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Abstract

The upper tail of the firm size distribution is often assumed to follow a Power Law
behavior. Recently, using different estimators and on different data sets, several papers
conclude that this distribution follows the Zipf Law, that is that the fraction of firms
whose size is above a given value is inversely proportional to the value itself. We compare
the different methods through which this conclusion has been reached. We find that
the family of estimators most widely adopted, based on an OLS regression, is in fact
unreliable and basically useless for appropriate inference. This finding rises some doubts
about previously identified Zipf Laws. In general, when individual observations are
available, we recommend the adoption of the Hill estimator over any other method.
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1 Introduction

While existing models of firm growth and firm dynamics predict a wide range of distribution
functions to describe the size distribution of firms (see de Wit, 2005, for a review), recent em-
pirical studies, following the influential contribution by Axtell (2001), come to the conclusion
that the tail behavior of the firm size distribution is well approximated by a Zipf Law.1 The
result has rapidly become a stylized fact, which more recent models of firm-industry dynamics
explicitly aim to agree with (see e.g. Luttmer, 2007). As we will see below, however, not all
the estimators adopted are good estimators and inference based on them can be problematic.
This is particularly true when relatively small samples are considered. In this case, the lack
of knowledge about the small sample correction to point estimates and their non-normality
makes usual tests unreliable.

The starting point of the investigations of the Zipf Law, common to an entire literature
which we call “Power Law approach” to firm size distribution, is to assume that the size of
the firm S is well described by a Power Law or Pareto distribution, at least above a certain
minimum threshold S0. This implies that, in the given sample, the fraction of firms whose
size is above a given value S > S0 is proportional to S−α, with α a positive constant. Given
this assumption, the attention is devoted to obtain an estimate of α, and compare it with the
benchmark value α = 1, corresponding to the Zipf Law. Different estimators and methods
have been used to infer about the value of α from real data: the Ordinary Least Squares (OLS)
log-log methods based on Axtell (2001), the closely related Rank−1/2 estimator introduced in
Gabaix and Ibragimov (2011), and the classical maximum likelihood estimator for tail behavior
based on Hill (1975). As we review in details in Section 3, the assessment of the statistical
significance of the agreement with the Zipf Law is based on different strategies. In some cases,
the analysis is limited to a graphical comparison of the empirical data with a theoretical
Power Law with α = 1. In most cases, the conclusion relies on the joint consideration of
point estimate and standard errors of the estimated Power Law coefficient, or, similarly, on
the related t-test of the null Ho : α = 1.2

Even when a more formal assessment via t-test is provided, however, the conclusions
reached so far in previous studies can be severely undermined by the fact that little is know
about the properties of the different estimators in small samples. Available results are that
an unbiased version of the Hill estimator is available, and that the Rank−1/2 reduces the bias
of the other OLS estimators. Yet, it is unclear a-priori which method could perform better.
Since it is not at all uncommon for applied researcher on firm size to have data only on a
limited number of observations in the tail, this is a relevant issue.

This paper re-examines and criticizes the consensus on the validity of Zipf Law behavior
by highlighting the pitfalls that can arise when the wrong estimators are used as the basis for
formal hypothesis testing. First, we perform a Monte Carlo study of the small sample bias and
variance of the different estimators in samples generated under exact Zipf distribution. Second,
we explore the behavior of the t-statistics associated to each estimator, which represent the
basis for the assessment of Zipf Law in the literature.3 This step involves three sets of Monte
Carlo exercises. First, we consider data generating processes with α 6= 1, and compare the
power to reject the null α = 1 of the different estimators. Second, we explore the sensitivity of
the point estimates and the ensuing rejection rates when sub-asymptotic corrections to the Zipf
Law behaviour are introduced. Finally, we consider the case in which data are not independent

1This “Law” was originally proposed by Zipf to explain the frequencies of words in a given language, see
Zipf (1932). The studies we refer to are discussed in Section 3.

2The practice seems to be not to explicitly report the t-test. An exception is di Giovanni and Levchenko
(2010).

3Notice that, in principle, alternative ways to test the validity of the Zipf Law exist. For instance, one
can compare goodness-of-fit measures in the upper tail of the estimated distribution or rely upon information
criteria based on likelihood ratios for nested models. We stick to the t-test as it is universally used by the
reference literature

2



and identically distributed, but rather exhibit dependence over time, a case which is likely to
arise when pooling together different years of data on firm sizes (as done, e.g., in Okuyama
et al., 1999). In agreement with the vast literature on Gibrat’s law in firm size dynamics,
we simulate panel samples with an autoregressive structure and Laplace growth shocks, and
check the distortion this generates in the upper tail behaviour of the pooled distribution.

2 Methods

The methods employed in the “Power Law approach” to firm size distribution are essentially
of two types.4 The more natural estimator, introduced in Hill (1975), applies maximum
likelihood to the estimation of extreme events, based on the theory of order statistics. Assume
that the distribution of firm size S follows a Power Law

F (x) = Prob {S ≤ x} = 1− (b
x

x0
)−

1
γ , (2.1)

where γ > 0 governs the tail behaviour, b > 0 is a scale parameter, and x0 > 0 is the minimum
threshold or, alternatively, the value above which F (x) holds.5 Let s(1) ≥ s(2) ≥ . . . ≥ s(K)

denote the K-th largest observations of a sample of size N . The Hill point estimates based on
these ordered statistics read

γ̂ =
1

K − 1

K
∑

j=1

ln s(j) −
K

K − 1
ln s(K) (2.2)

and

b̂ =

(

N

K

)γ̂
1

S(K)

, (2.3)

where the expression in (2.2) already includes a correction for small sample bias. The estimator
γ̂ enjoys the desirable properties of any ML estimator when the distribution to be estimated
is smooth: it is asymptotically Normal and efficient.6 Specifically, it holds that

E[γ̂] = γ and V [γ̂] =
1

K − 1
γ2 . (2.4)

The alternative approach is based on a class of estimators which rely upon OLS regressions
applied to different log-log transformation of the data. These methods are, so to speak, more
heuristic. Their popularity, even outside firm size studies, is due to simplicity of application,
although they are strongly biased in small sample. Consider the survival function associated
with (2.1) which, with a convenient change of variable, can be written as

R(x) = Prob {S > x} = Cx−α , (2.5)

4Many other estimators of Power Law behavior exist, see Newman (2005) and Gabaix (2009) for reviews.
We focus here on those more extensively applied within the literature on firm size distribution.

