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Abstract. We consider the problem of estimating the lifetime value of
customers, when a large number of features are present in the data. In or-
der to measure lifetime value we use survival analysis models to estimate
customer tenure. In such a context, a number of classical modelling chal-
lenges arise. We will show how our proposed Bayesian methods perform,
and compare it with classical churn models on a real case study. More
specifically, based on data from a media service company, our aim will be
to predict churn behaviour, in order to entertain appropriate retention
actions.

1 Background and preliminaries

Our case study concerns a media service company. The main objective of such
a company is to maintain its customers, in an increasingly competitive market;
to evaluate the lifetime value of such customers, and to carefully design appro-
priate marketing actions. The company is such that most of its sales of services
are arranged through a yearly contract that allows buying different packages of
services at different costs. The contract of each customer with the company is
thus renewed yearly. If the client does not withdraw, the contract is renewed
automatically. Otherwise the client is said to churn.
In the company there are three types of churn events: people that withdraw
from their contract in due time (i.e. more than 60 days before the due date);
people that withdraw from their contracts overtime (i.e. less than 60 days before
the due date); people that withdraw without giving notice, as in the case of
bad payers. Correspondingly, the company assigns two different churn states: an
’EXIT’ state to the first two classes of customers; and a ’SUSPENSION’ state
to the third. Concerning the causes of churn, it is possible to identify a number
of components that can generate such behaviour:

– A static component, determined by the characteristics of the customers and
the type/subject of contracts;

– A dynamic component, that incorporates trends and the contact of the
clients with the call center of the company;
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– A seasonal part, tied to the period of subscription of the contract;
– External factors, that include the course of the markets and of the competi-

tors

1.1 Traditional churn models

Statistical models typically used to predict churn are based on logistic regression
or classification trees (see e.g. Giudici 2003). Generally, all models are evaluated
on the basis of a test sample (by definition not included in the training phase)
and classified in terms of predictive accuracy with respect to the actual response
values in it. In business terms, predictive accuracy means being able to iden-
tify correctly those individuals that will become churners during the evaluation
phase (correct identification). Evaluation is thus made using a confusion, or cross
validation matrix. However, there is a problem with the excessive influence of
the contract deadline. For instance the fitted tree models(CART and Chaid) pre-
dict that 90% of customers whose deadline is in April are at risk. If we consider
that the variable target was built from data gathered in February, the customers
whose term is in April and have to regularly unsubscribe within the 60 days
allowed, must become EXIT in February. Therefore, despite their good predic-
tive capability, these models are useless for marketing actions, as a very simple
model based on customer’s deadlines will perform as well.
The use of new methods is therefore necessary to obtain a predictive tool which
is able to consider the fact that churn data is ordered in calendar time. Before il-
lustrating our new methodology to estimate churn, we introduce the association
relationship and Life Time Value.

2 Churn Events and Life Time Value

We start with a simple scenario where a customer generates a margin mt for
each period t, the discount rate is i and the probability of retention rate is 1. In
this case, the lifetime value of this customer is simply the present value of the
future income stream, or

LTV =

∞
∑

t=0

mt

(1 + i)t
.

This is identical to the discounted cash flow approach of valuing perpetuities
(Brealey and Myers 1996). When we account for a customer retention rate r,
this formulation is modified as follows:

LTV =

∞
∑

t=0

mt

rt

(1 + i)t
.

Many researchers have debated the appropriate duration over which lifetime es-
timates should be based (Berger and Nasr 1998).
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We build our model for an infinite time horizon for several reasons. First, we
do not need to arbitrarily specify the number of years that a customer is going
to stay with the company. Second, the retention rate can account for the fact
that over time the chances of a customer staying with the company go down
significantly. Third, the typical method of converting retention rates into ex-
pected lifetime and then calculating present value over that finite time period
overestimates lifetime value. Fourth, both retention and discount rates ensure
that earnings in a distant future contribute significantly less to lifetime value.
To estimate the lifetime value of the entire customer base of a firm, we recog-
nize that the firm acquires new customers at each time period. Each cohort of
customers goes through a defection and profit pattern.
For example, a firm acquires n0 customers at time 0 at an acquisition cost of c0

per customer. Over time, customers defect so that the firm is left with n0 × r.
customers at the end of period 2, and so on. The profit from each customer
may vary over time. For example, Reichheld (1996) suggests that profits from a
customer increase over his/her lifetime. In contrast, Reinartz and Kumar (2000)
find that this pattern does not hold for non-contractual settings. Therefore the
lifetime value of cohort 0 at current time 0 is given by,

LTV0 = n0

∞
∑

t=0

mt

rt

(1 + i)t
− n0c0.

Cohort 1 follows a pattern similar to cohort 0 except that it is shifted in time
by one period. Therefore, the lifetime value of cohort 1 at time 1 is given by,

LTV1 = n1

∞
∑

t=0

mt−1
rt−1

(1 + i)t
− n1c1.

It is easy to convert this value at the current time 0 by discounting it for one
period. In other words, the lifetime value of cohort 1 at time 0 is,

LTV1 =
n1

1 + i

∞
∑

t=1

mt−1
rt−1

(1 + i)t−1
−

n1c1

1 + i
.

In general, the lifetime value for the k-th cohort at current time 0 is given by

LTVk =
nk

(1 + i)k

∞
∑

t=k

mt−k

rt−k

(1 + i)t−k
−

nkck

(1 + i)k
.

The value of the firm’s customer base is then the sum of the lifetime value of all
cohorts.

V alue =
∞
∑

k=0

nk

(1 + i)k

∞
∑

t=k

mt−k

rt−k

(1 + i)t−k
−

∞
∑

k=0

nkck

(1 + i)k
.

In general, an LTV model has three components: customer value over time,
customer length of service and a discounting factor. Our proposal leads to a
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statistical model statistical model for churn.
Given a customer, there are three factors we have to determine in order to
calculate LTV:

– The customers value over time:v(t) for t > 0, where t denotes time
– A model describing the customers churn probability over time. This is usu-

ally described by a survival function which describes the probability that the
customer will still be active at time t. We can then define f(t) as the cus-
tomers instantaneous probability of churn at time t: f(t) = −dS

dt
, where S(t)

is the survival function. The quantity most commonly modeled, however, is
the hazard function h(t) = f(t)/S(t).

– A discounting factor D(t) which describes how much each euro gained in
some future time t is worth for us right now. This function is usually given
based on business knowledge.

Given these three components, we can write the explicit formula for a customers
LTV as follows:

LTV =

∫ ∞

0

S(t)v(t)D(t)dt.

In other words, LTV is the total value to be gained while the customer is still
active. While this formula is attractive and straight-forward, the essence of the
challenge lies, of course, in estimating the v(t) and S(t) components in a rea-
sonable way. We can build models of varying structural and computational com-
plexity for these two quantities. We can use a highly simplistic model assuming
constant churn rate so if we observe 0.05 churn rate in the current month, we
can set S(t) = 0.95t. This model ignores the different factors that can affect
churning customer’s individual characteristics, contracts and commitments, etc.
On the other hand we can build a complex proportional hazards model, using
hundreds of customer properties as predictors. Our approach is intermediate, as
we shall employ hazard models based on appropriate variable selection. On the
other hand the value function v(t) will be left to the elicitation done by business
experts.

