has price data from
only one market, the search cost distribution cannot be identified accurately at quantiles other
than the lowest. To solve this pitfall, we propose to consider a richer framework where the
researcher has price data from many markets with the same underlying search cost distribution.
We provide conditions under which pooling the data allows for the identification of the search
cost distribution at all the points of its support. We estimate the search cost density function
directly by a semi-nonparametric density estimator whose parameters are chosen to maximize
the joint likelihood corresponding to all the markets. A Monte Carlo study shows the advantages
of the new approach and an application using a data set of online prices for memory chips is
presented.
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1 Introduction

A significant body of work in economics has shown that search costs have far-reaching effects

in economic activity. Well-known facts are that search costs alone can lead to price dispersion

(Burdett and Judd, 1983; Rob, 1985; Stahl, 1989; Varian, 1980) as well as to wage and technology

dispersion (Burdett and Mortensen, 1998; Acemoglu and Shimer, 2000). Search costs can also

generate excessive product diversity in differentiated product markets (Anderson and Renault,

2000; Wolinsky, 1984) as well as inefficient quality investments (Wolinsky, 2005). The existence of

search costs can also explain asymmetric price-cost adjustments (Lewis, 2003; Tappata, 2007) and

the emergence of different price institutions (Bester, 1994).

Given the importance of the costs of search in shaping economic outcomes, part of the recent

research in the area is focusing on developing techniques to estimate search costs. This research

effort goes along two dimensions. On the one hand, authors are incorporating search cost hetero-

geneity and market power elements in their models, which makes them empirically more appealing

than earlier models. On the other hand, several estimation procedures have been proposed. Hong

and Shum (2006) were the first to develop a structural method to retrieve information on search

costs using market data. They focused on markets for homogeneous goods and presented various

approaches to estimate non-sequential and sequential search models. Moraga-González and Wilden-

beest (2007) extend the approach of Hong and Shum (2006) to the case of oligopoly and present a

maximum likelihood estimation method. Hortaçsu and Syverson (2004) studied a sequential search

model where search frictions coexist with vertical product differentiation. In that case, both price

and quantity data must be available to the econometrician.

This paper constitutes a twofold contribution to this recent literature. We study a version of

the non-sequential search model presented in Burdett and Judd (1983). There are three differences

between our model and Burdett and Judd’s original model. First, we consider the oligopoly case;

second, we relax the assumption that the first price quotation is obtained at no cost; and third,

consumers have heterogeneous search costs. Discarding any of these generalizations leads to biases

in the estimates.1

1The assumption that the number of firms is finite is useful since it allows the researcher to distinguish between
the variation in prices due to changes in the number of competitors from that due to changes in search frictions.
The assumption that consumers obtain the first price at no cost has been widely adopted in the search literature
and it is not without loss of generality. It implies that all consumers buy in equilibrium so firms may have so weak
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There are several reasons for focusing on non-sequential search models. First, non-sequential

search is appealing in a number of relevant market situations, like when looking for a job, a house, a

removal company, a mortgage, a subcontractor, or a collaborator. These situations have in common

that some time elapses between the moment at which a person searches (e.g. applies for a job) and

the moment at which the search outcome is observed (e.g. is hired or not). This feature, as shown

in Morgan and Manning (1985), makes searching non-sequentially optimal.2 The second reason

for focusing on the non-sequential search model is that, as shown in Hong and Shum (2006), this

model can be estimated using only price data. Since researchers often encounter situations where

the available data are limited, it is encouraging to have structural models which can be estimated

in the absence of quantities and/or cost information.

Our first contribution pertains to the study of existence, uniqueness, and characterization of

equilibrium. We first show that our model can only have mixed strategy equilibria.3 Despite the

fact that the equilibrium price distribution cannot be obtained in closed form, we provide a useful

characterization result. We show that, using the inverse of the equilibrium price distribution, one

can describe a market (firm and consumer) equilibrium as the solution of a non-linear system of

equations. This result is useful for two reasons. On the one hand, it provides a straightforward way

to simulate a market equilibrium and therefore it helps infer the effects of various public policies.

On the other hand, it helps us tackle the issue of existence of equilibrium by means of a fixed point

argument. We show that an equilibrium exists. Moreover, for the special case when there are two

firms operating in the market and when the curvature of the search cost distribution is small, we

can show the equilibrium is unique.

The second contribution of this paper relates to the study of the nonparametric identification

and estimation of the costs of non-sequential search. Given that prices reflect the search behavior

of groups of consumers and not the behavior of individual buyers, it turns out that the search cost

distribution can only be identified at a series of critical points that are determined by consumers’

incentives to cut each other’s prices that it potentially generates Diamond-like types of equilibrium. The assumption
that consumers differ in their opportunity cost of time and therefore in their costs of search makes the model more
flexible and consequently empirically more widely applicable.

2In fact, non-sequential search models have been very influential in a well-established literature in labor economics
(see e.g. Burdett and Mortensen, 1998; Van den Berg and Ridder, 1998; Burdett and Coles, 2003). For a first attempt
to estimate search cost distributions in labor markets see Gautier et al. (2007).

3In Burdett and Judd’s (1983) original model there is a pure-strategy equilibrium where all firms charge the
monopoly price. This equilibrium fails to exist in our model because we drop the costless first-search assumption.
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optimal search. In fact, if there are N firms operating in the market then only N points of

the search cost distribution can be identified, each point corresponding to the search cost of the

marginal consumer that is indifferent between searching k and k + 1 times. Identification of the

search cost distribution in its full support, as pointed out by Hong and Shum (2006, p.262), is

therefore challenging. One possibility is to consider markets with a very large number of firms. We

prove that complete knowledge of the equilibrium price distribution from a market with infinitely

many firms does not suffice to identify the search cost distribution completely. The reason is that

the (infinite) series of critical search costs that can be retrieved from the data turns out to be

convergent to zero. This property, which stems from the fact that the marginal gains from an

extra search are declining in the number of searches, implies that the set of search cost values the

econometrician can identify, even if the market hosts infinitely many firms, is not dense in the

support of the search cost distribution. As a result, non-parametric identification of the search cost

distribution at quantiles other than the lowest fails.

The importance of identifying consumer search costs accurately is illustrated by a simulation

study. In this study, we first generate data by simulating the equilibrium in a market operated

by three firms. Then we calculate the points of the search cost distribution that can be identified

if the researcher uses data from only one market and construct an estimate of the search cost

distribution by simple interpolation. The study proceeds by comparing the true effects of a merger

with the predicted effects that would obtain from simulating the counterfactual using the estimated

search cost distribution. The simulations reveal that the true effects of the merger differ from the

estimated effects not only quantitatively but also qualitatively. In fact, the econometrician would

wrongly be led to believe a merger would increase market average prices while in reality mean price

would go down after a merger.

To overcome the identification problem we propose to consider a different framework where

the econometrician has price data from several oligopolistic markets. In particular, we consider

markets with the common feature that the search cost distribution is the same, while consumer

valuations differ across markets. We provide conditions under which the search cost distribution

can be identified fully in such a setting; the reason is that every market generates a distinctive set

of search cost values for which the econometrician can retrieve the density of search costs, and this

forces the search cost distribution to be uniquely determined for a larger set of points.
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Given that we need to pool price data from multiple markets to identify and quantify search

costs, it is difficult to apply the spline approximation methods employed earlier in the literature

(cf. Hong and Shum, 2006; Hortacsu and Syverson, 2004; and Moraga-González and Wildenbeest,

2007). The reason is that spline approximations use procedures in which distinct markets are

not linked via the same underlying search cost distribution. To exploit such linkage between

markets, we propose to estimate the search cost density function directly by a flexible polynomial-

type parametric function, namely, a semi-nonparametric (SNP) density estimator (Gallant and

Nychka, 1987). Because the SNP density estimators approximate arbitrarily closely a large class

of sufficiently smooth density functions (Gallant and Nychka, 1987), in this way we obtain an

essentially nonparametric estimator of the search cost distribution common to all the markets.

To illustrate how our method works with real-world data, we apply the SNP estimation proce-

dure to a data set of online prices for ten notebook memory chips. Our estimate of the search cost

distribution shows that consumers have either quite high or quite low search costs.4 Consumers

with high search costs do not compare prices and this gives substantial market power to the firms;

as a result, estimated price-cost margins are significantly larger than what one would expect on the

basis of the observed large number of firms operating in each market.

The structure of the paper is as follows. In the next section, we present the non-sequential

consumer search model studied here. In Section 3 we discuss existence and uniqueness of a price

dispersed symmetric equilibrium. Our identification results and our SNP estimation method are

presented in Section 4. In this section we also present some simulation results illustrating the scope

of the identification problem. In Section 5 we estimate the search cost distribution underlying price

data from ten online markets for memory chips. Finally, Section 6 concludes. The proofs of all

statements are placed in the Appendix to ease the reading.

2 The model

We examine a model of firm competition in the presence of consumer search. The model is an

oligopolistic version of Burdett and Judd (1983) with consumer search cost heterogeneity and

4A similar finding has already been reported in earlier work (cf. Moraga-González and Wildenbeest, 2007) so it is
encouraging to see that it does depend neither on the estimation method nor on the dataset.
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where the first price quotation is also costly to obtain.5 There are N firms producing a good at

constant returns to scale. Their identical unit cost is equal to r. There is a unit mass of buyers.

Each consumer wishes to purchase a single unit of the good at most. We assume that the maximum

price any buyer is willing to pay for the good is v. Consumers must engage in costly search to

observe prices. Assume they search non-sequentially. Once a consumer has observed the desired

number of prices, he/she chooses to buy from the store charging the lowest price. We assume that

consumers differ in their search costs. A buyer’s search cost is drawn independently from a common

atomless distribution G(c) with support (0,∞) and positive density g(c) everywhere. A consumer

with search cost c sampling k firms incurs a total search cost kc.

Firms and buyers play a simultaneous moves game. An individual firm chooses its price taking

price choices of the rivals as well as consumers’ search behavior as given. A firm i’s strategy is

denoted by a distribution of prices Fi(p). Let F−i(p) denote the vector of prices charged by firms

other than i. The (expected) profit to firm i from charging price pi given rivals’ strategies is denoted

Π(pi, F−i(p)). Likewise, an individual buyer takes as given firm pricing and decides on his/her

optimal search strategy to maximize his/her expected utility. The strategy of a consumer with

search cost c is then a number k of prices to sample. Let the fraction of consumers sampling k firms

be denoted by µk. We shall concentrate on symmetric Nash equilibria. A symmetric equilibrium is

a distribution of prices F (p) and a collection {µ0, µ1, . . . , µN} such that (a) Πi(p, F−i(p)) is equal to

a constant Π for all p in the support of F (p), ∀i; (b) Πi(p, F−i(p)) ≤ Π for all p, ∀i; (c) a consumer

sampling k firms obtains no lower utility than by sampling any other number of firms; and (d)∑N
k=0 µk = 1. Let us denote the equilibrium density of prices by f(p), with maximum price p and

minimum price p.

3 Theoretical analysis

In this section we study the existence and the characterization of Nash equilibrium. Our first result

indicates that, for an equilibrium to exist, there must be some consumers who search just once and

others who search more than once.