5This parametrization is labeled as Pareto type-I in Kleiber and Kotz (2003) and goes back to the classical
Pareto (1886) study of income inequality. See also Johnson et al. (1994) for a discussion.

6A huge literature studies the asymptotic and small sample behavior of the original Hill statistic under
departures from the assumption of Power Law distributed data. The common approach is to focus on the
case where the underlying distribution obeys conditions defining max-stable laws. Along these lines, weak
consistency was proved in Mason (1982) under the condition that, as N → ∞, k → ∞ and k/N → 0; Hall
(1982) established asymptotic normality; bias and asymptotic variance are studied in Pictet et al. (1998); while
Resnick and Starica (1998) provide an extension to dependent observations. Relatedly, another line of research
compares the performance of the Hill statistic against other tail index estimators, when confronted with data
artificially generated from a number of different distributions with different tail behaviors (see Pictet et al.,
1998; De Haan and Peng, 1998; Weron, 2001, and the references cited therein).
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where α = 1/γ and C = b−1/γ . The survival function in the observations is easily estimated
with R̂(s(j)) = j/N , that is the rank of one observation divided by the total number of
observations. By taking a log-log transformation one obtains the cumulative distribution
function (CDF) based estimate of the tail exponent via an OLS fit of the linear regression

log R̂(s(j)) = α log s(j) + c + ǫj , j ∈ {1, . . . , K} . (2.6)

We refer to this estimator as the OLS-Rank estimator. In some instances, due to empirical data
reported in classes of firm sizes, the single observations are not available and the researcher
has to resort to binned regression. In this case the number of observations is the number of
bins and one regresses

log R̂(br) = α log br + c+ ǫr , r ∈ {1, . . . , Nb} , (2.7)

where Nb is the number of bins, br is the lower bound of the r-th bin and R̂(br) is the fraction
of observations in the r-th and subsequent bins. We refer to this estimator as the OLS-CDF
(or binned CDF) estimator, to distinguish it from the following method, also based on binning
and starting from the the probability density function (PDF). Take the density

f(x) ∼ Cαs−(α+1) (2.8)

associated to (2.5). One can partition the sample in Nb bins, typically equispaced, and then
compute the within-bin empirical probability density Qr = Prob{br ≤ S < br+1}, with br the
lower bound of the r-th bin. This is just the fraction of observations laying in the semi-open
interval (br, br−1]. Then one can perform the log-log OLS regression

logQr = (α + 1) (log br + log br+1)/2 + c+ ǫr , (2.9)

to obtain what we refer to as the OLS-PDF estimator.
The use of bins in (2.7) strongly reduces the number of available observations and makes

the estimate more noisy. The same problem arises with (2.9), but it is even worse in this
case, since the regression is in fact only approximated. This approximation is afflicted by the
typical problem of any density estimator (Silverman, 1986): a trade-off between a finite bias,
when the number of bins is low, and an exploding variance, when the number of bins is large.
Moreover, all the OLS estimators of α̂ work under the usual assumption that the error terms
ǫ are independent from the quantity on the right hand side of the equation, i.e. the survival
function or the density. This condition does not generally holds, however. The issue is also
present in the model in (2.6), which in fact provides biased estimates of the tail exponent. A
solution to the bias is proposed in Gabaix and Ibragimov (2011) by estimating via OLS the
alternative regression

log (j − 1/2) = α log
(

s(j)
)

+ c+ ǫj , j ∈ {1, . . . , K} . (2.10)

This is equivalent to the Rank estimator from (2.6), apart from the −1/2 correction (whence
the name Rank−1/2). It turns out that this modification corrects the leading order of the
downward bias of the original Rank estimator. The corresponding corrected asymptotic stan-
dard error is |α| (2/K)1/2.

3 Previous findings

Studies within the Power Law approach to firm size distribution employ one or more of the
above estimators. Table 1 summarizes the key features and results of each study.
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Table 1: Power Law approach to Firm Size Distribution - Literature Overview

Article Sample Method #Obs or #Bins Findings Assessment of Zipf

Okuyama et al. (1999) Japan firms, divided by sector
and pooled over 4 years;
Cross-country data, pooled
over 7 years.

OLS-Rank For Japan: several thousands
in aggregate, from 700 to
11,000 at sectoral level.
About 10,000 for U.S and
11,000 for other countries.

Size is income before taxes.
α ≃ 1 in Japan and Italy,
α ≃ 1.44 in US; α ∈ [0.7, 1.2]
at sectoral level in Japan.

Un-conclusive on Zipf,
via graphical analysis.

Axtell (2001) U.S. Census Bureau
in 1992 and 1997.

OLS-CDF, binned
OLS-PDF, binned

10-15 bins With employment, α ≃ 0.99
in 1992 and α ≃ 1.06 in 1997;
with sales, α ≃ 0.99 in 1997.

Zipf not rejected,
based on S.E.

Fujiwara et al. (2003) EU firms from AMADEUS
in 1992-2002, estimates by
year.

OLS-Rank Firms vary by country, year
and size-proxy. From 8,000 to
15,000 firms approximately.

α ∈ [0.89, 0.99] for most
years, size-proxies and
countries.

Zipf not rejected,
based on S.E.

Gabaix and Landier (2008) U.S. COMPUSTAT
1978-2004,
estimates by year.

OLS Rank−1/2
Hill estimator

Top 500 firms Size is market value.
In 2004: Rank−1/2 gives
α = 1.01, Hill not reported.
Averaging over time:
Rank−1/2 gives α = 0.87, Hill
gives α = 1.09.

Zipf not rejected,
based on S.E.

Podobnik et al. (2010) U.S. firms filing for
bankruptcy in 1999-2009,
estimates by year.

OLS-Rank About 2800 firms in total, but
top 100, 200, 300, 500 and
2500 enter the estimates.

With assets: α = 1.11
pre-filing, α = 1.44 post-filing.
For the NASDAQ sub-sample:
α = 1.1 with market
capitalization, and α = 1.02
with equity.

Zipf not rejected,
based on S.E.

di Giovanni and Levchenko (2010) Cross-Country from ORBIS,
yearly data in 2006-2008.

OLS-CDF, binned
OLS-PDF, binned
Rank−1/2

Several thousands or millions
of firms in each country.
Only countries with at least
1,000 firms; number of bins
not reported.

Size is sales, estimates of α
vary by country.

Zipf not rejected in
most countries, via
t-test for α = 1.
α < 1 when rejected.

di Giovanni et al. (2011) All French firms 2006,
exporters vs. non-exporters,
and by sector.