3 Survival analysis models to estimate churn

Survival analysis is concerned with studying the time between entry to a study
and a subsequent event (churn). Let T be a continuous nonnegative random
variable representing the survival times of individuals in some population. Let
f(t) denote the probability density function (pdf) of T and let the distribution
function be

F (t) = P (T ≤ t) =

∫ t

0

f(u)du.

The probability of an individual surviving until time t is given by the survivor
function

S(t) = 1 − F (t) = P (T ≥ t).
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We note that S(t) is a monotone decreasing function with S(0) = 1 and S(∞) =
0. All functions, unless stated otherwise, are defined over the interval [0,∞]. The
hazard function, h(t) is an instantaneous rate of failure at time t and is defined
by

h(t) = lim
ǫt→0

Pr(t ≤ T ≤ t + ǫt|T ≥ t)

ǫt

=
f(t)

S(t)
.

The functions f(t), F (t), S(t), and h(t) give mathematically equivalent speci-
fications of the distributions of T. It is easy to derive expressions for S(t) and
f(t) in terms of h(t) (see e.g. Kalbfleisch and Prentice, 1980).
In our case, to explain h(t) we have chosen to implement Cox’s model, see e.g.
Cox 1972. In survival models (see e.g. Hougaard, 1995), the hazard function for
a given individual describes the instantaneous risk of experiencing an event of
interest within an infinitesimal interval of time, given that the individual has not
yet experienced that event. The Cox hazard function for fixed-time covariates,
x, is

λ(t;x) = λ0(t)exp(x′β). (1)

Due to the construction of the previous equation, the baseline hazard λ0(t) is
defined as the hazard function for that individual with zero on all covariates.
Because the baseline hazard is not assumed to be of a parametric form, Cox
model (1) is referred to as a semi-parametric model for the hazard function. The
survival function corresponding to (8) is then (see e.g. Klein and Moeschberger,
1997)

S(t;x) = exp

[

−exp(x′β)

∫ t

0

λ0(u)du

]

. (2)

The integral in (2) is called the baseline cumulative hazard function. Several
methods are available for estimating the baseline cumulative hazard function.
Cox model has become the most used procedure for modeling the relationship
of covariates to a survival or other censored outcome (see e.g. Singer and Willet
2003). Its form is flexible enough to allow time-dependent covariates as well as
frailty terms and stratification. However, it has some restrictions. One of the
restrictions in using the Cox model with time-fixed covariates is its proportional
hazards (PH) assumption; that is, that the hazard ratio between two covariate
values is constant over time. This is due to the common baseline hazard function
canceling out in the ratio of the two hazards. Thus, for fixed-time covariates, the
exponent of a coefficient describes the relative change in the baseline hazard due
to that covariate.
The baseline hazard is typically considered a nuisance parameter, and estimation
of β is done by maximizing a profile likelihood, with λ0(t) being substituted for
an expression involving β and x , as well as the times at which failures occur.
This expression is called the profile maximum likelihood estimate of λ0(t). The
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likelihood with λ0(t) profiled out is called the partial likelihood by Cox. For fixed-
time covariates and independent observations, the partial likelihood is given by

L(β) =
D
∏

i=1

exp(x′
iβ)

[

∑

j∈R(ti)
exp(x′

jβ)
]di

, (3)

where D is the total number of events, di is the number of events at time ti and
R(ti) is the risk set at time at time ti (the number of customers in the data set
who have censored times later than or equal to time ti). The value of β that
maximizes (3) is called the maximum partial likelihood estimate (MPLE).
In Cox model building the objective is to identify the variables that are most
associated with the churn event. This implies that a model selection exercise,
aimed at choosing the statistical model that best fits the data, is to be carried
out. The statistical literature presents many references for model selection; most
models are based on the comparison of model scores. The main score functions
to evaluate models are related to the Kullback-Leibler principle. This occurs for
criteria that penalize for model complexity, such as AIC (Akaike Information
Criterion) and BIC (Bayesian Information Criterion).
The tenure prediction models we have developed generate, for a given customer
i, a hazard function, that indicates the probability hi(t) of cancellation at a given
time t in the future. A hazard curve can be converted to a survival curve or to a
survival function which plots the probability Si(t) of ’survival’ (non-cancellation)
at any time t, given that customer was ’alive’ (active) at time t-1, i.e.,

Si(t) = Si(t − 1) × [1 − hi(t)],

with Si(1) = 1.

4 Criticism of the classical Cox Model

A very crucial aspect of causal models in survival analysis is the preliminary
stage, in which a set of explanatory variables must be properly chosen and de-
signed, usually among, as in our real case, a very large number of alternatives.
This part of the analysis is typically accomplished with the help of descriptive
tools, such as plots of the observed hazard rates at the covariate values. How-
ever, it is often the case that such tools are not sufficiently informative. As a
consequence, a large number of variables are included as predictors and a model
selection procedure needs to be run in order to find a parsimonious linear com-
bination.
Our claim is that classical Cox proportional hazard models may not be the best
strategy for Customer Lifetime Value modelling . Some criticisms are:

– If repeated events occur, as in our case, a different model structure (e.g.
based on counting processes) should be adopted.
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– The Cox model assumes that every subject experiences an event at most
once, and that the event times are independent. In our context, a subject
can experience multiple events (e.g. a churn event in different times and
locations), possibly with dependencies among the event times of the same
individual. Modelling multiple event time data requires a different approach.
An example of modelling multiple event time data was given by Gail, Santer
and Brown (1980) with an application to mammary tumors.

– When many explanatory variables, possibly correlated, are specified, the ef-
ficiency of Cox’s model selection and estimation becomes heavily dependent
on the number of available observations. Variable selection is thus needed in
a model selection step. However classical model selection chooses a model
and then inferences on quantities of interest, such as λ(t|z) are made con-
ditionally upon the selected model. Consequently, model uncertainty is not
taken into account and, thus, inference may be seriously biased.

– It may be difficult, particularly in observational studies, to have complete in-
formation on all relevant covariates. Furthermore, random effects, expressing
accident proneness or frailties may affect inferences on fixed effects.

In this paper we shall show how to improve the classical Cox model for Customer
Lifetime Value in two ways:

– Considering Bayesian Variable Selection and Bayesian Model Averaging to
correctly take model uncertainty into account

– Introducing a multilevel multivariate survival model via stratification.

5 A two step Bayesian lifetime value model

5.1 Our Bayesian Variable Selection approach

To illustrate clearly our variable selection methodology, we shall assume first
an exponential survival time, such that, for i = 1, . . . , n: λi(t) = λi. It can
then be shown that, given the observed data y = (y1, . . . , yn), the likelihood of
λ = (λ1, . . . , λn) is:

L(λ) =
∏

i∈U

λi exp{−
n

∑

i=1

λiti}, ,

where U = {i : δi = 1} are the uncensored subjects. Now, let g indicate a
partition of the index set I = {1, . . . , n}, with dg subsets Sk(g), for k = 1, . . . , dg.
Clearly, given the correspondence between I, y and λ, g also defines a partition of
the data and of the hazard functions. Notice that the likelihood in (4) assumes all
λi to be distinct and, thus, is in fact conditional on the independence partition
gind = {{1}, {2}, . . . , {n}}, containing dg = n separate subsets Si, each with
n(Si) = 1 observations. For this reason, it can be indicated by L(λ|gind).
A different likelihood arises when all hazards can be set equala fixed equal to a
common rate, say µ. This situation occurs when no covariate or frailty affects the
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survival times and corresponds to considering all data to be exchangeable. The
resulting likelihood can be seen as conditional on the partition gexc = {1, . . . , n},
containing a single subset S1 (with n(S1) = n):