5To put the model in perspective, we note that there are only two other papers studying the estimation of non-
sequential search models, namely, Hong and Shum (2006) and Moraga-González and Wildenbeest (2007). By relaxing
the assumption that the first price quotation is for free, the model presented here features truly costly search and
therefore generalizes previous work.

6



Proposition 1 If a symmetric equilibrium exists, then 1 > µ1 > 0 and µk > 0 for some k =

2, 3, . . . , N .

The intuition behind this result is simple. If all consumers did search at least twice, then all

firms would be subject to price comparisons with rival firms so firm pricing would be competitive;

however this is contradictory because then consumers would not be willing to search that much. If

no consumer compared prices instead, then firms would charge the monopoly price; however, this

leads to a contradiction because in that case consumers would not be willing to search at all.6

Our next observation is that, given consumer behavior, for an equilibrium to exist it must be

the case that firm pricing is characterized by mixed strategies.

Proposition 2 If a symmetric equilibrium exists, F (p) must be atomless with upper bound equal

to v.

The implication of this result is that the proportion of consumers searching for k prices must

be strictly positive. We now discuss consumers’ search behavior. Given that firm pricing is char-

acterized by an atomless price distribution, a consumer with search cost c will choose to sample k

firms provided that the following three inequalities hold:

v − E[min{p1, p2, . . . , pk}]− kc > 0;

E[min{p1, p2, . . . , pk−1}]− E[min{p1, p2, . . . , pk}] > c;

E[min{p1, p2, . . . , pk+1}]− E[min{p1, p2, . . . , pk}] < c,

where E denotes the expectation operator. The first condition ensures that a consumer derives pos-

itive utility from his/her search strategy. The second and third conditions ensure that a consumer

finds it optimal to search for k prices, neither more nor less.

Since the search cost distribution G(c) has support (0,∞) and positive density everywhere,

there exists a consumer indifferent between not searching at all and searching once. Let the search

cost of this consumer be denoted c0. Then

c0 = v − E[p], (1)

6In the original model of Burdett and Judd (1983) the first price quotation is obtained at no cost and this implies
that there always exists an equilibrium where all firms charge the monopoly price.
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since the expected surplus for a consumer who searches one time is v − E[p]. Consumers with a

search cost higher than c0 obtain negative surplus if they search. As a result, the share of consumers

who do not participate in the market altogether is µ0 =
∫∞
c0

dG(c) > 0.

Note now that since F (p) is atomless, the expected value of the order statistic E[min{p1, p2, . . . , pk}]

is a decreasing and convex function of k. Therefore there exists a consumer indifferent between

searching k times and searching k + 1 times. Let ck be the search cost of this consumer. Then ck

satisfies v − E[min{p1, p2, . . . , pk}]− kck = v − E[min{p1, p2, . . . , pk+1}]− (k + 1)ck, i.e.,

ck = E[min{p1, p2, . . . , pk}]− E[min{p1, p2, . . . , pk+1}], k = 1, 2, . . . , N − 1. (2)

Consumers whose search cost lies in between ck−1 and ck search k times. As a result µk =∫ ck−1

ck
dG(c) > 0, k = 2, 3, . . . , N . The following result summarizes:

Proposition 3 Given any atomless price distribution F (p), optimal consumer search behavior is

characterized as follows: consumers whose search cost c < cN−1 search for N prices, consumers

whose search cost c ∈ (ck−1, ck) search for k prices, k = 1, 2, . . . , N − 1, and consumers whose

search cost c > c0 stay out of the market, where ck, k = 0, 1, 2, . . . , N − 1, is given by equations (1)

and (2).

Proposition 3 shows that for any given atomless price distribution optimal consumer search

leads to a unique grouping of consumers.

We now examine firm pricing behavior. Given consumer search strategies the expected profit

to firm i from charging price pi when its rivals choose a random pricing strategy according to the

cumulative distribution F (p) is

Πi(pi;F (p)) = (pi − r)

[
N∑

k=1

λkµk(1− F (pi))k−1

]
,

where λk is the probability that a consumer sampling k firms is informed of the price of firm i. Firm

i obtains a per consumer profit of pi − r and sells to a consumer who compares k prices whenever

the price of the other k− 1 firms is higher than the price of firm i, which happens with probability

(1− F (pi))k−1. The probability λk is simply the urn-ball probability that a consumer sampling k

firms samples firm i, i.e., λk = k/N . In equilibrium, a firm must be indifferent between charging

any price in the support of F (p) and charging the upper bound p. Thus, any price in the support
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of F (p) must satisfy Πi(pi;F (p)) = Πi(p;F (p)). Since Πi(p;F (p)) is monotonically increasing in p,

it must be the case that p = v. As a result, equilibrium requires

(pi − r)

[
N∑

k=1

kµk(1− F (pi))k−1

]
= µ1(v − r). (3)

Unfortunately, this equation cannot be solved for F (pi) analytically. However, the minimum price

charged in the market can be found by setting F (p) = 0 and solving it for p. This yields:

p =
µ1(v − r)∑N

k=1 kµk

+ r. (4)

To prove existence of an equilibrium price distribution F (pi), let us rewrite equation (3) as follows:

N∑
k=1

kµk(1− F (pi))k−1 =
µ1(v − r)
(pi − r)

. (5)

Note that the RHS of equation (5) is positive and does not depend on F (pi). By contrast, since

F (pi) must take values on [0, 1], the LHS of equation (5) is a positive-valued function that decreases

in F (pi) monotonically. At F (pi) = 0, the LHS takes on value
∑N

k=1 kµk, while at pi = v it takes on

value µ1. As a result, for every price pi ∈ (p, v), there is a unique solution to equation (5) satisfying

F (pi) ∈ [0, 1]; moreover, the solution F (pi) is monotonically increasing in pi. The following result

summarizes these findings.

Proposition 4 Given consumer search behavior {µk}N
k=0, there exists a unique symmetric equi-

librium price distribution F (p). In equilibrium firms charge prices randomly chosen from the set[
µ1(v−r)PN

k=1 kµk
+ r, v

]
according to the price distribution defined implicitly by equation (3).

Proposition 4 shows that the equilibrium price distribution is unique for any given grouping

of consumers. For the price distribution in Proposition 4 to be an equilibrium of the game, the

conjectured grouping of consumers has to be the outcome of optimal consumer search. This requires

that the following system of equations holds:

µk =
∫ ck−1

ck

dG(c), for all k = 1, 2, . . . , N − 1; (6a)

µN =
∫ cN−1

0
dG(c), (6b)
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with µ0 = 1−
∑N

k=1 µk and where c0 and ck, k = 1, 2, . . . , N − 1 are the solutions to

c0 = v − E[p]; (7a)

ck = E[min{p1, p2, . . . , pk}]− E[min{p1, p2, . . . , pk+1}], k = 1, 2, . . . , N − 1, (7b)

where the expectation operator is taken over the distribution of prices which solves equation (3).

Using the distributions of the order statistics, and after successively integrating by parts, we

can rewrite equations (7a) and (7b) as follows:

c0 =

v∫
p

F (p)dp; (8a)

ck =

v∫
p

F (p)(1− F (p))kdp, k = 1, 2, . . . , N − 1. (8b)

F (p) is monotonically increasing in p so we can use equation (3) to find its inverse:

p(z) =
µ1(v − r)∑N

k=1 kµk(1− z)k−1
+ r. (9)

Using this inverse function, integration by parts and the change of variables z = F (p) in equations

(8a) and (8b) yields:

c0 = v −
∫ 1

0
p(z)dz; (10a)

ck =

1∫
0

p(z)[(k + 1)z − 1](1− z)k−1dz, k = 1, 2, . . . , N − 1. (10b)

Therefore we can state that:

Proposition 5 If a symmetric equilibrium of the game exists then consumers search according to

Proposition 3, firms set prices according to Proposition 4, and the series of critical cutoff points

{ck}N−1
k=0 is given by the solution to the system of equations:

c0 = (v − r)

(
1−

∫ 1

0

G(c0)−G(c1)∑N
k=1 k[G(ck−1)−G(ck)]uk−1

du

)
; (11a)

ck = (v − r)

1∫
0

[G(c0)−G(c1)]
[
kuk−1 − (k + 1) uk

]∑N
k=1 k[G(ck−1)−G(ck)]uk−1

du, ∀k. (11b)
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This result is useful for two reasons. First, it provides a straightforward way to simulate the market

equilibrium. For fixed v, r and G(c), the system of equations (11a)–(11b) can be solved numerically.

If a solution exists, then the consumer equilibrium is given by (6a)–(6b) and the price distribution

follows readily from equation (9). Secondly, this result enables us to address the existence and

uniqueness of equilibrium issues, which are the subject of our next statement.

Theorem 1 For any consumer valuation v and firm marginal cost r such that v > r ≥ 0 and for

any search cost distribution function G(c) with support (0,∞) such that either g(0) > 0 or g(0) = 0

and g′(0) > 0, an equilibrium exists in a market with an arbitrary number of firms N . Moreover,

when N = 2 and g′(·) ' 0, there exists a unique equilibrium.

The proof is in the Appendix.7

4 Statistical analysis

4.1 Identification

In order to study the question whether the model can be identified, we ask whether the model

provides sufficient information to recover the unknowns of interest given that we have full knowledge

of the price distribution. This kind of treatment of the identification problem is in the spirit of

Koopmans and Reiersøl (1950). In our model, complete knowledge of the price distribution in a

market can be obtained if the econometrician observes the prices of (countably) infinitely many

firms. In this situation the model transforms the price distribution in a market into an infinite

sequence of points of the search cost distribution. This latter statement is proved in Proposition 6

below, but here we summarize the arguments behind it. The points of the search cost distribution

correspond to the sequence {ck}k≥0, which can be determined from equations (8a) and (8b). The

values of the search cost distribution function are determined from the sequence {µk}k≥1 (see

equations (6a) and (6b)), where the µk’s are determined from equation (3). In this section we

maintain the assumption that the sequences {ck}k≥0 and {µk}k≥1 exist.8

7Simulations of the model for different parameters and search cost distributions suggest the uniqueness result is
more general. Proving it turns out to be difficult since we can’t compute the equilibrium explicitly.

8This assumption is necessary because we have not been able to adapt the proof of existence of equilibrium in
Theorem 1 to the case of infinitely many firms. However, since we have proved equilibrium existence for an arbitrary
number of firms N , the identification results from this section can be viewed as an approximation for the case when
the N is finite but sufficiently large to provide reliable information on the price distribution.
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Based on the fact that the model transforms the price distribution in a market into an infinite

sequence of points of the search cost distribution, identification focuses on the question whether

the model can recover the search cost distribution on its full support. We present three results

here. Our first result provides conditions for identifying the search cost distribution at the cutoff

points ck when we observe the equilibrium price distribution in a market. More precisely, it says

that if we know the price distribution F (p), r, and µ0 then we can identify the value of the search

cost distribution corresponding to the cutoff points ck’s. The second result shows that we cannot

identify the search cost distribution on its whole support when we observe prices from only one

market. Finally, the third result considers the case when we observe prices from several markets.

It provides conditions for identifying the search cost distribution on the interval [0, sup c0], where

sup c0 is the supremum of the set of c0-cutoff points from all markets.