OLS-CDF, binned
OLS-PDF, binned
Rank−1/2

About 150,000 firms in total.
From 50 to 20,000 firms
at sectoral level. Number of
bins not reported.

Aggregate manufacturing:
with sales α ≃ 1.02 for both
CDF and PDF, α = 0.82 for
Rank−1/2; with employees
α ≃ 1.08 for both CDF and
PDF, α = 0.79 for Rank−1/2.
Values smaller for exporters,
and vary by sector.

Zipf not rejected in
most cases, based on S.E.
Though recognize the
heuristic nature of
CDF and PDF methods.
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Okuyama et al. (1999) provide evidence from a sample of Japanese firms and from a cross-
country dataset, also disaggregating the analysis by industrial sector of activity. The variable
under study is firm income before taxes, and data are pooled over 4 years for Japanese firms
and over 7 years for the other countries. The analysis is mainly graphical, but an OLS fit of
the slope of the CDF plot is also reported, delivering the simple OLS-Rank estimates. Results
show variation in the estimates of the Power Law exponent. At the aggregate economy level,
an estimate of α close to 1 is reported for Japanese and Italian firms, while α = 1.4 best
approximates U.S. data. Sectoral analysis for Japanese firms provide α in the range [0.7,1.2],
while results for other countries are un-conclusive, due to limitation in the number of firms. In
general, the authors tend to conclude that the Zipf Law is a reasonable description, although
no formal test is provided.

The influential study by Axtell (2001) analyzes the size distribution of theoretically the
entire population of US firms, through Census Bureau data. Size is measured in terms of both
number of employees and revenues. Figures on employment report the number of firms in
successive classes, where the size of the classes increases in powers of three. The analysis in
this case applies the binned OLS-PDF estimator, yielding α = 1.059 (S.E. 0.054, R2 0.994) in
1997, and α = 0.995 (S.E. 0.043, R2 0.994) in 1992. Revenues are tabulated in classes whose
width increases in powers of 10. Estimates are in this case obtained via the binned OLS-CDF
estimator. The findings are reported for 1997 only, with α = 0.994 (S.E. 0.064, R2 0.976).
Overall, the results are interpreted as supporting the Zipf Law.

Fujiwara et al. (2003) present similar analysis on European countries from AMADEUS
data over the period 1992-2002. Reported results mainly focus on the UK, France, Italy and
Spain. There is a minimum size thresholds which firm size must pass in order to be included
in the dataset, defined by the data collection process. The threshold varies according to the
different proxies of firm size employed in the study: 150 units on employment, 150 ML Euros
on operating revenues, 30 ML Euros on total assets. The statistical analysis is based on the
simple OLS-Rank estimator, separately by year and country. Reported results for the year
2001 show that, in France, α = 0.886 (S.E. 0.005) with assets as size-proxy and α = 0.896 (S.E.
0.011) with sales; for the UK, α = 0.995 (S.E. 0.013) on employees. Estimates for the other
countries, years and proxies are presented graphically. From visual inspection, the estimates
for France tend to be slightly above 1 in 1992-1996 (independently of size proxy), and close
to 1 afterward, while very close to 1 for the UK, Spain and Italy in all years. Overall, the
authors conclude that the data support Zipf law.

Podobnik et al. (2010) apply the OLS-Rank estimator, too. The study covers a sample
of about 2,800 U.S. firms filing for bankruptcy over the period 1999-2009. The focus is on
measures of assets and market value, here interpreted in terms of bankruptcy predictors rather
than as size proxies. The authors run separate estimates by year, and compare different tail
cut-offs (successively including the top-100, -200, -300, -500, -2500 firms). Reported results
show that, using book value of assets, α = 1.11 (S.E. 0.01) in the pre-filing period, and
α = 1.44 (S.E. 0.01) in the post-filing years. Further, for a sub-sample of firms listed on the
NASDAQ, the authors report an estimated α = 1.10 (S.E. 0.02) on market capitalization, and
α = 1.02 (S.E. 0.01) on firm equity. It is unclear, however, whether these estimates refer to
the entire sample or to one of the tail cut-offs. The estimated α together with their standard
errors are interpreted as a reasonably robust support to the Zipf Law, although graphical
analysis reveals deviations when the top-500 or more firms are included in the tail.

Gabaix and Landier (2008) is the only paper applying the Hill estimator to infer about
the firm size distribution, within a study of CEO pays. The data cover US listed firms from
the COMPUSTAT database, over the period 1978-2004. The size proxy is firm market value,
measured as debt plus equity, with a minimum size cut-off implicitly defined by considering
only the top-500 firms in the estimation. Averaging over the estimates obtained in each year,
the Hill estimator gives α = 1.095 (ST.DEV. 0.063), while the Rank−1/2 estimator yields
α = 0.869 (ST.DEV. 0.071). Rank−1/2 estimates are also provided for 2004, where it turns
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out that α = 1.01 (ST.DEV. 0.063). This is suggested as further evidence in favor of Zipf law
in firm size.

Finally, two recent works apply the OLS log-log techniques to study the shape of the firm
size distribution within the literature on firm heterogeneity in international trade. di Giovanni
and Levchenko (2010) study the universe of French firms in 2006, while di Giovanni et al.
(2011) analyze a large set of countries from the AMADEUS-ORBIS database.

The study on French firms uses both sales and employment as size proxy, both at the aggre-
gate and sectoral level, and comparing exporting vs. non-exporting firms. Following Gabaix
(2009), a minimum size cut-off is identified graphically, corresponding to the value of sales
above which the log-rank against log-size relation becomes approximately linear. It is reported
that this cut-off roughly corresponds to an institutional threshold on annual sales (750, 000
Euro) that defines different accounting standards in place in France for firms above or below
the threshold. About 150,000 firms are included, and estimates are based on the binned OLS-
CDF and the binned OLS-PDF estimators, and also checked against the Rank−1/2 estimator.
The number of bins is not reported, however. At the aggregate level, results for sales give
α ≃ 1.02 (S.E. 0.030) from the CDF and PDF methods, respectively, and α = 0.825 (S.E.
0.003) from the Rank−1/2 estimator, while with employment the estimates are α ≃ 1.08 with
CDF and PDF, α = 0.79 for Rank−1/2. For both size proxies there is variation across ex-
porters and non-exporters, with the latter having higher α (still below 1 with the Rank−1/2
estimator). A similar ranking is obtained breaking down the data by industrial sectors, where
wide variation in estimated α emerges. It is mentioned that results on the full sample without
size cut-off are very similar to the reported estimates.