L(µ|gexc) = µdexp{−µV }, ,

with d =
∑n

i=1 δi the total number of failures and V =
∑n

i=1 ti the overall time
at risk.
Apart from the above situations, which can be regarded as somewhat extreme,
survival analysis is typically concerned with a plurality of effects that may in-
duce dependencies among survival times. Such effects may be either observable
(possibly with some missing values) or unobservable. In any case, when relevant,
they induce a partition of the observations, by associating different hazards to
individuals having the same level of the factor. In our approach, we will en-
tertain several partition structures, each induced by the levels of a potential
prognostic factor. This amounts to considering a collection of alternative par-
tial exchangeability structures for the survival times. Our model consists of two
parts: a likelihood specification and a hierarchical prior distribution on the par-
tition structure as well as on the corresponding set of hazards. Conditionally on
a general partition g, let λi = µk, ∀i ∈ Sk(g). Consequently, the likelihood of
the hazards µ = (µ1, . . . , µdg

) is the following:

L(µ|g) =

dg
∏

k=1

µdk

k exp{−µkVk}, (4)

where, for k = 1, . . . , dg: µk, dk =
∑

i∈Sk(g) δi and Vk =
∑

i∈Sk(g) ti are the
hazard, death and risk set of the k-th partition subset. On the other hand,
the prior specification requires the definition of a class of possible partitions
G = {1, . . . , G}.
Once G is specified, it is necessary to assign a probability distribution on both
λ|g ∈ Rdg and g ∈ G. Specifically, conditionally on a partition g we shall take,
for k = 1, . . . , dg and ∀i ∈ Sk(g):

µk
ind
∼ Gamma(rkmk, rk), (5)

with mk and rk known positive constants. Finally, a simple probability function
on G would take p(g) to be uniformly spread among partitions, i.e. p(g) = G−1.
Our first aim is to evaluate the importance of each prognostic factor. This can be
achieved by calculating, given the observed evidence y, the posterior probability
of each partition, p(g|y). Following (4) and (5) it can be shown that:

p(y|g) =

dg
∏

k=1

(rk)rk mk

Γ (rk mk)

Γ (rk mk + dk)

(Vk + rk)rk mk+dk
,

Furthermore, Bayes theorem gives p(g|y) ∝ p(y|g)p(g), from which p(g|y) is ob-
tained by normalisation.
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Our second aim is to estimate the hazard function, in order to make predictions
on survival times. This task can be performed in two steps: first we work con-
ditionally on a partition, and determine a Bayesian estimate of each individual
hazard, by calculating the posterior mean E(λi|y, g). Computationally, following
(4) and (5), it turns out that, for i ∈ Sk(g):

E(λi|y, g) =
rk mk + dk

Vk + rk

,

The above expression shows that rk and rk mk can be interpreted space respec-
tively, as pre-experimental total time at risk and observed events (e.g. coming
from a meta-analysis). When no prior information is available, they may be taken
in an appropriate uninformative manner. The second step of the estimation pro-
cedure involves using p(g|y) to calculate the marginal posterior expectation of
each individual hazard E(λi|y), via the law of total probabilities:

E(λi|y) =

G
∑

g=1

E(λi|g, y)p(g|y).

As shown, for instance, in Raftery et al (1995), using the marginal posterior
expectation via the above model averaging procedure leads to predictions better
than those based on conditioning on a single partition, such as that associated
with the best model. The procedure that we have shown for a constant hazard
can be easily generalized for a counting process framework, as are shall show in
the next section.

5.2 Survival analysis in the Point Processes framework

Several authors have discussed Bayesian inference for censored survival data
where the integrated baseline hazard function is to be estimated nonparamet-
rically, see e.g. Kalbfleisch and Prentice (1980). In particular, Clayton (1994)
formulates the Cox Model using the counting process notation introduced by
Andersen and Gill (1982) and discusses estimation of the baseline hazard and
regression parameters using a Bayesian approach based on Markov Chain Monte
Carlo. Although his approach may appear somewhat contrived, it forms the ba-
sis for extensions to random effects frailty models, time-dependent covariates,
smoothed hazards, multiple events and so on.
Here we follow Clayton’s guidelines and propose a methodology based on count-
ing processes. In particular the counting process associated with a point process
is characterized by a dynamic process (intensity), and a special pattern of in-
completeness of observations (right-censoring or left-truncation in our case). This
characterization is an application of the well known Doob-Meyer decomposition
theorem. Having defined the intensity process, one is interested in estimation of
its parameters.
Inferential procedures in this framework were first presented in Aalen (1975),
and turned out to be very fruitful. For further developments, see Andersen et al.
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(1993). A counting process is a stochastic process {N(t) : t ≥ 0} adapted to a
self-exciting filtration Imt : t ≥ 0 with N(0) = 0 and N(t) < ∞ a.s., and whose
paths are, with probability one, right-continuous, piecewise constant, and have
only jump discontinuities, with jumps of size one.
For the derivation of the likelihood function we follow a well developed theory
leading to a Poisson type of likelihood (see e.g. Andersen et. al. (1993), or Flem-
ing and Harrington (1991)). The justification is based on Jacod’s Formula for
the likelihood ratio.
Suppose that the yth individual in the ith cluster survival time T ij is an abso-
lutely continuous random variable conditionally independent of a right censoring
time Zij given the covariates xij and frailty wi. Let V ij = min(T ij , Zij) and
δij = I(Tij ≤ Zij) denote the time to the end-point event and the indicator for
the event of interest to take place, respectively. Suppose that (V ij, δij , xij , wi)
are i.i.d, for i = 1, ..., n and j = 1, ...mi, and the conditional hazard function of
Tij given xij and wi satisfies the additive exponential linear hazard model. For
subject j in cluster i, let Nij(t) = 1 if δij = 1 in interval [0, t] and Nij(t) = 0
otherwise, and let Yij(t) = 1 if the subject is still exposed to risk at time t and
Yij(t) = 0 otherwise.

Hence, we have a set of N =
∑i=1

n mi subjects such that the counting process
{Nij(t); t ≥ 0} for the jth subject in the ith cluster set, records the number of
observed events up to time t. Letting dNij(t) denote the increment on Nij(t)
over the small interval [t, t + dt], the likelihood (6) of the data conditional on wi

is proportional to:

n
∏

i=1

mi
∏

j=1





∏

t≥0

Yij(t)wi [h0(t|λ0) + h1(t|θ)]
dNij(t)





×exp

(

−

∫

t≥0

Yij(t)wi [h0(t|λ0) + h1(t|θ)]

)

. (6)

Since we allow each Nij(t) to take at most one jump for each subject, note that
dNij(t) contribute to the likelihood in the same manner as independent Poisson
random variables even though dNij(t) ≤ 1 for all i, j and t.
Suppose that the time axis is partitioned into g + 1 disjoint intervals I1, ..., Ig+1

where Ik = [ak−1, ak) for K = 1, 2, ..., g + 1, with a0 = 0 and ag+1 = ∞. In
the Kth interval, given wi, the jth subject in the i-th cluster has hazard form
wi {h0(tij |λ0k) + h1(tij |θij)}, K = 1, ..., gij where gij denotes the number of
partitions of the time interval for the jth subject in the ith group.
Given the complete data (T,w), where T = {tij : i = 1, ..., ni; j = 1, ...,mi} , w =
(w1, ..., wn), the likelihood can be re-expressed as

n
∏

i=1

mi
∏

j=1

gij
∏

k=1

∏

t∈(ak−1,ak)