Proposition 6 Suppose that the triples of variables (F, {µk}k≥1, {ck}k≥0) and (F ′, {µ′k}k≥1, {c′k}k≥0)

are generated by the triples of variables (G, v, r) and (G′, v′, r′), respectively, where G and G′ are

distribution functions with support (0,∞) and positive density on this support. Suppose also that F

is a distribution function with support (p, p) and that F ′ = F . In addition, assume the conditions

6.1 r′ = r,

6.2 µ′0 = µ0.

Then µ′k = µk, c′k = ck and G′(ck) = G(ck) for any k ≥ 0, that is, the points of the search cost

distribution corresponding to the ck’s are identified.

Regarding the conditions in this Proposition, we note that Condition 6.1 is adopted to make the

problem of identification analytically tractable (see Remark A.1 on p.40 in the Appendix for some

intuition). With respect to Condition 6.2, note that it simply reflects the econometrician’s need to

observe µ0.

Even though the search cost distribution can be identified at the cutoff points, our second result

shows that identification of the whole search cost distribution using data from only one market is

not possible. Intuitively, the reason is that the sequence of critical points {ck}k≥0 is convergent to

zero so the price distribution does not provide the necessary information to identify search costs at

quantiles other than the lowest.
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Proposition 7 Suppose that (F, {µk}k≥1, {ck}k≥0) and (F ′, {µ′k}k≥1, {c′k}k≥0) are generated by

(G, v, r) and (G′, v′, r′), respectively, where G and G′ are distribution functions with support (0,∞)

and positive density on this support. Suppose also that F and F ′ are distribution functions with

supports (p, p) and (p′, p′), respectively. In addition, assume the conditions

7.1 r′ = r and v′ = v,

7.2 c′k = ck for any k ≥ 0,

7.3 G′(ck) = G(ck) for any k ≥ 0.

Then F ′ = F .

Proposition 7 implies that the same price distribution can be generated by two search cost dis-

tributions G and G′ that are different for a non-negligible set of points, that is, outside the set

{c0, c1, . . .} (cf. Conditions 7.2 and 7.3). Since the sequence of cutoff points {ck}k≥0 converges

monotonically to zero, it is not dense in any arbitrary interval of the support (0,∞) of the search

cost distribution.

This observation can be seen in Figure 1 where we plot the critical cutoff points ck for different

number of firms (N = 10, 15, 50, and 100). In these plots we set v = 500 and r = 50, and

assume consumer search costs follow a log-normal distribution with parameters (ν, σ) = (0.5, 5).

The graphs illustrate how the sequence of critical search costs {ck}k≥0 is convergent to zero so

increasing the number of firms does not help much to get information on the magnitude of search

costs at high quantiles.

To overcome this identification problem, we propose to consider a richer framework where the

econometrician has price data from several markets. In particular, we consider markets where the

difference between consumer valuations and firms marginal costs are different but the search cost

distribution is the same across markets. Intuitively, this solves the problem of identification because

every market generates a distinctive set of cutoff points, and this forces the search cost distribution

function to be uniquely determined for a larger set of points.

Proposition 8 Assume that there are infinitely (countably) many markets, indexed by m, all of

them with the same underlying search cost cumulative distribution function G with support (0,∞).
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(a) N = 10 (b) N = 15

(c) N = 50 (d) N = 100

Figure 1: Non-identification with data from only one market
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Assume also and that the conditions in Proposition 6 are satisfied so that in each market m the val-

ues G(cm
k ) of the search cost distribution corresponding to the cutoff points {cm

k }k≥0, are identified.

In addition assume that

8.1 the difference between valuations and marginal costs {vm−rm}m≥1 are random variables drawn

independently from a distribution with support (0,∞),

8.2 c0 as a function of (v − r) is continuous on (0,∞).

Then G is identified on the interval [0, sup c0], where sup c0 = sup{cm
0 : m = 1, 2, . . .} is the

supremum of the set of c0-cutoff points from all markets.

We note that if sup c0 → ∞, then this Proposition establishes identification of the search

cost distribution in the entire support. Regarding the conditions of this proposition we note that

neither 8.1 nor 8.2 is necessary. They have been adopted here in order to make the proof of

identification feasible when we focus only on the cutoff points {cm
0 }. Weakening Condition 8.1 to

require, for example, that vm − rm, m ≥ 1, take values in an interval (t1, t2) ⊂ (0,∞) would be

more realistic, but it would imply that we make explicit use of the relationship among the cutoff

points cm
0 ≥ cm

1 ≥ . . . ≥ cm
k ≥ . . . in order to establish identification at low quantiles of the search

cost distribution. This appears to be difficult due to the nonlinearity of the system of equations

that determines the cutoff points (equations (11a) and (11b) for N = ∞).

With respect to Condition 8.2 we note that this can be interpreted as a requirement that the

global implicit function c0 (v − r) is continuous in v−r. We find it difficult to establish this property

due to the difficulty of the conditions that need to be verified for existing results on global implicit

functions (e.g., Ichiraku, 1985). We also note that uniqueness of the global implicit function (i.e.,

uniqueness of equilibrium) is not sufficient for its continuity.

Finally, we observe that verification of the conditions of Proposition 8 is not crucial in practice

because the validity of the conclusion of the proposition can be checked posterior to estimation.

More precisely, we can plot all the estimated cutoff points {cm
k }k,m and assess visually how well they

cover the interval [0, ŝup c0], where ŝup c0 denotes the estimate of sup c0 obtained as the maximum

of the {cm
0 } cutoff points. In case we find that the cutoff points fail to cover some intervals, the

only way we can improve the coverage is by adding data from some new markets. Since the main

reason for estimating a search cost distribution is to perform policy analyses, estimating the search
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(a) M = 1, N = 10 (b) M = 5, N = 10

(c) M = 25, N = 10 (d) M = 50, N = 10

Figure 2: Identification with data from M different markets

cost distribution on the interval [0, ŝup c0] is sufficient in a large number of practical applications.

Beyond sup c0 the search cost distribution cannot be identified by any estimation method.

The ideas put forward in Proposition 8 are illustrated in Figure 2, where we plot the critical

cutoff points ck obtained from using data from M = 1, 5, 25, and 50 markets, each of them operated

by 10 firms. In these plots we set r = 50 and again assume consumer search costs follow a log-

normal distribution with parameters (ν, σ) = (0.5, 5). For the case of data from one market only

we set vm = 500. For the situation with M markets we take valuations in market m as follows:

vm = 100 + (500− 100)(m− 1)/M , so the lowest consumer valuation is always 100 and if there are

for example five markets we get {vm}5
m=1 = {100, 200, 300, 400, 500}. The graphs illustrate how

the set of critical search cost points ck becomes denser and denser in the full support of the search

cost distribution as we increase the number of markets M from 1 to 5, 25, and 50.
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4.2 Estimation

Previous studies on estimation of search cost distributions employ maximum empirical likelihood

or maximum likelihood (cf. Hong and Shum, 2006; Moraga-González and Wildenbeest, 2007) to

estimate the parameters of the price distribution {µk}N
k=1, where N is the number of firms in the

market. Once they obtain estimates of the price distribution the search cost points {ck}N−1
k=0 can

be computed from the empirical cdf (Hong and Shum, 2006) or from equations (9), (10a), and

(10b) (Moraga-González and Wildenbeest, 2007). Using the estimates of {µk}N
k=1 and {ck}N−1

k=0

they construct spline approximation estimates of the search cost distribution. As shown above,

those papers can identify the search cost distribution only at the cutoff points.

In our framework identification of the search cost distribution relies on asymptotics regarding

both the number of markets and the number of firms in a market. To exploit the feature that the

search cost distribution is common to all the markets, we employ semi-nonparametric maximum

likelihood estimation (Gallant and Nychka, 1987) and use the prices from all the markets at a time.

This method is different from those described above because it takes directly the search cost dis-

tribution, which is common across markets, to be the parameter of the likelihood. Since the search

cost density is an infinite-dimensional parameter, it is estimated by a finite-dimensional parameter

that consists of a distribution having finitely many parameters. This distribution is constructed

by employing a flexible polynomial-type approximation of the density function, following the SNP

estimation technique developed by Gallant and Nychka (1987).9

The likelihood function can be constructed by deriving the density of prices in each market m

as a function of the SNP estimator g of the search cost density (see equation (14) below for more

details on g). Since the prices observed in a market m are independent draws from the density

fm(p|g), the log-likelihood function is LLm(g|p) =
∑Nm

i=1 log fm(pi|g). For this, first we apply the

implicit function theorem to equation (3), which yields:

fm(p|g) =
∑Nm

k=1 kµm
k (1− Fm(p|g))k−1

(p− rm)
∑Nm

k=1 k(k − 1)µm
k (1− Fm(p|g))k−2

. (12)

The quantities that appear in this expression need to be computed in terms of g. By solving

9When the researcher has data from M markets, he/she can apply e.g. the Moraga-González and Wildenbeest’s
(2007) method for every market m separately. This procedure yields a set of points {{ck, 1 −

PNm
k=0 µk}Nm

k=0}
M
m=1 to

which the researcher can fit a curve. This two-step procedure is clearly suboptimal.

17



equation (4) for rm we obtain an expression for the marginal cost in market m

rm =
pm
∑Nm

k=1 kµm
k − µm

1 vm∑Nm

k=2 kµm
k

. (13)

We can estimate market m’s lower and upper bounds of the price distribution pm and vm (super-

consistently) by taking the minimum and maximum price observed in the data, respectively. Then,

for every market m, we compute {µm
k }Nm

k=1 and {cm
k }

Nm−1
k=0 from the system of equations in (6a),

(6b), (10a) and (10b) in terms of g, and using equation (3) and then equation (12) we express the

Fm (pi)’s and the fm (pi)’s, respectively, in terms of g. In this way we obtain the joint log-likelihood

of all markets as a function of g: LL(g|p1,p2, . . . ,pM) =
∑M

m=1

(∑Nm

i=1 log fm(pi|g)
)
.

For the polynomial-type parametric function that estimates the search cost density we employ

the so-called semi-nonparametric (SNP) density estimator (Gallant and Nychka, 1987). This SNP

estimator is based upon a Hermite polynomial expansion. The idea behind this SNP procedure is

that any reasonable density can be mimicked by such a Hermite polynomial series. SNP density es-

timators are essentially nonparametric, just like the spline approximation method described above,

because the set of all Hermite polynomial expansions is dense in the set of density functions that

are relevant (Gallant and Nychka, 1987).

To apply the SNP estimation in our problem, we specify the search cost density as

g(c; γ, σ, θ) =

[
pn∑
i=0

θiui(c)
]2

pn∑
i=0

θ2
i

, θ ∈ Θp,Θp = {θ : θ = (θ0, θ1, . . . , θp), θ0 = 1}, (14)

where pn is the number of polynomial terms,

u0(c) = (cσ
√

2π)−1/2 e−((log c−γ)/σ)2/4,

u1(c) = (cσ
√

2π)−1/2((log c− γ)/σ) e−((log c−γ)/σ)2/4,

ui(c) =
[
((log c− γ)/σ)ui−1(c)−

√
i− 1ui−2(c)

]
/
√

i for i ≥ 2.