In the cross-country analysis from the ORBIS dataset, the size proxy is sales, and the
minimum size cut-off (not reported) varies by country. It is mentioned that several thousands
of firms are available for each country (or millions, in some cases like the US), but estimates
are reported only for countries with at least 1,000 firms in the considered year. Reported
findings consider the binned OLS-CDF and binned OLS-PDF estimators (number of bins not
reported). The two estimators deliver consistent results. There is considerable variation in the
estimates of α across the different countries, with α in between 0.69 and 1.18. It is mentioned
that Rank−1/2 estimates (not reported) are in agreement with these findings. The authors
also provide the p-value of a t-test for the null of deviation from Zipf law (α 6= 1). Despite the
null cannot be rejected in some countries, the results are interpreted, once again, as supporting
that Zipf Law is a good first order approximation.

4 Small sample properties of the estimators

Despite their widespread use in the study of firm size, we lack a systematic study of the prop-
erties of the estimators in small sample. The Hill estimator in (2.2) is, at least theoretically,
the more reliable estimator. The expression in (2.2) already contains a correction for bias, and
its variance decreases with 1/N . Gabaix and Ibragimov (2011) provide formal results for small
sample properties of their Rank−1/2 estimator. The 1/2 correction reduces to a leading order
the downward bias of the original OLS-Rank estimator, and the variance decreases with 2/N .
Finally, the binned OLS-CDF and the binned OLS-PDF estimators are acknowledged as more
heuristic methods and known to be biased, but there is no systematic study of their behavior
in small samples. Further, the binning procedure underlying both methods can severely im-
pact on their performance, since in this case regressions are performed on a very small number
of data points (10-15 bins in Axtell, 2001).

We present here Monte Carlo exercises comparing the small sample behavior of the different
methods. We pay a particular attention to how reliable they are in discriminating about the
Zipf Law. The design of the simulations tries to keep comparability with the features of the
studies reviewed above.
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Figure 1: Properties of estimators. Bias (top), correlation with the bias-corrected Hill esti-
mator (middle), and variance (bottom). Figures computed over 10,000 simulated samples of
different sample size N , drawn from the Power Law in (2.1) with unitary tail exponent.

4.1 Bias and variance

We start by studying bias and variance of the estimators when simulated data obey exact Zipf
Law. We generate R = 10, 000 independent samples of size N , drawn from the Pareto type-I
Power law in (2.1) with unitary tail exponent. On each sample we apply the OLS estimators
(Rank, Rank−1/2, CDF and PDF) and the bias-corrected Hill statistic in (2.2), and then
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compute the across-replications bias and the variance of the estimated α. In order to remain
reasonably close to the sample size typically met in the empirical studies (recall Table 1), N
varies from 50 to 2000.7 Also, for the binned methods, we compare estimates obtained with
15 and 40 bins.

Figure 1 provides a graphical presentation of the findings. Plots in the left column report
about the estimators exploiting individual data (Hill, Rank and Rank−1/2), while the binned
CDF and PDF estimators are reported in the right column. As expected, the bias of the Hill
estimator is practically zero (see top panel). Fluctuations here are artifact of the numerical
analysis. The bias of the Rank estimator is about 10% for N = 100, decreases proportionally
to 1/N reaching a value of 2% for N = 1, 000. The Rank−1/2 estimator effectively improves
upon the simple Rank estimator. Due to the presence of not sub-asymptotic corrections, the
bias, despite quite small and well below the standard error, does not exactly converges to the
Hill value even at N = 2, 000. Conversely, the binned CDF and binned PDF estimators are
both afflicted by a relevant bias, well above their standard deviation. Their bias is larger than
that of the Rank estimator, even for large N . The PDF estimator turns out as the worst
performing among all the methods considered. The behavior of the PDF estimator is also
sensibly affected by the binning, as the bias indeed increases if we increase from 15 to 40 bins.
The CDF method is more stable in this respect.

We also report (see middle panel) the correlation between the different point estimates and
the benchmark provided by the biased-corrected Hill estimates. The Rank−1/2 and the Rank
estimator display similar performance, with a correlation coefficient of about 0.7 for most
values of N , and sensibly higher till N = 200. The CDF and PDF estimators perform worst
relative to the benchmark, with very small correlation (about 0.2) for large N . As before, the
PDF estimator performs worst with 40 bins than with 15 bins.

Finally, concerning the variance (see bottom panel), we observe an agreement with the
theoretical results that the variance of the Hill estimator decreases with 1/N and that the
variance of the Rank−1/2 estimator decreases with 2/N . The simple Rank estimator has
similar variance to the Rank−1/2 for all N. The variance of the CDF estimator is even larger,
always above 0.01 even for N = 2, 000. Different binning choices do not have any impact. The
variance of the PDF estimator has a smoother behavior and it is sensibly smaller if we take 40
bins. The general lesson is therefore that the standard errors associated to all the OLS log-log
estimators maybe too large in many practical situations and do not lead to reliable inference
about the actual value of the parameter α. A more formal study of the properties of t-tests
associated with the estimators is presented in the following.

4.2 T-tests power for the Zipf null

As known, a t-test for the null Ho : α = 1 implies to compare the estimated t-statistic under
a given estimator of α, t̂ = (α̂− 1)/(σ̂), against tabulated values of the standardized Normal
distribution, for given confidence level.

To assess the power of the t-tests based on the different estimators, we perform a Monte
Carlo study of the probability to reject the null α = 1 when the true data generating process
(DGP) is a Pareto type-I distribution with varying tail index. We fix a value of α and generate
R artificial samples of size k drawn from the Power Law distribution in (2.1) with that specific
value of α. On each sample, we estimate α and the corresponding t-statistics for all the
estimators, and count the number of times that α = 1 is rejected at 5% confidence level.
Next, we repeat the procedure for another set of R samples generated under a different value
of α. The ideal estimator should reject the null 5% of the times if the true DGP indeed has
α = 1, and always reject the null when the DGP has α 6= 1, or at least it should tend toward

7Convergence is already reached with this sample size, so results are informative also for large sample sizes
encountered in the literature, such as in di Giovanni et al. (2011).
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Figure 2: Comparing estimators’ power to reject Zipf Law. Percentage of times (y-axis) that
a t-test rejects H0 : α = 1, when the true DGP is generated as a Power Law with different
values of α (x-axis). Results over 10,000 generated samples for each value of α, with sample
size 500 (left plot) and 50 (right plot).