[

Yij(t)wi [h0(t|λ0) + h1(t|θ)]
dNijk

]

×exp

(

−

∫

t≥0

Yij(t)wi [h0(t|λ0) + h1(t|θ)]

)

, (7)
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where dNijk is the change in the count function for jth subject in the ith group
in the interval k. Note that h0(t|λ0) is the baseline hazard function and h(t|θ) is
the parametric part, with θ = Xβ. Under the assumption that the risk occuring
in the interval Ik is small, i.e.,

∫ ak−1

ak

Yij(t) [h0(t|λ0) + h1(t|θ)] dt ≈ 0,

for all i,j,k, the likelihood contribution across this interval for individuals at risk
is approximately

{

wi

[

dH0k +
1

θij

(ak − ak−1)

]}dNijk

× exp

(

−wi

[

dH0k +
1

θij

(ak − ak−1)

])

,

where dH0k =
∫ ak

ak−1
h0(t)dt is the usual cumulative baseline intensity function

for the kth interval.
We remark that the previous likelihood is essentially Poisson in form, reflecting
the fact that the likelihood may be thought of as being generated by independent
contributions of many data atoms each concerned with the observation of an
individual over a very short interval during which the intensity may be regarded
as constant and approximately zero (for a review of this point, see e.g. Clayton,
1994). Therefore, we replace the previous equation with:

i=1
∏

n

j=1
∏

mi

∏

Yijk=1

{

wi

[

dH0k +
1

θij

(ak − ak−1)

]}dNijk

×exp

(

−wi

[

dH0k +
1

θij

(ak − ak−1)

])

, (8)

where Yijk = 1 if the jth subject in the ith group is exposed to risk at time
t ∈ (ak−1, ak], and Yijk = 0. We now present a Bayesian version of the counting
process model introduced before. To formulate a Bayesian specification of the
model, prior distributions are needed for the vector parameters λ0 and θ and
the hyperparameters β, σ2

θ .
We assume for the elements of λ0 , λ0 = (λ00, ..., λ0g)

′, independent Gamma
priors, i.e.,

(λ0k|a0k, b0k)
ind
∼ Ga(a0kb0k),K = 1, 2, ..., gij ,

where gij denotes the number of partitions of the time interval for the jth subject
in the ith group, a0k/b0k is the prior expectation for λ0k and a0k/b2

0k is the prior
variance. For β we choose the usual Normal-Inverse Gamma conjugate priors,
i.e.

β|σ2
θ

ind
∼ Np(mθ, σ

2
θVθ),

with σ2
θ

ind
∼ Ga(aθ, bθ). In order to estimate the posterior distributions we have

implemented a Gibbs sampling procedure.
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6 A one step Bayesian lifetime value model

Methods for analyzing survival data, in contrast with the previous Section, a
Bayesian model averaging approach allows to derive a one-step procedure for
estimation of a lifetime value model, focus on modeling the hazard rate through
proportional hazards model.
Since the integrals required for BMA do not have a closed-form solution for
Cox models, Raftery, Madigan and Volinsky (1996) and Volinsky et. al (1997)
adopted a number of approximations for Bayesian Model averaging. In particular
they showed that it is possible to use the MLE approximations:

p(∆|Mk,D) ≈ p(∆|Mk, β̂k,D),

and the Laplace approximation,

log p(D|Mk) ≈ log p(D|β̂k,Mk) − dk log(n),

where dk is the dimension of βk and n is usually taken to be the total number
of cases. This is the Bayesian Information Criterion (BIC) approximation.
To implement BMA for Cox Models, we have followed Raftery et. al (1999) and
used an approach similar to the Occam’s window method, implemented in a set of
R routines provided for Bayesian Model Averaging. To efficiently identify good
models, we adapted the leaps and bounds algorithm of Furnival and Wilson
(1974) which was originally created for linear regression model selection. The
leaps and bounds algorithm provides the top q models of each model size, where
q is designated by the user. The MLE β̂k and var(β̂k) for each model Mk are
also returned. Lawless and Singhal (1978) and Kuk (1984) provide a modified
algorithm for nonnormal regression models that gives an approximate likelihood
ratio test statistic and hence an approximate BIC value. With BMA it is possible
to have for each model a BIC, the posterior probability and for each parameter
the relative mean, the variance and also the posterior probability that a Cox
regression coefficient for a variable is nonzero (posterior effect probability) as
the sum of posterior probabilities of the models which contain that variable.
The posterior mean (9), following Raftery et al. (1999), of a regression coefficient
can be shown to be:

θ̂BMA = EM (θ̂) =

K
∑

i=1

θ̂iP (Mi|D)

=

∑K
i=1 θ̂iP (Mi|D)

∑

i:θi∈Mi
P (Mi|D)

×
∑

i:θi∈Mi

P (Mi|D)

= E(θ̂|θi ∈ Mi) × P (θ 6= 0), (9)

which is the conditional posterior mean of θ multiplied by its posterior proba-
bility.
Similarly, to calculate the variance of the regression coefficient, let pi = P (Mi|D)
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and Vi = V ar(θ̂|Mi,D). Then:

V (θ̂) = E(θ̂2) − (

K
∑

i=1

piθ̂i)
2

=
K

∑

i=1

pi(Vi + θ2
i ) − (

K
∑

i=1

piθ̂i)
2

=

K
∑

i=1

piVi + [

K
∑

i=1

piθ̂
2
i − (

K
∑

i=1

piθ̂i)
2]

=
K

∑

i=1

piVi +
K

∑

i=1

pi(θ̂i −
K

∑

i=1

piθ̂i)
2, (10)

Note that the first term is the weighted variance over models, but the overall
variance is affected by the second term, which depends on how stable the es-
timates are across models. The more these estimates differ across models, the
higher the posterior variance. In this way the standard errors reported for vari-
ables directly take into account model uncertainty.
Prior probabilities on both model space and parameter space are defined by this
procedure. All models are considered equally likely a priori by the leaps and
bounds algorithm. Using the BIC approximation to the integrated likelihood de-
fines an implicit prior on all the regression parameters, as described before.
When there is little prior information about the relative plausibility of the mod-
els considered, the assumption that all models are equally a priori is a reason-
able neutral choice. However, Spiegelhalter, Dawid, Lauritzen and Cowell (1993)
provide a detailed analysis of the benefits of incorporating informative prior dis-
tributions in Bayesian Knowledge - based systems and demonstrate improved
predictive performance with informative priors. When prior information about
the importance of a variable is available for model structures the prior probabil-
ity for model Mi can be specified as

p(Mi) =

p
∏

j=1

π
δij

j (1 − πj)
1−δij ,

where πj ∈ [0, 1] is the prior probability that βj 6= 0 in a regression model
and δij is an indicator of whether or not variable j is included in model Mi.
Assigning πj = 0.5 for all j corresponds to a uniform prior across model space,
while πj < 0.5 for all j imposes a penalty for large models. Using πj = 1 ensures
that variable j is included in all models.
This approach was used to specify model priors for variable selection in linear
regression in Dobson (1990) and suggested for model priors for BMA in Cox
models by Raftery et al. (1999).
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7 Stratified Cox Models