This parametric form corresponds to the univariate SNP estimator studied extensively by Fenton

and Gallant (1996). Our expressions are obtained by transforming their random variable x with

the density defined in their Section 4.3 to c = expγ+σx. This transformation is useful in our case

since search costs are positive.
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The vector of parameters to be estimated by maximum likelihood is {γ, σ, θ0, θ1, . . . , θpn}. The

consistency of the maximum likelihood estimator can be established by verifying the conditions

provided by Gallant and Nychka (1987) combined with the conditions from Hoadley (1971), who

studies the maximum likelihood estimator for non-identically distributed observations. In addition,

appropriate assumptions should be found on the rates at which the number of firms and the number

of markets go to infinity. Regarding the search cost distribution we note that the conditions from

Gallant and Nychka (1987) require that the search cost density is differentiable and its tail behavior

is restricted.

4.3 Simulations

In this section, studying a market operated by three firms, we illustrate how lack of complete

identification of the search cost distribution might be problematic for the researcher. In particular,

we develop an example which shows that if the econometrician were to assess the effects of a merger

on average prices, the lack of good information about search costs would potentially mislead her.

Consider the following parametrization of our search model. Let the number of firms N = 3,

the marginal cost r = 100, and consumer valuation v = 400. Moreover, assume search costs are

distributed according to the density

g(c) = 0.5 · lognormal(c, 2, 10) + 0.5 · lognormal(c, 3, 0.2),

i.e., search costs come from a 50-50 mixture of two log-normal distributions with parameters (ν, σ) =

(2, 10) and (ν, σ) = (3, 0.2), respectively. The market equilibrium can be calculated by solving

the system of equations (11a) and (11b). The first column of Table 1 gives an overview of the

parameters that together lead to this market equilibrium. In addition Table 1 reports expected

prices and expected profits. Figure 3 plots the search cost distribution and the implied equilibrium

price distribution.

Suppose the researcher had data from many markets. As we explain above, in this case she

would be able to identify enough points on the search cost distribution to fully identify it. This

is illustrated in the left panel of Figure 4 for a situation where the researcher has data for 100

markets. As can be seen, linear interpolation between all the identified points closely approximates

the true search cost distribution. Now suppose the researcher had data from only one market. In
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(a) Search cost distribution (b) Equilibrium Prices

Figure 3: From search costs to equilibrium prices

this case, even if the researcher knew the equilibrium price distribution perfectly, she would be able

to identify at most three points on the search cost distribution. These points are shown in the right

panel of Figure 4, along with the true search cost distribution (dashed curve). Without a priori

knowledge of the search cost distribution, linear interpolation would suggest itself. The estimate

of the search cost distribution would then be the straight solid line plotted in Figure 4(a). This

estimate suggests all search cost levels are equiprobable while the truth is that low and high search

costs are relatively frequent while intermediate search costs are not.

N = 3 N = 2
true g(c) true g(c) estimated g(c)

r 100.00 100.00 100.00
v 400.00 400.00 400.00
p 132.70 140.33 151.85

µ1 0.22 0.24 0.29
µ2 0.52 0.76 0.71
µ3 0.26 - -
c1 33.81 29.36 30.65
c2 11.23 0 0
c3 0 - -
E[p] 195.83 193.50 210.04
E[min{p1, p2}] 162.02 164.14 179.39
E[min{p1, p2, p3}] 150.79 - -
Eπ 22.21 35.55 44.21

Table 1: True and estimated effects of a merger

Suppose the researcher were asked to assess the effects of a merger on the price distribution,

average prices and firm profits. In that case, running a merger simulation and comparing the

counterfactual post-merger equilibrium with the pre-merger equilibrium would suggest itself as a

reasonable way to address the issue. To run the counterfactual simulation, since search costs above
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(a) 100 markets (b) 1 market

Figure 4: Identification search cost distribution

c0 are not identified, the researcher needs to make an assumption about the shape of the search

cost distribution beyond c0. Let us assume the search cost CDF continues to increase linearly all

the way to 1 with the same slope as the one to the right of the highest identified search cost value.

Under this assumption, the search cost CDF can be approximated by a uniform distribution with

support [0, 43.46].

The true post-merger equilibrium is given in the second column of Table 1. As explained above,

one obtains this true equilibrium by using price data from many markets. Note that the merger

would lead to a 60% increase in profits and to a 1.2% decrease in the average price.10 The third

column of Table 1 gives the simulated equilibrium when the researcher uses the estimated uniform

search cost density. The simulated effects of the merger are quite different than the true effects:

profits would increase by 99% and the average price would go up by 7.25%. As a result, if the

competition authority were concerned about market average prices,11 it would not approve the

merger on the basis of the econometrician’s study while it would approve if it were aware of the

true search cost distribution.

Figure 5 gives the true price densities and price CDF’s before and after the merger, as well as

the simulated after-merger prices. In Figure 5(a) the pre-merger density of prices is represented by

the dashed curve, while the post-merger price PDF using data from many markets is depicted by

10The fact that average prices can decrease as the number of firms in a search market falls is well known (see e.g.
Stiglitz, 1987; Stahl, 1989; and Janssen and Moraga-González, 2004).

11In the U.S., current law as well as the Department of Justice and the Federal Trade Commission Horizontal
Merger Guidelines focus on merger effects on consumer prices rather than on aggregate welfare considerations (see
Baker, 1999).
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the solid black curve. The gray curve shows the estimated equilibrium price density using data from

only one market. Similarly, Figure 5(b) gives the pre-merger price CDF as well as the post-merger

price CDF for both data from one market and many markets.

(a) Price density f(p) (b) Price distribution F (p)

Figure 5: Effect on prices of a merger

5 Application

In this section we use the SNP estimation method described above to quantify search costs in real-

world markets for memory chips. We focus on computer memory chips for notebooks (so called

SO-DIMM, or Small Outline Dual In-line Memory Module). Since we need products from different

markets, we select memory chips produced for different brands and types of notebooks. Table

2 gives the details of the 10 products we include in our data set. There are several reasons for

choosing these memory chips. First, since all the chips are sold online, we expect search costs to

be similar across markets. Second, even though all memory chips are manufactured by Kingston

–the largest producer in the sector– each memory chip in our sample is meant to be used in a

particular notebook brand only –including Toshiba, Dell, Acer, IBM and HP Compaq. Given that

substitutability across products is somewhat limited due to technical reasons, we shall assume that

different microchips belong in separate markets so the use of a search model with homogeneous

products is reasonable. All the memory chips are somewhat at the top of the product line. In

particular they exhibit relatively large storage capacity (1 gigabyte) and fast speed of operation

(most of them above 400 MHz). Given the large storage capacity of the memory chips in the

data set, most consumers would only consider to buy one memory chip, so the single-unit inelastic
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demand assumption of the theoretical model seems also reasonable.

Part number Manufacturer Compatibility Size Speed Form factor
KTT3311A Kingston Toshiba 1GB 333MHz DDR333/PC2700 200-pin SoDIMM
KTT533D2 Kingston Toshiba 1GB 533MHz DDR2-533/PC2-4200 200-pin SoDIMM
KTD-INSP8200 Kingston Dell 1GB 266MHz DDR266/PC2100 200-pin SoDIMM
KTD-INSP5150 Kingston Dell 1GB 333MHz DDR333/PC2700 200-pin SoDIMM
KTD-INSP6000 Kingston Dell 1GB 533MHz DDR2-533/PC2-4200 240-pin SoDIMM
KTD-INSP6000A Kingston Dell 1GB 533MHz DDR2-533/PC2-4200 200-pin SoDIMM
KAC-MEME Kingston Acer 1GB 533MHz DDR2-533/PC2-4200 200-pin SoDIMM
KTD-INSP9100 Kingston Dell 1GB 400MHz DDR400/PC3200 200-pin SoDIMM
KTM-TP3840 Kingston IBM 1GB 533MHz DDR2-533/PC2-4200 200-pin SoDIMM
KTH-ZD8000A Kingston HP Compaq 1GB 533MHz DDR2-533/PC2-4200 200-pin SoDIMM

Table 2: List of products

For all the memory chips in the data set we collected online prices charged in the United States,

in February 2006. To obtain a sufficiently representative sample, we gathered product and price

information from several sources at the same time. We proceeded as follows. We first visited the

price comparison sites shopper.com and pricegrabber.com and collected the names of all the shops

that were seen active in markets for memory chips; in total we found 49 stores. If for a particular

product we saw a shop quoting its price on shopper.com and/or pricegrabber.com, we took the

price directly from the price comparison site; otherwise we visited the web-address of the vendor to

check if the product was available and at what price it was offered. Table 3 gives some summary

statistics of the data set. The number of firms quoting prices in each market is relatively large,

ranging from 24 to 41. In our study we estimate the number of stores operating in each market N

by the number of firms that were observed to be quoting prices in that market.

Part number No. of Stores Mean Price (Std) Min. Price Max. Price Coeff. of Var. (as %)
KTT3311A 32 181.67 (24.62) 148.62 235.00 13.55
KTT533D2 33 123.33 (15.62) 100.45 161.40 12.66
KTD-INSP8200 39 173.59 (21.31) 148.62 249.54 12.28
KTD-INSP5150 39 179.09 (19.84) 148.62 222.35 11.08
KTD-INSP6000 35 120.29 (13.48) 100.45 151.05 11.21
KTD-INSP6000A 38 116.33 (13.43) 94.99 154.50 11.54
KAC-MEME 24 123.58 (17.47) 101.92 161.64 14.14
KTD-INSP9100 33 175.84 (24.38) 148.62 249.54 13.87
KTM-TP3840 37 122.83 (14.32) 104.55 161.94 11.65
KTH-ZD8000A 41 116.77 (12.25) 100.45 154.50 10.49
Notes:
Prices are in US dollars.

Table 3: Summary statistics

Our model assumes consumers search non-sequentially. As shown by Morgan and Manning
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(1985), non-sequential search is optimal when there is a time lag between the moment at which

the search effort takes place and the moment at which the search outcome is observed. Given

that there is usually no such time lag when searching for memory chips, one could argue that

sequential search would be more appropriate. Even though this is true, one reason for using the

non-sequential search protocol is that it allows for the identification of search costs using only

price data, while with sequential search marginal cost data would also be needed. Another reason

for using the non-sequential search approach is that a price comparison site like shopper.com and

pricegrabber.com very much resembles a non-sequential search setting, since consumers who use

these web sites receive several price quotes instantaneously, as they would if they were searching

non-sequentially.

Almost all memory chips are priced above 100 US dollars. For all products we observe significant

price dispersion as measured by the price range (difference between the maximum and the minimum

prices) and by the coefficient of variation. The benefits to a consumer from searching are significant;

in particular, the gains from being fully informed relative to buying from a shop at random in these

markets range from 16.32 to 33.05 US dollars. As mentioned above, we estimate the valuation of a

memory chip by the maximum price observed in the market.

The prices used for our estimations include neither shipping costs nor sales taxes. The main

reason for this omission is that shipping costs and sales taxes depend on the state in which the

consumer resides, which makes it difficult to compare total prices. However, for robustness purposes,

we estimated the model neglecting sales taxes but using the shipping costs as if we were living in

New York. The qualitative nature of the results did not change.