this ideal behavior as the number of replications increases.8

Figure 2 shows the results obtained over R = 10, 000 samples. With sample size k = 500
(left panel), we find that, in agreement with the properties of bias and variance, only the Hill
and Rank−1/2 estimators meet the theoretical 5% confidence level when the DGP has α = 1.
The Rank estimator has also some merit, although it slightly over-rejects the null (rejection
rate is about 10%). The CDF and PDF estimators cannot be considered as reliable, with
rejection rates of about 60 − 70%. Comparing Hill, Rank−1/2 and Rank estimators’ power
to correctly reject a simulated α 6= 1, we tend to conclude that the Hill estimator is a more
solid basis for inference. Indeed, the associated rejection rates increase more rapidly toward
100%. The Rank estimator has similar performance for α < 1, while both the Rank and the
Rank−1/2 estimators significantly under-reject for true α > 1. For instance, for α = 1.1, the
rejection rate of the Hill estimator is about 70%, while the two competing estimators reject
only in the 15− 20% of the times. 9

We repeat the same exercise with sample size k = 50 (right panel), providing information
for the case of very small samples, close to the lower bound of the tail size employed in the
reference literature. The power of the tests is considerably reduced for all the estimators, as it
is expected given the reduction in number of observations considered in the estimates. Despite
the implied larger noise, however, we can broadly confirm the patterns described above. First,
the t-tests based on the CDF and the PDF estimators are completely unreliable, as indeed
they cannot discriminate between different values of simulated α. Second, for true α = 1, we
still observe the comparatively superior performance of the Hill and Rank−1/2 estimators,
as well as a satisfactory performance of the Rank estimator: as for k= 500, the associated
rejection rates hit the theoretical 5% level (10% for the simple Rank). Third, the Hill estimator
is definitely the only reliable estimator when there are reasons to believe that the true α > 1,
while Hill and Rank−1/2 have similar power for true α < 1.

8We report CDF and PDF estimates with 15 bins, given the smaller bias found above as compared to the
40 bins case.

9Results are identical with k = 1000. Thus, k = 500 represents a valid benchmark for larger sample sizes
encountered in the reference literature.
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4.3 T-tests power under sub-asymptotic deviation from Zipf law

We next study the reliability of point estimates and t-tests when the DGP is of the Zipf form
(α = 1), but a sub-asymptotic perturbation is present. We consider the distribution function

P (X > x) = x−1(1 + c(x−1 − 1)) , x > 1, c ∈ [0, 1) , (4.1)

which gives exact Zipf law if c= 0, while for c6= 0 the Zipf behavior is perturbed by a factor
∼ 1/x2. This correction is sub-asymptotic in the sense that it tends to zero for very large
values of X, while it has more weight the wider the range of observations included in the tail.

Gabaix and Ibragimov (2011) exploit this distribution to study the sensitivity of their
Rank−1/2 estimator to different values of c. We extend the same robustness analysis to
the Hill, Rank, CDF and PDF estimators.10. To keep comparability, the Monte Carlo design
exactly follows the reference article. We generate R random samples of size N= 2, 000 extracted
from the process in (4.1), for a given value of c. Next, on each sample we apply the estimators
for two different tail width, i.e. including either the top-50 or the top-500 observations. The
procedure is then repeated for different c.

The results are presented in Table 2. As in Gabaix and Ibragimov (2011), we report the
average point estimates across R = 10, 000 runs together with asymptotic (theoretical) and
sampled standard errors. In addition, we also explore the results of a t-test of the true null of
unitary tail index. However, differently from Gabaix and Ibragimov (2011), who test whether
the across-replication average point estimate deviates from 1, we compute the percentage of
times that the null α = 1 is rejected (at 5% confidence level) by a t-test performed at each
run. So, for instance, if we take the top-50 firms and focus on the benchmark case of pure
Zipf (i.e., c = 0) the average Rank−1/2 point estimate is 1.010 and the sample rejection rate
of the Zipf null is 5% (reported in the first raw), while the theoretical and sample standard
errors are 0.202 and 0.195, respectively (reported in the second raw).

If an estimator is well-behaved, then it is expected that the sample rejection rate is equal
to the theoretical confidence level of 5%. Not surprisingly, when we offset the correction
(c=0), the Hill and Rank-1/2 estimators are clearly outperforming all the others, with point
estimates very close to 1 and very small rejection rates. Results change if we set c 6= 0. When
we focus on the very extreme of the tail (top-50 observations), the Rank−1/2 estimator beats
all the other estimators. The rejection rates indeed always equal the expected 5%, although,
in contrast with Gabaix and Ibragimov (2011), who report substantial invariance to c of the
Rank−1/2 point estimates, we do find that point estimates vary with c. The simple Rank
estimator also does a good job, in that point estimates are not too far from 1, and rejection
rates remain low, close to 10%. A similar pattern arises for the Hill estimator, although it is
more sensitive to the sub-asymptotic correction and rejects in 28% of the times for c = 0.8.
The CDF estimator provides also point estimates not that far from 1, but the rejection rates
are clearly too high to consider it as a reliable basis for inference. The PDF estimator is
the worst performing, with large bias in average point estimates and extremely high rejection
rates.

Moving to a larger tail (top-500 observations), i.e. where the sub-asymptotic correction
becomes theoretically more relevant, we confirm the superior performance of Hill and Rank-
1/2 estimators for the case of no correction (c=0). When c 6= 0 instead, the general result is
that point estimates of all estimators tend to increase as compared to the top-50 case, and
rejection rates signal that all methods substantially over-reject the true null of unitary tail
index.