The Cox model has become the most used procedure for modeling the rela-
tionship of covariates to a survival or other censored outcomes (Therneau and
Grambsch, 2000). Its form is flexible enough to allow time-dependent covariates
as well as frailty terms and stratification, but it has some restrictions.
One of the restrictions of using a Cox model with fixed in time is its proportional
hazards (PH) assumption, that is, that the hazard ratio between two covariate
values has to be constant over time (this is due to the common baseline hazard
function canceling out in the ratio of the two hazards).
We now review tools available to assess whether hazards can be considered pro-
portional (PH assumption) for all covariates. For binary covariates, as in our
case, a comparison of nonparametric survival curve estimates may be sufficient
to decide on PH because if the hazards were proportional, the survival curves for
the two conditions would separate exponentially, and the two curves would not
cross each other. Non-PH would imply that the relative risk changes over time
for subjects who churn versus subjects who do not churn during the temporal
period of study.
For continuous covariates it is not sufficient to rely only on stratified survival
estimates to assess PH because the choice of stratification points is subjective.
In this case an alternative is via the use of time-varying coefficients (Grambsch
and Therneau, 1994). That is, one or more coefficients multiplying their respec-
tive covariates varies with time. If the coefficient multiplying a covariate is not
constant over time, the impact of that covariate on the hazard varies over time,
leading to non-PH. Instead if PH holds, a plot of the coefficient versus time will
be a horizontal line. Therefore, we can perform formal tests for specific forms
of departure from PH. To illustrate formal tests of time-varying coefficients, we
first describe the Schoenfeld (1982) residual, using the notation of Therneau and
Grambsch (2000).
Let t1, ..., td be d unique ordered event times, and let Xi(s) be the p×1 covariate
vector for the i − th individual at time s. For time-fixed covariates, this is just
Xi. Also, define the weighted mean of the Xi(s) over those still at risk at time
s as:

x(β̂, s) =

∑

Yi(s)exp(Xi(s)β̂)Xi(s)
∑

Yi(s)exp(Xi(s)β̂)
,

where Yi(s) is the predictable variation process indicating whether observation
i is at risk at time s, so that Yi(s) = 1 if observation i is still at risk at time s

and is zero otherwise. The estimate β̂ comes from fitting a Cox PH model. In
particular, a Schoenfeld residual is a p × 1 vector that is defined at the k − th
event time as:

sk =

∫ tk

tk−1

∑

i

[

Xi(s) − x(β̂, s)
]

dNi(s),

where Ni(s) is a counting process that counts the number of events for obser-

vation i at time s. Thus, sk sums the quantities Xi(tk) − x(β̂, tk) over observa-
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tions that have experienced the event by time tk. With no tied event times, the
k− th Schoenfeld residual is the sum of contributions to the derivative of the log
partial likelihood by subjects who have experienced events by tk (Hosmer and
Lemeshow, 1998).
There are several options for attempting to correct non-PH or to use alterna-
tives to a PH model. An option is to use an accelerated failure time (AFT)
model. Therneau and Grambsch (2000) show these models can be detected by
the time-varying coefficient tests mentioned in this section. AFT models are
most appropriate in settings in which the time scale of the hazard function is
either slower or faster (multiplicatively) than the time scale on which the mea-
surements are made, as the covariates act by expanding or contracting time by
a factor exp(Xβ).
Another alternative is to stratify the model across levels of one or more covari-
ates, leading to a Stratified Cox model.

7.1 Bayesian Stratified fixed effects Cox models

The Classical Cox model (1) can be extended to account for stratification. When
a factor does not affect the hazard multiplicatively, stratification may be useful
in model building. The strata divide the subjects into disjoint groups, each of
which has a distinct (arbitrary) baseline hazard function but common values for
the coefficients β (Therneau and Grambsch, 2000). The hazard function for an
individual i who belongs to stratum k is then:

λ(t;xi) = λk(t)exp(x′
iβ),

Typically, strata are naturally defined within the context of the problem. For
example, in medical research, multi-center clinical trials typically stratify on the
clinic in which they are conducted (Therneau and Grambsch, 2000).
The stratified Cox model also allows a deviation from proportional hazards, and
as such provides an alternative to the assumption of proportional hazards. The
hazard functions for two different strata do not have to be proportional to one
another. However, within a stratum, proportional hazards are assumed to hold.
We take advantage of this use of stratification for our data.
The partial likelihood for stratified Cox models with K strata becomes a product
of K terms, each of the form of (3), but where i ranges over only the subjects
in stratum k, k = 1, ,K. Stratification entails fitting separate baseline hazard
functions across strata. A baseline hazard function represents the hazard rate
over time for an individual with all modeled covariates set to zero. With a
stratified Cox model, a proportional hazards structure does not necessarily hold
for the combined data, but is assumed to hold within each stratum. However,
the coefficients on the included covariates are common across strata so that
the relative effect of each predictor is the same across strata, unless there is
a significant strata-by-covariate interaction, which means that the effect of the
covariate differs within strata.
The estimated coefficients of a stratified Cox model can be computed using the
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entire data set. A formal test of overall goodness-of-fit for the stratified Cox
model was proposed by Parzen and Lipsitz (1999) and independently by May
and Hosmer (1998). The test compares observed and (model-based) expected
numbers of events within covariate risk groups and computes a chi-square test.
Here we propose a Bayesian version for the Stratified Cox Model:

hi(t) = h0i(t)exp(β′x),

Stratum-specific baseline hazards, h0i(t) are assumed to be drawn from the
Weibull family:

h0i(t) = ρit
ρi−1exp(ρiβ0i),

where β0i is a unit specific time-scale accelerator with prior N(µ0, σ
2
0), µ0 is a

flat prior and σ2
0 is an Inverse Gamma with specific value of parameter (e.g.

3,0.5). We remark that ρi is a unit-specific shape parameter. In particular, if
ρi > 1 there is an increasing hazard, ρi ∼ Ga(α, α−1), with α ∼ Ga(c, d). In
our case we have chosen c=3, d=10. The posterior distribution function of the
coefficients can be derived via Gibbs Sampling.

8 Application of Bayesian survival models

We now turn our attention towards the application of the presented methodolo-
gies for modelling survival risk. In our case study the risk concerns the value
that derives from the loss of a customer. The objective is to determine which
combination of covariates affect the risk function, studying specifically the char-
acteristics and the relation with the probability of survival for each customer.