Although the memory chips themselves are completely homogeneous, the price differences across

vendors of a given chip may be due to store differentiation. Consumers might prefer one shop

over another on the basis of observable store characteristics like quality ratings, return policies,

stock availability, order fulfillment, payment methods, etc. To see the impact of observable shop

characteristics on prices, we regressed prices on indicators that are readily available from the price

comparison sites. More precisely, we estimated the following model:

PRICEj = β0 + β1 ·RATINGj + β2 ·DISCLOSEj + β3 · STOCKj + β4 · LOGOj + εj ,

where, for each product, PRICEj is the list price of store j, RATINGj is an average of the
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SNP
pn 3
# obs 351
γ 0.941 (0.125)
σ 0.923 (0.040)
θ0 1.000
θ1 0.332 (0.181)
θ2 -0.296 (0.158)
θ3 -1.310 (0.235)
LL 1309.87
Notes:
Estimated standard errors in parenthesis.

Table 4: Parameter estimates SNP function

ranking of store j on shopper.com and pricegrabber.com, DISCLOSEj is a dummy for whether

shop j disclosed shipping cost on either shopper.com or pricegrabber.com, STOCKj is a dummy

for whether shop j had the item in stock, and LOGOj is a dummy for whether shop j had its logo

on either shopper.com or pricegrabber.com. We estimated this equation by OLS. The resulting

R-squared values indicate that only between 3% and 21% of the total variation in prices can be

attributed to observable differences in store characteristics.12 This suggests that the rest of the

price variation can be due to either unobservable heterogeneity across shops (e.g., cost differences

or branding) or to strategic price setting in the presence of consumer search costs. Here we focus

on the second explanation.

Because we only observe the stores’ prices at one moment in time, we cannot check whether

stores indeed randomize their prices over time, as predicted by our search model. However, using

a different data set Moraga-González and Wildenbeest (2007) show that firms indeed seem to

randomize in the online market for memory chips; at the same time, other studies find evidence for

mixed strategies in other markets (e.g., Lach (2002) for chicken, refrigerators, coffee, and flour in

Israel; and Wildenbeest (2007) for grocery products in the Netherlands).

Table 4 presents the SNP estimation results.13 We follow the procedure explained in Section

4.2 and the recommendation by Fenton and Gallant (1996) and set pn = 3, which equals the closest

integer to the fifth root of the total number of observations.14 Table 4 shows that all parameter

12For all memory chips, all the OLS coefficient estimates were not significant except the coefficient for LOGOj ,
which was positive and significant at a 5% level for the chips KAC-MEME and KTM-TP3840.

13For our estimations we set µ0 = 0, which amounts to assuming that consumers obtain the first price quotation
at no cost. As we will see below, the model performed relatively well thus suggesting our simplifying assumption was
not too unreasonable. Alternatively one could (roughly) proxy the value of µ0 by multiplying the failure rate of a
memory chip by the total sales of a particular notebook.

14In cases when there are sufficiently many observations to estimate the ck’s, as is the case in our data set, we can
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estimates are significant at a 1% level, except for θ1 and θ2, which are significant at a 5% level.

The standard errors reported in the table are meaningful in the case when the presented model is

the true parametric model. Figures 6(a) and 6(b) plot the estimated search cost CDF and PDF

respectively. These graphs also show how well the points that are identified cover the support of

the search cost distribution.

(a) Search cost CDF (b) Search cost PDF

Figure 6: Estimated search cost distribution

Using the estimates of the parameters of the SNP specification for pn = 3 we can compute the

mean, the median, and the standard deviation of the unobserved search cost distribution. The

median consumer has a search cost equal to 5.05 US dollars. On average a consumer has a search

cost value equal to 13.41 US dollars and the standard deviation is 24.49 US dollars. It is also

interesting to investigate the distribution of search intensities in these markets. Since each market

has specific parameters, even though search costs are assumed to be similar, it is unlikely that

consumer behavior will be the same across markets. Table 5 shows that it is indeed the case that

search intensities are different across markets. For example, 18% of consumers search once for

the KTD-INSP9100 memory chip, while 33% searches once for the KTD-INSP6000 memory chip.

Similarly, for the KTD-INSP9100 chip 37% of consumers searches twice, while 49% searches twice

for the KTD-INSP5150G memory chip. However, the share of consumers searching at most three

times is more or less similar across markets; approximately 85% of the consumers have search cost

above $2 and search for at most three prices. Table 5 also illustrates that the group of consumers

searching for between 4 and 10 firms is with percentages between 2 and 4 relatively small. About

use the empirical distribution of prices in each market. The gain in computing time is huge and the results for our
data are very similar.

26



13% of consumers search with more than 10 times thoroughly, which means they have search costs

less than 30 dollar cents. Figures 6(a) and 6(b) show that the consumers can roughly be divided

into three groups: buyers who do not search, buyers who compare at most three prices and buyers

who compare many prices in the market. In sum, we conclude that consumers have either quite

high search costs or quite low search costs.

The gray dots in Figures 6(a) and 6(b) denote identified points on the search cost CDF and

PDF respectively. Not surprisingly, given that we have data from only 10 markets, most identified

points are found at low search cost values. As explained in Section 4.1, adding extra markets will

increase the number of identified points for higher search cost values.

Part number N p v r µ1 µ2 µ3 µ4 µ5 µ6...10 µ11...15 µ16...N KS

KTT3311A 32 148.62 235.00 144.23 (1.70) 0.19 0.47 0.18 0.01 0.00 0.02 0.06 0.07 1.24
KTT533D2 33 100.45 161.40 95.86 (1.89) 0.27 0.48 0.10 0.00 0.01 0.01 0.05 0.07 0.91
KTD-INSP8200 39 148.62 249.54 144.08 (1.64) 0.18 0.37 0.28 0.02 0.00 0.02 0.06 0.07 1.20
KTD-INSP5150G 39 148.62 222.35 144.13 (1.77) 0.22 0.49 0.13 0.00 0.01 0.02 0.06 0.07 2.01
KTD-INSP6000 35 100.45 151.05 95.67 (2.02) 0.33 0.44 0.07 0.00 0.00 0.01 0.05 0.09 0.92
KTD-INSP6000A 38 94.99 154.50 90.39 (1.90) 0.28 0.48 0.09 0.00 0.01 0.01 0.05 0.07 1.20
KAC-MEME 24 101.92 161.64 97.36 (1.93) 0.27 0.48 0.09 0.00 0.01 0.01 0.06 0.07 0.80
KTD-INSP9100 33 148.62 249.54 144.08 (1.64) 0.18 0.37 0.28 0.02 0.00 0.02 0.06 0.07 0.57
KTM-TP3840 37 104.55 161.94 99.91 (1.93) 0.29 0.47 0.09 0.00 0.01 0.01 0.05 0.08 0.98
KTH-ZD8000A 41 100.45 154.50 95.75 (1.97) 0.31 0.46 0.08 0.00 0.00 0.01 0.05 0.08 1.49
Notes:
Estimated standard errors in parenthesis.

Table 5: Parameter estimates products and fit

The fact that a significant proportion of consumers does not compare prices gives substantial

market power to the firms. Using the estimates of the SNP specification, we can retrieve the

marginal cost r in each market, which is also reported in Table 5. Marginal costs range between

57% and 65% of the value of the product so the average price-cost margins range between 17% and

23% across markets. We calculate standard errors for r using the delta method. All the estimated

values for r are highly significant.

To test whether the estimated model explains observed prices well, we calculate the Kolmogorov-

Smirnov statistic (KS-test) in each individual market. The KS-test statistic is based on the maxi-

mum difference between the empirical price CDF and the estimated price CDF. The null hypothesis

for this test is that the distributions are similar, the alternative hypothesis is that the empirical

and the estimated price CDF are different. Table 5 gives the KS-test results and since for the

majority of products the KS value is below the 95%-critical value of the KS-statistic of 1.36, for
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(a) KTT3311A (b) KTT533D2/1G

(c) KTD-INSP8200 (d) KTD-INSP5150

(e) KTD-INSP6000 (f) KTD-INSP6000A

(g) KAC-MEME (h) KTD-INSP9100

(i) KTM-TP3840 (j) KTH-ZD8000A

Figure 7: Estimated and empirical price CDF’s
28



eight out of ten memory chips we cannot reject the null-hypothesis that the prices are drawn from

the estimated price CDF.15 The goodness-of-fit is also shown in Figure 7, where we have plotted

both the empirical and the estimated price CDF for each market. A solid curve represents the

empirical price CDF, while a dashed curve represents an estimated price CDF; the graphs show

that both curves are quite close to each other for most products.

6 Conclusions

Since the seminal contribution of Stigler (1961), economists have dedicated a significant amount of

effort to understand the nature of competition in markets where price information is not readily

available to consumers. One of the lessons learned is that consumer search models may lead to

predictions different from those obtained from conventional economic theory. Another is that the

particular direction of the effects of public policy measures such as the introduction of taxes or

the dismantling of barriers to entry depends on the shape of the search cost distribution. These

observations motivate the development of methods to identify and estimate search costs.

This paper has contributed to this literature in two ways. First, we have shown that an equi-

librium always exists in a model of non-sequential search with search cost heterogeneity. Second,

we have studied the nonparametric identification and estimation of the costs of search. We have

proven that the search cost distribution can only be identified with precision in a neighborhood

of zero when the econometrician observes prices from only one market. To solve this pitfall, we

have proposed to examine a richer framework where the econometrician has price data from sev-

eral markets with the same search cost distribution. We have shown that pooling price data from

multiple markets enables us to identify the search cost density fully in the relevant support. To

take advantage of the relationship between markets we have proposed to estimate the search cost

density function by a semi-nonparametric density estimator whose parameters maximize the joint

likelihood corresponding to all the markets.

The paper has also provided a Monte Carlo study showing the gains that obtain from pooling

data from several markets. In addition, we have illustrated the potential of our method by applying

it to a data set of online prices for ten notebook memory chips.

15We have calculated KS in Table 5 as
√

M · τM , where M is the number of price observations for the specific
memory chip and τM is the maximum absolute difference over all prices between the estimated price cdf and the
empirical price cdf.
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Along the way we have made several simplifying assumptions. One of the assumptions has been

that consumers have the same valuation. In future work, we would like to relax this assumption

and study a framework where there is consumer valuation and search cost heterogeneity. One of the

advantages of developing such a framework is that it would enable the econometrician to estimate

the correlation between consumer valuations and search costs. Another important assumption

has been that firms are symmetric, i.e., they have the same marginal costs of production. Since

marginal cost heterogeneity may be an important factor behind the observed price variation in real-

world markets, future work should allow for heterogeneous firms. Such a framework would help the

researcher separate price variation caused by search costs from that caused by firm heterogeneity.
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APPENDIX

Appendix A: Proofs Section 3

Proof of Proposition 1. First, suppose, on the contrary, that µ1 = 0. Then we have two

possibilities: (i) either µ0 = 1 in which case the market does not open, or (ii) µk > 0 for some

k = 2, 3, . . . , N in which case all firms would charge a price equal to the marginal cost r. But if this

were so, consumers would gain by deviating and searching less. Second, suppose, on the contrary,

that µ1 = 1. Then firms prices would be equal to the monopoly price v. But if this were so then

consumers would gain by deviating and exiting the market. Finally, suppose, on the contrary, that

1 > µ1 > 0 and that µk = 0 for all k = 2, 3, . . . , N . Then µ0 + µ1 = 1 and the argument applied

before would hold here too; as a result, there must be some k ≥ 2 for which µk > 0.