Gabaix and Ibragimov (2011) use (4.1) to also investigate the behavior of their Rank−1/2
estimator under dependent data, by simulating an AR(1) or MA(1) process with innovations
distributed according to (4.1). A full replication of their analysis, extended to all the other

10As in previous section, CDF and PDF estimates are computed with 15 bins, given the superior performance
as compared to the 40-bins version.
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Table 2: Robustness to sub-asymptotic deviation from Zipf Law
Top 50 Top 500

c Hill Rank−1/2 Rank CDF PDF Hill Rank−1/2 Rank CDF PDF

0.0 1.022 (0.07) 1.010 (0.05) 0.923 (0.12) 0.955 (0.68) 0.589 (0.84) 1.002 (0.05) 0.998 (0.05) 0.978 (0.08) 0.967 (0.67) 0.853 (0.55)

(0.147) (0.149) (0.202) (0.195) (0.185) (0.182) (0.055) (0.242) (0.131) (0.121) (0.045) (0.045) (0.063) (0.063) (0.062) (0.063) (0.034) (0.137) (0.069) (0.104)

0.5 1.046 (0.09) 1.024 (0.05) 0.935 (0.11) 0.965 (0.68) 0.598 (0.82) 1.157 (0.90) 1.084 (0.22) 1.061 (0.15) 1.005 (0.66) 0.901 (0.32)

(0.151) (0.154) (0.205) (0.200) (0.187) (0.187) (0.056) (0.248) (0.134) (0.124) (0.052) (0.056) (0.069) (0.076) (0.067) (0.075) (0.037) (0.155) (0.081) (0.123)

0.8 1.182 (0.28) 1.108 (0.05) 1.010 (0.08) 1.025 (0.68) 0.655 (0.64) 1.475 (1.00) 1.313 (0.94) 1.284 (0.91) 1.127 (0.69) 1.033 (0.25)

(0.171) (0.184) (0.222) (0.235) (0.202) (0.219) (0.061) (0.285) (0.150) (0.149) (0.066) (0.074) (0.083) (0.110) (0.081) (0.109) (0.049) (0.209) (0.110) (0.173)

Note: Estimates of tail index from DGP following P (X > x) = x−1(1+ c(x−1
− 1)) , x > 1, c ∈ [0, 1). Results over 10,000 Monte Carlo simulations with sample size N = 2000 and varying tail width (Top-50

vs. Top-500 observations), for different values of c. CDF and PDF estimates computed with 15 bins. For each c the first line reports point estimates of tail index averaged over the replications and, in
parenthesis, the percentage of times the null of unitary tail index is rejected (at 5% confidence level); the second line shows, in parenthesis, the theoretical standard errors (usual OLS for Rank, CDF and
PDF estimators; propagated via Taylor expansion of the asymptotic variance as in Gabaix and Ibragimov (2011) for the Rank−1/2 estimator; and given in 2.4 for the Hill estimator) together with sample
standard errors.
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estimators, is presented in Table 4 and Table 5 in Appendix. These forms of time dependence
across observations is especially important for applications in finance (see Resnick and Starica,
1998). Conversely, they are not meaningful when studying the distribution of firm sizes over a
yearly cross-section of firms. However, controlling for an autoregressive structure can indeed
be important when the behavior of the firm size distribution is inferred from pooled cross-
sections (as in Okuyama et al., 1999), so that a firm is observed repeatedly over time. We
deal with this issue in the next section.

4.4 Pooling over time and Laplace growth shocks

A well established result in the empirics of firm growth is that the intertemporal evolution of
the size of a firm i is well approximated by an autoregressive multiplicative model

Si,t = Sβ
i,t−1 e

ǫi,t , (4.2)

with β typically found to equal 1 and the growth shocks ǫi,t to follow a Laplace distribution.11

Accounting for this type of temporal dependence is relevant when one seeks to estimate the
firm size distribution from data pooled over time. With an yearly cross-section of firms, indeed,
independence across observations is the implicit assumption underlying the construction of
estimators. With pooled data, repeated observations on the same firm, correlated over time,
enter the sample, creating an obvious source of potential bias.

We present a Monte Carlo exercise that explores how the different estimators and related
t-tests behave with respect to this issue. To simulate pooling over time, we generate a sample
of N = 500 “initial firm sizes” drawn from the Pareto type-I Power law in (2.1), with a given
value of the tail exponent. Next, we evolve the “firm sizes” forward in time for 3 subsequent
years, according to the process in (4.2) with fixed β and Laplace distributed shocks. Then
we pool all the years together to obtain a sample of 2, 000 observations. Finally, we take the
top-500 observations of this pooled dataset as the tail on which we estimate the tail index α
and apply a t-test (at 5% confidence level) for the null of unitary tail index under the different
estimators. The procedure is repeated for R = 10, 000 independent samples, varying the tail
index α and considering different values of the autoregressive parameter β.

Table 3 shows the results obtained with three values of β all close to 1, as suggested by
empirical results on Gibrat’s Law, and shocks drawn from a Laplace distribution with variance
σ = 0.01. 12 We show point estimates and rejection rates of the t-test for the null of unitary
tail index (first row), and theoretical and sampled standard errors (in parenthesis, second
row).13

Apart from the PDF estimator, which always delivers wrong point estimates, the point
estimates from all other methods do not differ too much from the theoretical value of α. They
are quite precise, in particular, with very high persistence (β = 1), while more biased for
smaller values of β. However, there is a clear tendency of associated t-tests to over-reject the
null. This is obviously a desired property if the simulated α is indeed different from 1. When
the DGP has true α = 1, and we would expect rejection rates close to the theoretical 5%,
the best performing estimators are the Hill, Rank−1/2 and simple Rank estimators. Their
rejection rate is about 30%, which is clearly too high.

11Gibrat’s Law of proportionate effects prescribes β = 1 and i.i.d. shocks. Deviations with β < 1 are
usually observed form smaller firms, together with a negative relationship between variance of growth shocks
and initial size, which also contradicts the Law. The Laplacian nature of the shocks has been found to be
robust and invariant across countries and also across sectors, even at different level of sectoral aggregation.
See Amaral et al. (1997); Bottazzi and Secchi (2003, 2006); Bottazzi et al. (2011).

12Results with different σ are in Appendix. The main findings do not change significantly. We also experi-
mented with Gaussian growth shocks, results are analogous and available upon request.

13Binned estimators employ 15 bins.