8.1 The available data

The data available for our analysis contains information that can affect the
event time, such as demographic variables, variables about the contract, the
payment, the contacts and geomarketing variables. The response variable, used
as a dependent variable to build predictive models, includes two different types
of customers: those who during the survey are active and those, instead, who
regularly cancelled their subscription.
We remark that, due to the different nature of the withdrawal, SUSPENSION
status customers, who have not paid the subscription, although not cancellers,
cannot be simply included in a classical analysis but, rather, require a specific
treatment, as in the survival analysis context.
The target variable has been observed 3 months after the extraction of the data
set used for the model implementation phase, in order to verify correctly the
effectiveness and predictive power of the models themselves. We have available
606 variables and 3.4 Million observations (customers), extracted from the com-
pany database.
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Concerning explanatory variables, the variables used were taken from differ-
ent databases used within the company, which contained, respectively: socio-
demographic information about the customers; information about their contrac-
tual situation and about its change over time; information about contacting
the customers (through the call centre, promotion campaigns, etc) and, finally,
geo-marketing information (divided into census, municipalities and larger geo-
graphical sections information).
The variables regarding customers contain demographic information (age, gen-
der, marital status, location, number of children, job and degree) and other
information about customer descriptive characteristics: hobbies, PC possession
at home, address changes.
The variables regarding the contract contain information about its chronology
(signing date and starting date, time left before expiration date), its value (fees
and options) at the beginning and at the end of the survey period, about equip-
ment needed to use services (if they are rented, leased or purchased by the
customer) and binary variables which indicate if the customer has already had
an active, cancelled or suspended contract. There is also information about in-
voicing (invoice amount compared to different period of time 2, 4, 8, 12 months).
The variables regarding payment conditions include information about the type
of payment of the monthly subscription (postal bulletin, account charge, credit
card), as well as other info about the changes of the type of payment. The data
set used for the analysis also includes variables which give information about
the type of the services bought, about the purchased options, and about specific
ad-hoc purchases, such as number and total amount of specific purchases during
the previous month and the last 2 months.
The variables regarding contacts with the customer contain information about
any type of contact between the customer and the company (mostly through calls
to the call centre). They include many types of calling categories (and relatives
subcategories). They also include information about the number of questions
made by every customer and temporal information, such as the number of calls
made during the last month, the last two months and so on. Finally, geomarket-
ing variables are available although a great amount of work is involved in their
pre-processing and definition.
Regardless of their provenence, all variables have gone through a pre-processing
feature selection step aimed at reducing their very large number (equal to 606).
This step has been perfomed using a combination of different techniques, go-
ing from dimensionality reduction to association measure ranking and stepwise
selection. For more details, see Figini, 2006.

8.2 Classical Survival Analysis

In order to build a survival analysis model, we have constructed two variables:
one variable of status (that distinguishes between active and non active cus-
tomers) and one of duration (indicator of customer seniority) . The first step in
the analysis of survival data consists of a plot of the survival function and of the
hazard.
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The application of the Kaplan Meier estimator to our data leads to the estimated
survival function in Figure 1.

Figure 1 about here

From Figure 1 we note that the survival function has varying slopes, correspond-
ing to different periods. When the curve decreases rapidly we have time periods
with high churn rates; when the curve decreases slowly we have periods of loy-
alty. We remark that the final jump is due to a distortion caused by a few data
in the tail of the lifecycle distribution.
In Figure 2 we show the hazard function, which shows how the instantaneous
risk rate varies in time.

Figure 2 about here

From Figure 2 we note two peaks, corresponding to months 4 and 12, the most
risky ones. Note that the risk rate is otherwise almost constant along the lifecycle.
Of course there is a peak in the end, corresponding to what we observed in Figure
1.
Of great value, in business terms, is the calculation of the life expectancy of the
customers. This can be obtained as a sum over all observed event times:

T
∑

j=1

Ŝ(tj) × (tj − tj−1),

where Ŝ(tj) is the estimate of the survival function at the j-th event time, ob-
tained using the Kaplan Meier method, and t is a duration indicator. We remark
that life expectancy tends to be underestimated if most observed event types are
censored (i.e., no more observable).
We now move to the building of a full predictive model. We have chosen to
implement first the classical Cox model. The number of variables available are
606. The result, following a stepwise model selection procedure, is a set of about
twentyfive explanatory variables. Such variables can be grouped into three main
categories, according to the sign of their association with the churn rate, repre-
sented by the hazard ratio:

– variables that show a positive association (e.g. wealth of the geographic
regions, the quality of the call center service, the sales channel)

– variables that show a negative association (e.g. number of technical problems,
cost of service bought, payment method)

– variables that have no association (e.g. equipment rental cost, age of cus-
tomer, number of family components).

To better interpret the previous associations we consider the values of the hazard
ratio under different covariate values. For example, for the variable indicating
the number of technical problems we have compared the hazard function for
those that have called at least once with those that have not made any. As the
resulting ratio turns out to be equal to 0.849, the risk of becoming a churner is
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lower for callers than for non callers.
A very important remark is that the Cox model generates survival functions
that are adjusted for covariate values. More precisely, the survival function is
computed according to the following

S(t,X) = S0(t)exp(

p
∑

i=1

βiXi),

Figure 3 shows a comparison between the survival curve obtained without covari-
ates (the baseline, as in Figure 1) and the same curve adjusted for the presence
of covariates.

Figure 3 about here

Figure 3 shows that covariates affect the survival time substantially up for to
two years of lifetime; indeed the Cox survival curve (described by the symbols
’+’) is greater with respect to the baseline (described by the continuous curve).
After this period the survival probability declines abruptly and turns out to be
much lower for the remaining lifespan. Once a Cox model has been fitted it is
advisable to produce diagnostic statistics based on the analysis of residuals to
verify if the hypotheses underlying the model are correct. In our case they were
found to be correct, so we could proceed with predictive modelling.
In the following prediction step the goodness of the model will be evaluated
in terms of predictive accuracy in a cross-validation exercise. We first split the
dataset in the two usual subsets: training and test. Both have been propor-
tionally sampled with respect to the status variable. All sampled data contain
information on all finally chosen explanatory variables (about twenty). In order
to evaluate the predictive performance of the model, and compare it with clas-
sification trees (routinely used by the company), we have focused our attention
to a 3 month ahead prediction. We have devised and implemented a procedure
based on the estimated survival probabilities, aimed at building the confusion
matrix (see e.g. Giudici 2003) and, correspondingly, the percentage of captured
true churners of the model. We remark that this is not a fair comparison, as
survival models predict more than a point; however company experts tipically
ask for this type of model benchmarking.
In this paper, for brevity, we do not report full results on this model, but only
the summary predictive performances; for more details see Figini (2006). Cor-
responding to each estimated probability decile, the percentage of true churners
captured is : 0.104 in the first decile, 0.0745 in the second decile. In general,
while in the first decile (that is, among the customers with the highest estimated
churn probability) 0.10 of the clients are effective churners, the same percentage
reduces in susequent deciles, thus giving an overall picture of good performance
of the model. Indeed the lift of the model, as measured by the ratio between
the captured true responses between the model and a random allocation, does
not turn out to be substantially better with respect to what was obtained with
the tree models. However, we remark that, in constrast to what occurred with
the latter models, the customers with the highest estimated churn rate are now
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not necessarily those whose contract is close to the deadline. This is the most
beneficial advantage of the survival analysis approach, which, in turn, leads to
substantial gains in campaign costs. A further advantage of the survival analysis
approach lies in its immediate translation in terms of lifetime value analysis, as
we shall see in the next subsection.

8.3 Bayesian Variable selection: results

We now show the results concerning our proposal for Bayesian Feature selection,
in a two step approach. We run this procedure for each variable in the data set.
In Table 1 we show the most important covariate to predict Customer Lifetime
Value.

Table 1 about here

We observe that the most important variable for predicting churn risk are about
information on disconnection; this means that when a customer contacts the
call-center to stop the contract. The second concerns the decoder’s usage, and
then covariates for payment method, promotion and special offers.

8.4 Two step Bayesian survival analysis

We now proceed with Bayesian modelling, in the two step context. We apply
the method explained earlier to select variables. We have built and evaluated,
for each covariate, a measure of importance. We report the results in Table 2
for the most important variables. It is possible to see that the most important
variables to explain churn, concern information on disconnection, decoder rental
, payment method, promotions, sale channel and contact with the call center.
After feature selection we used WinBUGS to implement a Bayesian counting
process model using the Gibbs sampler. Table 2 shows the results.