Proof of Proposition 2. Suppose, on the contrary, that firms did charge a price p̂ ∈ (r, v] with

strictly positive probability in equilibrium. Consider a firm i charging p̂. The probability that p̂

is the only price in the market is strictly positive. This occurs when all other firms are charging

p̂. From Proposition 1 we know that in equilibrium there exists some k̂ ≥ 2 for which µk̂ > 0.

Consider the fraction of consumers sampling k̂ firms. The probability that these consumers are

sampling firm i is strictly positive; as a result, firm i would gain by deviating and charging p̂ − ε

since in that case the firm would attract all consumers in µk̂ who happened to sample firm i. This

deviation would give firm i a discrete increase in its profits and thus rules out all atoms in the set

(r, v]. It remains to be proven that an atom at the marginal cost r cannot be part of an equilibrium

either. Consider a firm charging r. From Proposition 1 we know that 1 > µ1 > 0. As a result, this

firm would serve a fraction of consumers at least as large as µ1/N but obtain zero profits. This

implies that the firm would have an incentive to deviate by increasing its price. We now prove that

the upper bound of F (p) must be equal to v. Suppose not and consider a firm charging an upper

bound p < v. Since this firm would not sell to any consumer who compares prices, its payoff would

simply be equal to (p− r)µ1/N , which is strictly increasing in p; as a result the firm would gain by

deviating and charging v.

Proof of Theorem 1. Let θ := v − r and consider the change of variables xk := G (ck). Then
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we can rewrite the equations describing the equilibrium (11a)-(11b) as

x0 = G

(
θ − θ

∫ 1

0

x0 − x1∑N
h=1 h (xh−1 − xh) uh−1

du

)
;

xk = G

(
θ

∫ 1

0

x0 − x1∑N
h=1 h (xh−1 − xh) uh−1

[
kuk−1 − (k + 1) uk

]
du

)
, k = 1, 2, . . . , N − 1, (xN = 0) .

Let yk = xk
x0

. Then the solution of this system will be

x0 = G

(
θ − θ

∫ 1

0

1− y1

1− y1 +
∑N

h=2 h (yh−1 − yh) uh−1
du

)
,

x1 = x0y1, . . . , xN−1 = x0yN−1,

if y = (y1, y2, . . . , yN−1) is the solution of the following system of equations:

yk =

G

(
θ
∫ 1
0

(1− y1)
[
kuk−1 − (k + 1) uk

]
1− y1 +

∑N
h=2 h (yh−1 − yh) uh−1

du

)

G

(
θ − θ

∫ 1
0

1− y1

1− y1 +
∑N

h=2 h (yh−1 − yh) uh−1
du

) , k = 1, 2, . . . , N − 1, (yN = 0) . (A15)

We are looking for a solution of this latter system in [0, 1]N−1 for which y1 ≥ y2 ≥ . . . ≥ yN−1.

For this purpose, we define the set Y = {(y1, y2, . . . , yN−1) ∈ [0, 1]N−1 : y1 ≥ y2 ≥ . . . ≥ yN−1}.

Likewise, define the function H = (H1, . . . ,HN−1) : Y \ {0} → RN−1 with

Hk (y) =

G

(
θ
∫ 1
0

(1− y1)
[
kuk−1 − (k + 1) uk

]
1− y1 +

∑N
h=2 h (yh−1 − yh) uh−1

du

)

G

(
θ − θ

∫ 1
0

1− y1

1− y1 +
∑N

h=2 h (yh−1 − yh) uh−1
du

) , k = 1, 2, . . . , N − 1, (yN = 0) .

Then the solution of the system (A15) is a fixed point of H. In what follows we apply Brouwer’s

theorem to show that the function H has a fixed point.

First we show that the function H takes values in the set Y . This is intuitively clear based on

the properties of the model since by appropriate transformations it is equivalent to the inequalities

c0 ≥ c1 ≥ . . . ≥ cN−1. Here we provide a direct proof.

Lemma A.1 The function H(·) takes values in Y .

Proof. Take an arbitrary y ∈ Y \ {0}. We need to prove that 0 ≤ Hk (y) ≤ 1 for all k =

1, 2, . . . , N − 1 and Hk (y) ≤ Hk−1 (y) for all k = 2, . . . , N − 1. The inequality 0 ≤ Hk (y) follows
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straightforwardly from the nonnegativity of G. In order to prove Hk (y) ≤ 1 and Hk (y) ≤ Hk−1 (y)

we use integration by parts. First we observe that∫ 1

0

1− y1

1− y1 +
∑N

h=2 h (yh−1 − yh) uh−1
du =

∫ 1

0

1− y1

1− y1 +
∑N

h=2 h (yh−1 − yh) (1− u)h−1
du.

By integration by parts∫ 1

0

1− y1

1− y1 +
∑N

h=2 h (yh−1 − yh) (1− u)h−1
du

= 1−
∫ 1

0

(1− y1) u
[∑N

h=2 h (h− 1) (yh−1 − yh) (1− u)h−2
]

(
1− y1 +

∑N
h=2 h (yh−1 − yh) (1− u)h−1

)2 du.

So the argument of G in the denominator is proportional to

1−
∫ 1

0

1− y1

1− y1 +
∑N

h=2 h (yh−1 − yh) uh−1
du

=
∫ 1

0

(1− y1) u
[∑N

h=2 h (h− 1) (yh−1 − yh) uh−2
]

(
1− y1 +

∑N
h=2 h (yh−1 − yh) uh−1

)2 du.

The argument of G in the numerator of Hk(·) is proportional to∫ 1

0

(1− y1)
[
kuk−1 − (k + 1) uk

]
1− y1 +

∑N
h=2 h (yh−1 − yh) uh−1

du

=
∫ 1

0

1− y1

1− y1 +
∑N

h=2 h (yh−1 − yh) uh−1
d
(
uk − uk+1

)

=
∫ 1

0

(1− y1) uk (1− u)
[∑N

h=2 h (h− 1) (yh−1 − yh) uh−2
]

(
1− y1 +

∑N
h=2 h (yh−1 − yh) uh−1

)2 du.

The inequality Hk(y) ≤ 1 follows from the fact that u ≥ uk(1− u) while the inequalities Hk(y) ≤

Hk−1(y), k = 2, 3, . . . , N − 1 follow because all terms in the expressions of the integrals are non-

negative and uk is decreasing in k.

We now apply Brouwer’s fixed point theorem to prove a fixed point of H exists. Since the

denominator of Hk is 0 for y = 0, we need to modify the function H in the neighborhood of 0. We

do this in three steps: (i) We first prove that the limit inferior of H when y → 0 is strictly positive

(Proposition A.1). (ii) We then construct a neighborhood V of 0 such that H is continuously

extendable from Y \ V to Y such that the extended function has no fixed point in V (Lemma A.3,

Lemma A.4). (iii) Finally, we apply Brouwer’s fixed point theorem to the extended function to
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establish the existence of a solution of the system (A15).

We start by showing that the limit inferior of H is strictly positive. Since Hk(y) ≤ Hk−1(y),

k = 2, 3, . . . , N − 1, is is sufficient to study the limit inferior of H1.

Proposition A.1 lim infy→0
y∈Y

H1 (y) ≥


1
3 if g (0) > 0,

1
9 if g (0) = 0 and g′ (0) > 0.

Proof. By definition lim infy→0
y∈Y

H1 (y) = lim
ε→0

inf {H1 (y) : y ∈ Y ∩B (0, ε) \ {0}}, where B (0, ε) ={
x ∈ RN−1 : ‖x‖ < ε

}
. By Lemma A.2 below there exists an ε > 0 such that H1 (y) is increasing

in yk for k = 2, . . . , N − 1 on Y ∩ B (0, ε) \ {0}. This implies that for any y ∈ Y ∩ B (0, ε) \ {0}

such that y1 > 0

H1 (y1, y2, . . . , yN−1) ≥ H1 (y1, y2, . . . , yN−2, 0) ≥ H1 (y1, y2, . . . , 0, 0) ≥ . . . ≥ H1 (y1, 0, . . . , 0)

=
G
�
θ
R 1
0

(1−y1)(1−2u)
1−y1+2y1u

du
�

G
�
θ−θ

R 1
0

1−y1
1−y1+2y1u

du
� .

Therefore,

lim inf
y→0
y∈Y

H1 (y) ≥ lim
ε→0

inf

 G
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u du

)
G
(
θ − θ

∫ 1
0

1−y1

1−y1+2y1udu
) : 0 < y1 < ε

 .

The limit on the right hand side is by definition the limit inferior of
G
�
θ
R 1
0

(1−y1)(1−2u)
1−y1+2y1u

du
�

G
�
θ−θ

R 1
0

1−y1
1−y1+2y1u

du
� when

y1 → 0, y1 > 0. We show that this limit inferior is just equal to the limit, due to the fact that the

limit exists. Indeed, we can apply the l’Hôpital rule to obtain

lim
y1→0
y1>0

G
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u du

)
G
(
θ − θ

∫ 1
0

1−y1

1−y1+2y1udu
) = lim

y1→0
y1>0

−
g
(
θ
∫ 1
0

(1−y1)(1−2u)
1−y1+2y1u du

) ∫ 1
0

u(1−2u)

(1−y1+2y1u)2
du

g
(
θ − θ

∫ 1
0

1−y1

1−y1+2y1udu
) ∫ 1

0
u

(1−y1+2y1u)2
du

. (A16)

If g (0) > 0 then this limit is further equal to

−
g
(
θ
∫ 1
0 (1− 2u) du

) ∫ 1
0 u (1− 2u) du

g
(
θ − θ

∫ 1
0 du

) ∫ 1
0 udu

= −
g (0)

∫ 1
0 u (1− 2u) du

g (0)
∫ 1
0 udu

= −
∫ 1
0 u (1− 2u) du∫ 1

0 udu
=

1
3
.

34



If g (0) = 0 and g′ (0) > 0 then the limit (A16) is equal to the limit of

−
g′
(

θ

∫ 1

0

(1−y1)(1−2u)du
1−y1+2y1u

)
θ

∫ 1

0

−2u(1−2u)du

(1−y1+2y1u)2

∫ 1
0

u(1−2u)du

(1−y1+2y1u)2
+ g

(
θ
∫ 1
0

(1−y1)(1−2u)du
1−y1+2y1u

) ∫ 1
0

2u(1−2u)2du

(2uy1−y1+1)3

g′
(
θ − θ

∫ 1
0

(1−y1)du
1−y1+2y1u

) ∫ 1
0

(−θ)(−2u)du

(1−y1+2y1u)2

∫ 1
0

udu
(1−y1+2y1u)2

+ g
(
θ − θ

∫ 1
0

(1−y1)du
1−y1+2y1u

) ∫ 1
0

2u(1−2u)du

(2uy1−y1+1)3

= −
g′ (0) θ

∫ 1
0 (−2u) (1− 2u) du

∫ 1
0 u (1− 2u) du + g (0)

∫ 1
0 2u (1− 2u)2 du

g′ (0) (−θ)
∫ 1
0 (−2u) du

∫ 1
0 udu + g (0)

∫ 1
0 2u (1− 2u) du

=

∫ 1
0 (−2u) (1− 2u) du

∫ 1
0 u (1− 2u) du∫ 1

0 (−2u) du
∫ 1
0 udu

=
1
9
.