13



Table 3: Robustness to pooling over time with Laplace growth shocks
α β Hill Rank−1/2 Rank CDF PDF

0.5 0.8 0.630 (1.00) 0.603 (1.00) 0.591 (1.00) 0.573 (1.00) 1.512 (1.00)

(0.028) (0.047) (0.038) (0.065) (0.037) (0.064) (0.018) (0.106) (0.041) (0.082)

0.9 0.576 (1.00) 0.571 (1.00) 0.560 (1.00) 0.571 (1.00) 1.505 (1.00)

(0.026) (0.048) (0.036) (0.068) (0.035) (0.067) (0.018) (0.115) (0.032) (0.082)

1.0 0.506 (1.00) 0.505 (1.00) 0.495 (1.00) 0.499 (1.00) 1.394 (1.00)

(0.023) (0.045) (0.032) (0.063) (0.031) (0.062) (0.026) (0.098) (0.049) (0.067)

0.7 0.8 0.882 (0.70) 0.845 (0.70) 0.827 (0.76) 0.803 (0.88) 1.717 (0.94)

(0.040) (0.066) (0.053) (0.091) (0.052) (0.090) (0.025) (0.149) (0.057) (0.115)

0.9 0.806 (0.93) 0.800 (0.83) 0.784 (0.87) 0.800 (0.86) 1.707 (0.96)

(0.036) (0.068) (0.051) (0.096) (0.050) (0.094) (0.026) (0.161) (0.045) (0.115)

1.0 0.708 (1.00) 0.706 (0.98) 0.693 (0.98) 0.699 (0.92) 1.553 (1.00)

(0.032) (0.064) (0.045) (0.088) (0.044) (0.087) (0.036) (0.139) (0.069) (0.095)

0.9 0.8 1.133 (0.69) 1.086 (0.35) 1.064 (0.31) 1.032 (0.77) 1.921 (0.40)

(0.051) (0.085) (0.069) (0.117) (0.067) (0.115) (0.032) (0.191) (0.073) (0.148)

0.9 1.037 (0.33) 1.028 (0.30) 1.008 (0.30) 1.028 (0.79) 1.909 (0.53)

(0.046) (0.087) (0.065) (0.123) (0.064) (0.121) (0.033) (0.207) (0.059) (0.147)

1.0 0.910 (0.56) 0.908 (0.48) 0.892 (0.53) 0.899 (0.67) 1.712 (0.81)

(0.041) (0.082) (0.057) (0.113) (0.056) (0.112) (0.047) (0.178) (0.088) (0.122)

1.0 0.8 1.259 (0.98) 1.207 (0.69) 1.182 (0.62) 1.147 (0.81) 2.024 (0.35)

(0.056) (0.095) (0.076) (0.130) (0.075) (0.128) (0.036) (0.213) (0.081) (0.165)

0.9 1.152 (0.74) 1.143 (0.51) 1.120 (0.46) 1.143 (0.84) 2.011 (0.45)

(0.052) (0.097) (0.072) (0.137) (0.071) (0.135) (0.037) (0.231) (0.065) (0.165)

1.0 1.011 (0.33) 1.009 (0.32) 0.991 (0.33) 0.999 (0.63) 1.791 (0.56)

(0.045) (0.091) (0.064) (0.125) (0.063) (0.124) (0.052) (0.197) (0.098) (0.135)

1.1 0.8 1.385 (1.00) 1.328 (0.91) 1.300 (0.88) 1.261 (0.86) 2.126 (0.46)

(0.062) (0.104) (0.084) (0.143) (0.082) (0.141) (0.039) (0.234) (0.089) (0.181)

0.9 1.267 (0.97) 1.257 (0.78) 1.232 (0.73) 1.257 (0.88) 2.112 (0.53)

(0.057) (0.107) (0.079) (0.150) (0.078) (0.148) (0.040) (0.253) (0.071) (0.180)

1.0 1.112 (0.59) 1.110 (0.44) 1.090 (0.40) 1.098 (0.68) 1.871 (0.33)

(0.050) (0.100) (0.070) (0.138) (0.069) (0.136) (0.057) (0.216) (0.108) (0.149)

1.3 0.8 1.637 (1.00) 1.569 (1.00) 1.536 (0.99) 1.491 (0.93) 2.330 (0.72)

(0.073) (0.123) (0.099) (0.169) (0.097) (0.167) (0.047) (0.277) (0.106) (0.214)

0.9 1.497 (1.00) 1.486 (0.98) 1.456 (0.97) 1.486 (0.93) 2.314 (0.77)

(0.067) (0.126) (0.094) (0.178) (0.092) (0.175) (0.048) (0.299) (0.084) (0.213)

1.0 1.314 (0.98) 1.312 (0.86) 1.288 (0.82) 1.297 (0.82) 2.031 (0.18)

(0.059) (0.118) (0.083) (0.163) (0.081) (0.161) (0.067) (0.258) (0.129) (0.178)

1.5 0.8 1.889 (1.00) 1.810 (1.00) 1.773 (1.00) 1.720 (0.97) 2.536 (0.86)

(0.085) (0.142) (0.114) (0.195) (0.112) (0.193) (0.054) (0.319) (0.122) (0.246)

0.9 1.728 (1.00) 1.714 (1.00) 1.680 (1.00) 1.714 (0.96) 2.516 (0.89)

(0.077) (0.145) (0.108) (0.205) (0.106) (0.202) (0.055) (0.346) (0.097) (0.246)

1.0 1.516 (1.00) 1.514 (0.98) 1.486 (0.98) 1.499 (0.90) 2.193 (0.34)

(0.068) (0.136) (0.096) (0.188) (0.094) (0.186) (0.078) (0.298) (0.149) (0.207)

Note: Estimation samples obtained from inital samples of 500 observations with DGP following the Power Law in (2.1), then
evolved forward in time for 3 time periods according to (4.2) with Laplace shocks of variance σ = 0.01, and finally taking the
top-500 observations resulting from pooling the observations across time periods. Results over 10, 000 Monte Carlo simulations
for varying tail exponent α and varying AR parameter β. CDF and PDF estimates computed with 15 bins. For each combination
of α and β, the first line reports point estimates of tail index averaged over the replications and, in parenthesis, the percentage
of times the null of unitary tail index is rejected (at 5% confidence level); the second line shows, in parenthesis, the theoretical
standard errors (usual OLS for Rank, CDF and PDF estimators; propagated via Taylor expansion of the asymptotic variance
as in Gabaix and Ibragimov (2011) for the Rank−1/2 estimator; and given in (2.4) for the Hill estimator) together with sample
standard errors.
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5 Conclusion

In this paper we have reviewed the literature that has created a consensus about the Power
Law behavior in firm size distribution, and examined the methods leading these studies to
conclude that a Zipf Law represents an ubiquitous property of the data.

The CDF and PDF log-log estimators have poor properties. These estimators, despite their
widespread use, do not provide a solid basis for tail inference. Indeed, the associated t-tests
for the null of unitary tail index perform very poorly, both when the true DGP is exactly Zipf
and when we introduce sub-asymptotic deviations from the Zipf law. In particular, the PDF
estimator gives particularly unreliable results with pooled data.