Table 2 about here

In particular for each covariate selected by our Bayesian feature selection approch
we have calculated, for each parameter, the mean , the standard deviation, the
Monte Carlo error, the median and the Bayesian credible interval. We have esti-
mated our models with different MCMC chains. The most stable result is with
10000 iterations and 500 iterations as a burn-in.
We have then used the idea of parallel multiple chains to check the convergence of
the Gibbs sampler, following Gelman and Rubin (1992). In particular, to gener-
ate the Gibbs posterior samples, we have used three parallel chains. Monitoring
convergence of the chains, has been done via the Brooks and Gelman (1998)
convergence-diagnostic-graph.
For each of the 3 chains WinBUGS provides estimated parameters as a function
of the iteration number (see e.g. Figure 4 and Figure 5).

Figure 4 and Figure 5 about here
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Inspection of the diagnostic graphs for the two most important covariates (Fig-
ure 5 and 6), show that BGR converges to one. This shows that convergence
is achieved for the two most important variables. We remark that this result is
achieved for all covariates in the model. As is well known the WinBUGS software
offers also a graph of the autocorrelation function (ACF); the autocorrelation
plot illustrates dependence between subsequent simulated observations. In our
case, the ACF indicate fairly rapid mixing and thus good convergence of the
parameter space with a reasonably small number of iterations. They are sup-
pressed in this paper for lack of space. We also remark that for the model in
Table 2, the estimated correlations between parameters are quite low. In order to
compare classical and Bayesian Cox models we have run both model comparison
approaches. The results are shown in Table 3.

Table 3 about here

In Table 3 the first column is the variable, the second and the third are the
estimated mean and standard deviation in the Bayesian model and the last two
column are relative to the classical estimation for each variable, reporting the
parameter MLE, the standard deviation and the p-value. As it is possible to see
from the p-value, the variables β3, β4 and β7 are equal to zero. The parameters
β3, β4 and β6 have different estimation in the two approaches. The BIC for the
Bayesian Cox model is equal to 6583.411 and for the classical semi-parametric
Cox model is equal to 6165.974. In particular, in Table 3, the variance of the
estimates is quite high in the Bayesian model. To demonstrate the consistency of
our proposed method for feature selection we next compare the previous results
with the results from the one step approach.

8.5 One step Bayesian survival analysis

This section focuses on the application of Bayesian Model Averaging to our
dataset. For computational reasons we have preselected 25 covariates which cor-
respond to those that would be selected in a classical feature selection approach.
We have then compared the feature selection obtained from BMA with our pro-
posed approach. We recall that there are 225 possible models; we fit the models
and averaged over them to get parameter estimates and posterior probabilities
of the parameters. Table 3 shows the top 3 models. Note that this models in-
clude % of the overall posterior probability, so that not much information is
lost by reducing the model space. Table 4 shows the Bayesian model averaging
computation for the covariates selected by our approach.

Table 4 and Table 5 about here

From Table 5 we can see the posterior probabilities for each model and the
number of selected variables for each model.

Table 6 about here

From Table 6 we can see the posterior probabilities for each model and the
number of selected variables for each model after the feature selection process.
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Table 7 about here

As we can see, after Bayesian feature selection the model results are better in
terms of posterior probabilitity.

8.6 Bayesian stratified survival models: results

Before we consider the application of stratified models, we show the results
concerning the residuals, in Figure 6 and Figure 7.

Figure 6 about here

Figure 7 about here

In particular as we can see from Figure 7 there is evidence of violations of the
Proportional Hazard assumption. In fact, there are some customers with different
characteristics for the decoder and for the special offers. This information can
be used to build a new model with stratification. First, in Table 7 we present
results from a Classical Stratified Cox Model.

Table 7 about here

As we can see in Table 7, the first column is the variable selected by the classical
stratified procedure, the second is the relative estimate for each variable, then the
hazard ratio and finally the sign of the association between each variable and the
target variable (a mixture of ralathionship duration and customer status). As we
can see, for some variables there are computational problems for the estimation.
In particular, for smart card offers and old customer, the estimate and the hazard
ratio are undefined. This is because the algorithm does not always converge.

Table 7 about here

We now implement a new procedure, where we propose a natural extension of
the classical stratified Cox Model in a Bayesian paradigm, as shown in Section
7.
The results are provided in Table 8 where p is the probability of inclusion for
each variable across the models, EV is the expected value for each variable,
derived from the Bayesian Model, and finally for each model we provide the
parameter estimates. At the last rows of the table, we have estimates for each
stratus variables.

Table 8 about here

We can compare the results in Table 2 with the results shown in Table 8, based
on one step Bayesian Model Averaging. In particular the variance of estimates
across models is lower than in the previous one step Bayesian Model Averaging.
If we look at the results, the estimates across the models in Table 8, are very
similar. This suggest some new theoretical field of research in order to improve
this approach.
Table 9 shows the best 5 models found by our Stratified fixed effects Cox Bayesian
Model averaging.
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Table 9 about here

Table 9 presents for each model its posterior probability and its dimension based
on the number of covariates. As we can see the stratified model is more parsi-
monious and therefore better in a business context.

8.7 Estimation of customer lifetime value

We now employ the results from Bayesian stratified survival analysis modelling
to create models that allow us to estimate the lifetime value of each customer,
or, in a perhaps more useful aggregated analysis, for each group of customers.
In other words, survival analysis is useful to quantify, in precise monetary terms,
how much is gained or how much is lost by moving through different strata
corresponding to different survival curves. For instance,how much is gained/lost
if 8% of the clients, say, switch from buying service A to buying service B. Or,
similarly, the relative gains when a certain percentage of clients change method
of payment (e.g. moving between direct debit, credit card and postal order).
In order to quantify gains and losses, a simple measure is to calculate the area
between the two corresponding survival curves, as shown in Figure 8 below.
Suppose the two survival curves correspond to two different services bought, say
black and grey, corresponding to the colors of the two curves.

Figure 8 about here

In order to determine exactly the area in Figure 8 we need to specify a temporal
period ahead, e.g. 13 months. In Figure 8, the difference between survival prob-
abilities after 13 months of life of the customers (e.g. 13 months since the first
contact), is equal to 0.078. This value should be multiplied by the difference in
business margin between the two methods of payment, as given, for example, by
the difference in costs. Such costs can be described by a gain table as in Table
10.

Table 10 about here

From Table 10, a value of A is the relative gain if the client switches from PO to
CC and, similarly, B and C corresponds to relative gains switching from PO to
RID, and CC to RID where PO = postal order, CC= payment through credit
card, RID= payment through banking account.
In terms of Figure 8, if we assume that we start with an acquired client base
of 1000 customers in both categories (product black buyers and product grey
buyers), the results say that, after 13 months we will remain with 934 black
and 856 grey. If the finance department tell us that product black is worth 10
euros and product grey 20 euros we have that, after 13 months, we lose 660
euros for black churners and 2880 for grey churners. In other words, the priority
of the marketing department should be to build targeted campaigns for grey
product clients. From a different perspective, if black and grey correspond to two
different selling channels of the same product, or to two different geographical
areas, it is clear that the black channel (or area) is much better in terms of
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customer retention. Often promotional campaigns are conducted looking only
at increasing the customer base. Our results show that the number of captured
clients should be traded with their survival or, better, lifetime value profile.