Lemma A.2 There exists an ε > 0 such that H1 (y) is increasing in yk for k = 2, . . . , N − 1 on

Y ∩B (0, ε) \ {0}.

Proof. For simplicity of notation we use

H1 (y) =
U (y)
D (y)

,

where U,D : Y → R

U (y) = G

(
θ

∫ 1

0

(1− y1) (1− 2u)

1− y1 +
∑N

h=2 h (yh−1 − yh) uh−1
du

)
,

D (y) = G

(
θ − θ

∫ 1

0

1− y1

1− y1 +
∑N

h=2 h (yh−1 − yh) uh−1
du

)
.

The partial derivatives of U and D with respect to yk for some k ∈ {2, . . . , N − 1} are

∂U

∂yk
= g

(
θ

∫ 1

0

(1− y1) (1− 2u)

1− y1 +
∑N

h=2 h (yh−1 − yh) uh−1
du

)
θIU (y) ,

∂D

∂yk
= g

(
θ − θ

∫ 1

0

1− y1

1− y1 +
∑N

h=2 h (yh−1 − yh) uh−1
du

)
(−θ) ID (y) ,

where

IU (y) =
∫ 1

0

(1− y1) (1− 2u)
[
kuk−1 − (k + 1) uk

](
1− y1 +

∑N
h=2 h (yh−1 − yh) uh−1

)2 du,

ID (y) =
∫ 1

0

(1− y1)
[
kuk−1 − (k + 1) uk

](
1− y1 +

∑N
h=2 h (yh−1 − yh) uh−1

)2 du.
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By integration by parts

ID (y) = 2
∫ 1

0
(1− y1)

(
uk − uk+1

) ∑N
h=2 h (h− 1) (yh−1 − yh) uh−2(

1− y1 +
∑N

h=2 h (yh−1 − yh) uh−1
)3 du.

Now, ID ≥ 0 for any y ∈ Y because all terms in the integral are nonnegative. Therefore ∂D
∂yk

≤ 0

for any y ∈ Y , which implies that D is decreasing in yk at any point y ∈ Y .

Regarding the integral IU we note that

IU (0) =
∫ 1

0
(1− 2u)

[
kuk−1 − (k + 1) uk

]
du =

2
(k + 1) (k + 2)

> 0.

So for each k there is an εk > 0 such that IU (y) ≥ 0 for any y ∈ Y ∩ B (0, εk); so for ε =

min {ε2, . . . , εN−1} it holds that IU (y) ≥ 0 for any y ∈ Y ∩ B (0, ε). Therefore ∂U
∂yk

≥ 0 for any

y ∈ Y ∩B (0, ε) and k = 2, . . . , N−1. This implies that U is increasing in yk for any y ∈ Y ∩B (0, ε).

This establishes that H1 (y) is increasing in yk for any y ∈ Y ∩B (0, ε) \ {0}.

So we have established that the limit inferior of H1 (y) when y → 0 is strictly positive. Then

the following statement establishes that there is an ε > 0 such that the set Y ∩ [0, ε]N−1 can take

the role of the neighborhood V mentioned above.

Lemma A.3 Let H : Y \{0} → RN−1 be a continuous function such that lim infy→0
y∈Y

H1 (y) ≥ a > 0.

Then there exists ε > 0 such that H1 (y) > ε for any y = (y1, y2, . . . , yN−1) ∈ Y \ {0} with y1 ≤ ε.

Proof. Condition lim infy→0
y∈Y

H1 (y) ≥ a > 0 implies that for any δ > 0 there exists εδ > 0 such

that H1 (y) > a − δ for any y = (y1, y2, . . . , yN−1) ∈ Y \ {0} with y1 ≤ εδ. Take δ1 > 0 such that

a−δ1 > 0. Then there exists ε1 > 0 such that H1 (y) > a−δ1 for any y = (y1, y2, . . . , yN−1) ∈ Y \{0}

with y1 ≤ ε1. Now, if a− δ1 > ε1 then choose ε = ε1 and the result is proved. If a− δ1 ≤ ε1 then

choose ε > 0 such that a − δ1 > ε. For any y = (y1, y2, . . . , yN−1) ∈ Y \ {0} with y1 ≤ ε < ε1 it

holds that H1 (y) > a− δ1 > ε, so in this case the result is proved as well.

Since we established condition lim infy→0
y∈Y

H1 (y) ≥ a > 0 in Proposition A.1 we can now use ε

from Lemma A.3. Define the function J = (J1, . . . , JN−1) : Y → RN−1 such that

J (y) =


H (y) for y ∈ Y \ Yε,

H (ε, y2, . . . , yN−1) for y ∈ Yε,

where Yε = {(y1, y2, . . . , yN−1) ∈ Y : y1 ≤ ε} = Y ∩ [0, ε]N−1. Notice that J is also defined in 0.
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Lemma A.4 The function J has the properties: (i) J is continuous. (ii) J takes values in Y . (iii)

J has no fixed point in Yε.

Proof. (i) Based on the fact that H is continuous, J is also continuous at points y that are not

on the boundary between Yε and Y \ Yε. The only non-trivial case is when y is on the boundary

between Yε and Y \ Yε, that is, in {(y1, y2, . . . , yN−1) ∈ Y : y1 = ε}. In this case the limit of J (tn)

for a sequence (tn)n≥1 ⊂ {(y1, y2, . . . , yN−1) ∈ Y : y1 > ε} with tn → y should be J (y). Indeed,

J (tn) = H (tn) → H (y) = H (ε, y2, . . . , yN−1) = J (y).

(ii) The fact that J takes values in Y follows from Lemma A.1 trivially for the case (y1, y2, . . . , yN−1) ∈

Y \ Yε. For the case (y1, y2, . . . , yN−1) ∈ Yε it follows because (ε, y2, . . . , yN−1) ∈ Y for any

(y1, y2, . . . , yN−1) ∈ Yε, so J (ε, y2, . . . , yN−1) = H (ε, y2, . . . , yN−1) ∈ Y .

(iii) For an arbitrary (y1, y2, . . . , yN−1) ∈ Yε we have J1 (y1, y2, . . . , yN−1) = H1 (ε, y2, . . . , yN−1).

Since y = (ε, y2, . . . , yN−1) ∈ Y \{0} with y1 ≤ ε, by Lemma A.3 it holds that H1 (ε, y2, . . . , yN−1) >

ε. Thus J1 (y1, y2, . . . , yN−1) > ε ≥ y1, so (y1, y2, . . . , yN−1) cannot be a fixed point of J .

Finally we can establish that the system of equations (A15) has a solution. By Lemma A.4 the

function J : Y → Y is continuous. Y is a convex and compact set, so by Brouwer’s fixed point

theorem J has a fixed point y∗. The fixed point cannot be in Yε by Lemma A.4, so y∗ ∈ Y \ Yε.

Therefore y∗ = J (y∗) = H (y∗), that is, y∗ ∈ Y \ Yε is a fixed point of H. By definition, any fixed

point of H is a solution of the system (A15). This completes the proof of existence of equilibrium

in Theorem 1.

We now prove the part on uniqueness of equilibrium. Setting N = 2 in equations (A15) gives

x0 = G

(
θ − θ

∫ 1

0

x0 − x1

x0 − x1 + 2x1u
du

)
;

x1 = G

(
θ

∫ 1

0

(x0 − x1) (1− 2u)
x0 − x1 + 2x1u

du

)
.

Using the notation introduced before, y1 = x1/x0 ∈ (0, 1), the solution to this system of equations

is given by the solution to H1(y1)− y1 = 0, or

φ (y1) ≡ y1G (θ − θ (1− y1) I(y1))−G (θ (1− y1) J(y1)) = 0.
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where

I(y1) =
∫ 1

0

1
1− y1 + 2y1u

du =
log (1 + y1)− log (1− y1)

2y1
;

J(y1) =
∫ 1

0

1− 2u

1− y1 + 2y1u
du =

log (1 + y1)− log (1− y1)− 2y1

2y2
1

.

The derivations above in the proof of Proposition A.1 can readily be used to show that limy1→1
y1>0

φ (y1) =

G (θ) > 0, limy1→0
y1>0

φ (y1) = 0 and limy1→0
y1>0

φ′ (y1) < 0. Therefore, if the function φ (y1) is strictly

convex, the equilibrium is unique. Let us now examine the second derivative of the function φ (y1).

First we have

φ′(y1) = G (θ − θ(1− y1)I(y1)) + y1g (θ − θ(1− y1)I(y1))
d (−θ(1− y1)I(y1))

dy1

−g (θ(1− y1)J(y1))
d(θ(1− y1)J(y1))

dy1

and then

φ′′(y1) = 2g (θ − θ(1− y1)I(y1))
d (−θ(1− y1)I(y1))

dy1
+ y1g (θ − θ(1− y1)I(y1))

d2 (−θ(1− y1)I(y1))
dy2

1

+y1g
′ (θ − θ(1− y1)I(y1))

(
d (−θ(1− y1)I(y1))

dy1

)2

− g′ (θ(1− y1)J(y1))
(

d((1− y1)J(y1))
dy1

)2

−g (θ(1− y1)J(y1))
(

d2(θ(1− y1)J(y1))
dy2

1

)
When g′(·) = 0, this simplifies to

φ′′(y1) = g (θ − θ(1− y1)I(y1))
(

2
d (−θ(1− y1)I(y1))

dy1
+ y1

d2 (−θ(1− y1)I(y1))
dy2

1

)
−g (θ(1− y1)J(y1))

(
d2(θ(1− y1)J(y1))

dy2
1

)
Notice that

d (−θ(1− y1)I(y1))
dy1

= θ
log
[

1+y1

1−y1

]
− 2y1

1+y1

2y2
1

d2 (−θ(1− y1)I(y1))
dy2

1

= −θ
log
[

1+y1

1−y1

]
+ 2y1(y2

1−y1−1)
(1+y1)2(1−y1)

y3
1

So

2
d (−θ(1− y1)I(y1))

dy1
+ y1

d2 (−θ(1− y1)I(y1))
dy2

1

=
2θ

(1− y1)(1 + y1)2
> 0 for all y1
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Finally

d (−θ(1− y1)J(y1))
dy1

= θ

2y1(2+y1)
1+y1

− (2− y1) log
[

1+y1

1−y1

]
2y3

1

So

d2 (−θ(1− y1)J(y1))
dy2

1

= θ

−2y1(3+2y1−3y2
1−y3

1)
(1−y1)(1+y1)2

+ (3− y1) log
[

1+y1

1−y1

]
y4
1

< 0 for all y1

Therefore we conclude that φ(y1) is strictly convex so the equilibrium is unique.