9 Future Research

In this paper we have presented a comparison between classical and Bayesian
methodology to predict rates of churn of customers. Our conclusions show that
the Bayesian approaches we have proposed, based on survival analysis modelling,
lead to more robust conclusions and can be extendedmore easily to more complex
frameworks. Our results also show that our Bayesina survival analysis models
are a much powerful tool for lifetime value analysis and, consequently, for the
actual planning of a range of marketing actions that impact on both perspective
and actual customers.
However we believe that although Bayesian survival analysis is a very promising
tool in the area, further research is indeed needed, both in applied and methdo-
logical terms. From an applied viewpoint, directions to be further investigated
cocern the application of the methodology to a wider range of companies (we
have studies in progress in the banking sector). From a methodological viewpoint
further research is needed on the robustification of Bayesian Cox model (two step
model and one step model). We are investigating the usage of a random effect
stratified approach within this context.
In our future research we plan to experiment Bayesian feature selection via pe-
nalized likelihood approach.
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Fig. 1. Descriptive Survival function

 

Fig. 2. Hazard function
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Fig. 3. Comparison between survival functions

Fig. 4. Diagnostic for information on disconnection
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Fig. 5. Diagnostic for method of payment

Fig. 6. Shoenfeld residuals for company history
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Fig. 7. Shoenfeld residuals for amministrative esigence

 

Fig. 8. Evaluation of gain/losses by comparing survival curves
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V ariable p(y|g) p(g|y)

β info disconnection 0.2451 0.0472

β2 decoder sold 0.2452 0.0472

β3 decoder rental 0.2466 0.0475

β4 payment credit card 0.2497 0.0481

β5 promotion 0.2514 0.0484

β6 chanell of sell 0.2588 0.0491

β7 ex decoder rental 0.2521 0.0488

β8 special offers 0.2835 0.0546

Table 1. Bayesian Feature Selection results
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V ariable Mean Sd MCerror 0.25 Median 0.975

β 0.7769 0.2123 0.00139 0.3547 0.7831 1.162

β2 -1.632 2.223 0.08101 -5.938 -1.688 3.186

β3 -1.731 0.6359 0.0308 -2.991 -1.718 -0.4818

β4 -2.203 0.8412 0.04174 -3.715 -2.25 -0.3793

β5 -1.368 0.6166 0.02468 -2.514 -1.396 -0.1127

β6 -0.7287 1.626 0.09111 -3.206 -0.9579 3.382

β7 -1.494 0.6678 0.02963 -2.845 -1.48 -0.215

β8 0.67 2.141 0.1202 -3.957 0.6207 4.817

Table 2. Two step model: parameter estimation from the Bayesian Cox Model
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V ariable Mean Sd Estimate Sd p − value

β 0.7769 0.2123 0.9396 0.2052 0.0001

β2 -1.632 2.223 -1.4215 0.2647 0.0001

β3 -1.731 0.6359 0.1164 0.1159 0.3155

β4 -2.203 0.8412 0.2396 0.1356 0.0772

β5 -1.368 0.6166 -0.8086 0.1510 0.0001

β6 -0.7287 1.626 1.9636 0.1748 0.0001

β7 -1.494 0.6678 -0.3392 0.1542 0.0278

β8 0.67 2.141 1.0876 0.1206 0.0001

Table 3. Comparison of estimates from classical and Bayesian Cox models
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V ariable p EV Model1 Model2 Model3

info activation 100 1.0783 1.1152 1.0793 1.0826

info amministrative 100 1.5323 1.5274 1.5343 1.5134

β info disconnection 100 0.8512 0.8640 0.8596 0.8703

technical problem 100 -0.5071 -0.5159 -0.5098 -0.5078

β5 promotion 100 -0.8985 -0.8963 -0.8920 -0.8749

β6 channel of sell 100 1.6203 1.6415 1.6243 1.6220

β4 payment with credit card 100 -0.6285 -0.6356 -0.6223 -0.6435

geographical area 100 0.3976 0.3991 0.3899 .

β8 special offers 100 3.1730 3.1294 3.1790 3.1676

β7 ex decoder rental 100 -2.1571 -2.7982 -1.6625 -2.8616

β3 decoder rental 50.1 -0.6230 -1.3120 . -1.3717

β2 decoder sold 59.7 -0.3894 -0.9544 . -1.0077

Table 4. One step model: Bayesian Model averaging results
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Model PosteriorProbability nV ar

Model1 0.299 12

Model2 0.166 10

Model3 0.150 11

Model4 0.148 10

Model5 0.139 9

Table 5. One step model: the best 5 models
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Model PosteriorProbability nV ar

Model1 0.456 5

Model2 0.395 6

Model3 0.071 6

Model4 0.054 7

Model5 0.023 6

Table 6. One step model: the best 5 models after feature selection
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V ariable Estimate Hazardratio Association

info activation 1.018 2.77 +

β info disconnection 1.1577 3.18 +

technical problem -0.4131 0.662 -

contractual variation -0.1605 0.852 NA

Moovie package 0.1889 1.210 NA

β8 special offers 3.2696 26.3 +

special discount offers 3.4625 31.9 +

info amministrative 1.6123 5.01 +

payment methods -0.1493 0.861 NA

β5 promotion -0.9596 0.383 -

Sport package -0.086 0.917 NA

payment with bancomat 0.8063 2.24 +

geographical area 0.4246 1.53 +

smart card offers 19.184 ∞ ∞

old customer 6.1058 ∞ ∞

Table 7. Classical Stratified Cox Model: results
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V ariable p EV Model1 Model2 Model3

info activation 100 1.0977 1.1 1.1 1.1

β info disconnection 100 0.8904 0.89 0.9 0.88

technical problem 100 -0.5073 -0.51 -0.51 -0.51

contractual variation 5.7 -0.0071 . . .

Moovie package 8.9 0.0191 . 0.21 .

β8 special offers 100 3.2182 3.2 3.2 3.2

special discount offers 100 2.9434 2.9 2.9 3.0

info amministrative 100 1.5115 1.5 1.5 1.5

payment methods 4.2 0.0045 . . .

β5 promotion 100 -0.9436 -0.94 -0.94 -0.96

Sport package 6.0 -0.0077 . . -0.13

payment with bancomat 100 0.7970 0.8 0.79 0.79

geographical area 100 0.4168 0.42 0.41 0.41

special card offers 100 3.4814 3.5 3.5 3.5

old customer 100 5.4121 5.4 5.4 5.4

Rental1 . -1.4896 -1.5 -1.5 -1.5

Rental2 . 0.0215 0.022 0.029 0.014

Rental3 . 0.3732 0.37 0.37 0.37

Rental4 . 1.2731 1.3 1.3 1.3

Channel1 . -1.0705 -1.1 -1.1 -1.1

Channel2 . -1.0963 -1.1 -1.1 -1.1

Channel3 . -0.7992 0.8 0.8 0.78

Channel4 . 0.2743 -0.27 -0.28 -0.27

Channel5 . -1.2890 -1.3 -1.3 -1.3

Table 8. Fixed effects Stratified Cox Bayesian Model averaging
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Model PosteriorProbability nV ar

Model1 0.752 11

Model2 0.089 12

Model3 0.06 12

Model4 0.057 11

Model5 0.042 11

Table 9. Stratified fixed effects Cox Bayesian Model averaging: the best 5 models
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PO CC RID

PO A B

CC C

RID

Table 10. relative gains between different methods of payment
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