Appendix B: Proofs Section 4.1

The problem of identification studies whether we can determine the search cost distribution G,

the consumer valuation v and the firms’ marginal cost r, when we know the price distribution.

For this, we consider infinitely many firms in a market. Then the model can be described as

follows. The exogenous variables are the triplet (G, v, r) that generate the endogenous variables

(F, {µk}k≥1, {ck}k≥0). In this section we maintain the assumption that these latter variables exist.

They satisfy

∑
k≥1

kµk (1− F (p))k−1 = µ1
p− r

p− r
for any p ∈

(
p, p
]
, (A17a)

p = v, (A17b)

µk = G (ck−1)−G (ck) for any k ≥ 1, (A17c)

ck =
∫ p

p
F (p) (1− F (p))k dp for any k ≥ 0. (A17d)

As before in the paper, here we also use the notation µ0 = 1−
∑

k≥1 µk.

Proof of Proposition 6. As argued in the text, the upper bound of F must be equal to the

consumer valuation, i.e., p = v, so v′ = v; by Condition 6.1, r′ = r. First we show that µ′k = µk

for any k. For this we note first that neither µ1 nor µ′1 can be equal to zero. If µ1 = 0 then by

equation (A17a)
∑

k≥2 kµk (1− F (p))k−1 = 0 for any p ∈
(
p, p
]
, which, due to the fact that F is

continuous, can only happen if µk = 0 for any k ≥ 2. This further implies by equation (A17c) that

G (ck) = G (c0) for any k ≥ 1. By equation (4), cn = en − en+1, where en = E [min {p1, . . . , pn}].

Since en ≥ en+1 and en ≥ p for any n, the series (en)n is convergent. Hence cn → 0 as n → ∞.
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Because G is continuous in 0, G (cn) → G (0) = 0, so G (c0) = 0. Because the density function

corresponding to G is positive on (0,∞), this can only happen if c0 = 0. But by equation (A17d)

c0 =
∫ p
p F (p) dp, which is positive because F is a continuous CDF with support

(
p, p
)
, so we arrive

at a contradiction. Since exactly the same arguments apply to µ′1, we have shown that µ1 and µ′1

are strictly positive.

From equation (A17a) we obtain

∑
k≥1

k
µk

µ1
(1− F (p))k−1 =

v − r

p− r
=
∑
k≥1

k
µ′k
µ′1

(1− F (p))k−1 for any p ∈
(
p, p
]
.

This is equivalent to ∑
k≥2

λkt
k−1 = 0 for any t ∈ (0, α) , (A18)

where λk = k
(

µk
µ1
− µ′k

µ′1

)
for k ≥ 1 and t = 1−F (p). This latter transformation is possible because

F is strictly increasing on some interval (p̃, p), where 1− F (p̃) = α. We now refer to Lemma A.5

below. This lemma implies that equation (A18) can only hold if λk = 0 for any k ≥ 2. Therefore

µk
µ1

= µ′k
µ′1

. On the other hand, by Condition 6.2, µ1 +
∑

k≥2 µk = µ′1 +
∑

k≥2 µ′k = 1 − µ0, which

implies 1−µ0

µ1
= 1−µ0

µ′1
. Therefore µ′k = µk for any k ≥ 1.

The equalities c′k = ck follow from equation (A17d). It remains to show that G′ (ck) = G (ck)

for any k ≥ 0. We do so by showing that the G (ck)’s for k ≥ 0 are uniquely determined by

the µk’s. By equation (A17c) G (ck−1) − G (ck) = µk for any k ≥ 1. This implies that G (c0) −

G (cn) =
∑n

k=1 µk. The limit of the right hand side, when n →∞, exists and is 1− µ0. Therefore

G (c0) − limn→∞ G (cn) = 1 − µ0. Because G is continuous in 0 , G (cn) → G (0) = 0. Therefore

G (c0) = 1−µ0 and G (cn) = 1−
∑n

k=0 µk for any n ≥ 1. The result then follows from the equality

of the µk’s established above.

Remark A.1 Condition 6.1 on p.12 is probably not necessary but we adopt it here for the simplicity

of the proof. If this condition does not hold then equation (A17a) implies

p− r

v − r

∑
k≥1

k
µk

µ1
(1− F (p))k−1 =

p− r′

v − r′

∑
k≥1

k
µ′k
µ′1

(1− F (p))k−1 for any p ∈
(
p, p
]
,

and this cannot be simplified to a power series identity as equation (A18). Still intuition suggests

that the equalities µ′k = µk and r′ = r follow, since we may view this as a system of a continuum

of equations with countably many unknowns r, r′, µk, µ
′
k for k ≥ 1.
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Proof of Proposition 7. Conditions 7.2 and 7.3 together with equation (A17c) imply that

µ′k = µk for any k ≥ 1. From the proof of Proposition 6 we know that µ1 > 0, so by equations

(A17a) and (A17b), and the first condition we have

∑
k≥1

kµk

(
1− F ′ (p)

)k−1 = µ1
v − r

p− r
for any p ∈

(
p′, p′

]
,

without the right hand side being identically 0. Therefore F ′ (p) = F (p) for any p ∈
(
p′, p′

]
. This

implies, by using the continuity of F , that F
(
p′
)

= 0 and F (p′) = 1 so p′ ≤ p and p ≤ p′. If now

we interchange F and F ′ in this argument then we obtain p ≤ p′ and p′ ≤ p, so p′ = p and p = p′.

This implies that F ′ = F .

Proof of Proposition 8. In the proof we write c0 (t) to make explicit the dependence of c0 on

t = v − r. Take an arbitrary interval (a, b) ⊂
(
0, supt∈(0,∞) c0 (t)

)
. Then the pre-image set defined

as c−1
0 (a, b) = {t : c0 (t) ∈ (a, b)} is a nonempty set, open in (0,∞) because limt→0+ c0 (t) = 0 (by

equation (A17d)) and c0 is a continuous function of t = v − r. Therefore, with probability 1, there

exists an m such that tm = vm − rm ∈ c−1
0 (a, b), which means that c0 (tm) ∈ (a, b).16 Because the

interval (a, b) has been chosen arbitrarily, we have proved that for any interval, with probability 1

we can find an m such that the corresponding cutoff point c0 (tm) is included in the interval. Since

G (cm,0) = G (c0 (vm − rm)), m ≥ 1, are identified, this establishes that in an arbitrary interval

(a, b) ⊂
(
0, supt∈(0,∞) c0 (t)

)
we can find a point at which the search cost distribution is identified

with probability 1. Therefore, since it is continuous, G is identified on
[
0, supt∈(0,∞) c0 (t)

]
.

Lemma A.5 (Power Series) Suppose that (an)n≥1 ⊂ R and
∑

n≥1 anxn = 0 ∀x ∈ (0, α) for

some α > 0. Then an = 0 for any n ≥ 1.

Proof.
∑

n≥1 anxn = 0 implies a1 + x
∑

n≥0 an+2x
n = 0 ∀x ∈ (0, α). This can also be written

as
∑

n≥0 an+2x
n = −a1

x ∀x ∈ (0, α), which means that the power series
∑

n≥0 an+2x
n converges

∀x ∈ (0, α). Then by Lemma A.6 below there exists ρ ∈ (0, α) such that
∑

n≥0 an+2x
n is uniformly

convergent on [−ρ, ρ]. Let p1 (x) be its limit, where p1 : [−ρ, ρ] → R, that is,
∑

n≥0 an+2x
n =

16The argument for this statement is the following. Suppose that we have iid random variables x1, x2, . . . xn drawn
from a distribution with support (0,∞) and let (c, d) ⊂ (0,∞). Then the probability that at least one of these random
variables is in (c, d) is 1−P (xi /∈ (c, d))n = 1− [1− P (xi ∈ (c, d))]n. Since P (xi ∈ (c, d)) > 0, the above probability
goes to 1 when n →∞. So when we have a countably infinite sequence of random variables, the probability that at
least one of these random variables is in (c, d) is 1.
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p1(x)∀x ∈ [−ρ, ρ]. Therefore

a1 = −xp1 (x) ∀x ∈ [−ρ, ρ] . (A19)

The function p1 is continuous because it is the uniform limit of a sequence of continuous functions,

so limx→0 p1 (x) = p1 (0) = a2. This further implies that limx→0 xp1 (x) = 0, so based on equation

(A19), for any ε > 0 there is δ (ε) > 0 such that |a1| = |xp1 (x)| < ε for any x with |x| < δ (ε). This

implies that a1 = 0.

So we have obtained that
∑

n≥2 anxn = 0 ∀x ∈ (0, α), which implies
∑

n≥2 anxn−1 = 0 ∀x ∈

(0, α). By renaming the sequence (an)n≥2 as (bn)n≥1 with bn = an+1 we have
∑

n≥1 bnxn = 0

∀x ∈ (0, α). The arguments of the previous paragraph imply that b1 = 0, that is, a2 = 0. Going

on this way we can show that an = 0 for any n ≥ 1.

The following lemma is a version of a result also known as Abel’s Uniform Convergence Test.

Lemma A.6 (Abel) Suppose that the series
∑

n≥0 anxn
0 is convergent. Then ∀ρ with 0 < ρ < |x0|

the series
∑

n≥0 anxn is uniformly convergent ∀x ∈ [−ρ, ρ].

Proof. Let y be arbitrary with 0 < |y| < |x0|. First we note that the convergence of the series∑
n≥0 anxn

0 implies that limn→∞ anxn
0 = 0 and therefore there exists M with |anxn

0 | < M ∀n. The

sequence bn =
∑n

k=0 |ak| |y|k is convergent because it is increasing and

n∑
k=0

|ak| |y|k =
n∑

k=0

|ak| |x0|k
|y|k

|x0|k
< M

n∑
k=0

∣∣∣∣ y

x0

∣∣∣∣k ≤ M

1−
∣∣∣ y
x0

∣∣∣ ∀n,

that is, (bn)n is bounded above. Let b = limn→∞ bn =
∑

k≥0 |ak| |y|k. Then the sequence∑
k≥n+1 |ak| |y|k = b− bn, and hence it converges to 0.

In particular, by taking y = ρ we have obtained that
∑

k≥n+1 |ak| ρk converges to 0 for arbitrary

ρ with 0 < ρ < |x0| and by taking y = |x| we have obtained that
∑

k≥0 |ak| |x|k is convergent for

∀x ∈ [−ρ, ρ]. This latter statement means that the series
∑

k≥0 akx
k is absolutely convergent and

hence convergent for ∀x ∈ [−ρ, ρ]. So we can write

sup
x∈[−ρ,ρ]

∣∣∣∣∣∣
∑
k≥0

akx
k −

n∑
k=0

akx
k

∣∣∣∣∣∣ = sup
x∈[−ρ,ρ]

∣∣∣∣∣∣
∑

k≥n+1

akx
k

∣∣∣∣∣∣ ≤ sup
x∈[−ρ,ρ]

∑
k≥n+1

|ak| |x|k ≤
∑

k≥n+1

|ak| ρk.

Since the right hand side goes to 0 as n → ∞, we have obtained that
∑n

k=0 akx
k converges to∑

k≥0 akx
k uniformly for x ∈ [−ρ, ρ].
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