The Rank, Rank−1/2 and Hill estimators have more desirable properties. Rank and
Rank−1/2 share similar behavior, not surprisingly, but the latter is to be preferred both
for the superior theoretical properties and for its better performance in most of the Monte
Carlo analysis we have presented here. As a result, the Hill and Rank−1/2 estimators stand
out as the two more solid methods. In general, the Hill estimator is attractive because there is
an explicit correction for its small sample bias and because of its maximum likelihood nature.
The two estimators compete each other in terms of reliability of inference based on associated
t-tests.

First, if the focus lies on the ability to reject the null of Zipf law when the true tail index
indeed differs from 1, the t-test associated to the Hill estimates is definitely more powerful for
sample size around 500 observations. For very small sample size, i.e. of about 50 observations,
the Hill estimator is still more valid if there is a-priori suspect (for instance, after a first step
estimate) that the true α is above 1. Both the Hill and the Rank−1/2 estimators are well
behaved for true α below 1.

Second, if the focus is on sensitivity to sub-asymptotic deviations from the standard i.i.d.
Zipf process, the Rank−1/2 has some merit in this case. The associated t-test for rejecting
a unitary tail index is more powerful when the DGP has a second order deviation from the
Zipf law. Such superiority, however vanishes as the tail width increases, i.e. in the range of
observations where the correction is a-priori more relevant.

Third, pooling over time does not seem to make a big difference in terms of the ability of the
estimators to deliver reasonable values of point estimates, but produces unreliable inference
when there is reason to suspect that the data are exactly Zipf distributed.

Our results helps in understanding the reliability of the estimates reported in previous
studies. They also provide guidance for future research which, subscribing to the Power Law
approach, wants to estimate the tail behavior of the size distribution of firms. We remind,
however, that the different estimators employed in this approach only provide alternatives to
assess which particular distribution within the Power Law family best approximates the data.
They cannot answer the question of whether the Zipf law, in particular, or the Power Law, in
general, does a better job than other distributions in describing the data.
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6 Appendix

We report here additional results and robustness checks.
To keep comparability with Gabaix and Ibragimov (2011), in Tables 4 and 5 we extend

their analysis of AR(1) and MA(1) data to all the estimators considered in this article, although
these types of time dependence are more compelling for applications in finance. We design
the Monte Carlo exactly as in Gabaix and Ibragimov (2011).

For the case of AR(1) DGP, we generate R = 10, 000 random samples of size N = 2, 000
extracted from the AR(1) process

Yi = ρYi−1 + ǫi , i ≥ 1, Y0 = 0 , (6.1)

with ǫ ∼ (4.1), for a given combination of the values of c and ρ. On each sample we apply
all the estimators for two different tail width, i.e. including either the top-50 or the top-
500 observations in the tails. We then repeat the Monte Carlo for different values of the
parameters.

In Table 4 we report the average of point estimates across the 10,000 runs, together with
asymptotic (theoretical) and sampled standard errors, as well as rejection rates of a t-test
(at 5% level) of the true null of unitary tail index performed at each run. First consider the
sensitivity to the AR(1) structure, setting aside the impact of the sub-asymptotic correction
(i.e., set c = 0 and vary ρ), and take the case when the top-50 observations are considered.
Although all the rejection rates are above the theoretical 5%, the results provide a clear
ranking. First, the CDF and PDF estimators both severely over-reject. Second, among the
other three estimators, the Rank−1/2 is over-performing the others. However, the frequency
at which the true null of unitary tail index is mistakenly rejected rapidly grows to above 50%
for all the estimators if we take the top-500 observations in the tail. Similar conclusions emerge
when we let both c and ρ vary at the same time.

Table 5 replicates the analysis to study the properties under the MA(1) process

Yi = ǫi + θǫi−1 , i ≥ 1 , (6.2)

with ǫ ∼ (4.1). As before, we simulate R=10,000 random samples of size N = 2000 with
varying c and θ, and again compare the behavior of the estimators for different tail width
(top-50 and top-500 observations). The findings for θ = 0 obviously replicate the analysis on
AR(1) with ρ = 0. Further, if we switch off the sub-asymptotic correction (i.e. set c = 0,
and vary θ), we observe that, first, the CDF and PDF estimators are once again unreliable,
with very high rejection rates. Second, although rejection rates are above the theoretical 5%
for all the methods, the Rank and Rank−1/2 estimators perform better (smaller rejection
rates) than the other methods. The Rank performs slightly better if the tail includes the top-
50 observations, while the Rank−1/2 is slightly better for the top-500 observations. Third,
the patterns are similar when we let c and θ vary together. If anything, we notice that the
rejection rates associated to all the estimators rapidly increase to above 20% if we take the
top-500 observations in the tail. Conversely, they are less dependent from the parameters in
the top-50 exercise.

Finally, in Tables 6 and 7 we replicate the pooling exercise, experimenting with growth
shocks drawn from a Laplace distribution with variance 0.05 and 0.10, respectively. Results
show that the conclusions presented in the main text are entirely robust to this different set-up.
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Table 4: AR(1) data with sub-asymptotic deviation from Zipf Law
Top 50 Top 500

c ρ Hill Rank−1/2 Rank CDF PDF Hill Rank−1/2 Rank CDF PDF

0.0 0.0 1.022 (0.07) 1.010 (0.05) 0.923 (0.12) 0.955 (0.68) 0.589 (0.84) 1.002 (0.05) 0.998 (0.05) 0.978 (0.08) 0.967 (0.67) 0.853 (0.55)

(0.147) (0.149) (0.202) (0.195) (0.185) (0.182) (0.055) (0.242) (0.131) (0.121) (0.045) (0.045) (0.063) (0.063) (0.062) (0.063) (0.034) (0.137) (0.069) (0.104)

0.0 0.5 1.119 (0.31) 1.174 (0.15) 1.077 (0.15) 1.168 (0.82) 0.700 (0.58) 1.163 (0.78) 1.124 (0.51) 1.102 (0.46) 1.113 (0.84) 0.992 (0.45)

(0.161) (0.253) (0.235) (0.321) (0.215) (0.297) (0.050) (0.355) (0.137) (0.179) (0.052) (0.100) (0.071) (0.146) (0.070) (0.145) (0.032) (0.227) (0.065) (0.164)

0.0 0.8 1.315 (0.58) 1.483 (0.41) 1.369 (0.35) 1.513 (0.92) 0.874 (0.44) 1.306 (0.89) 1.261 (0.74) 1.237 (0.72) 1.287 (0.88) 1.135 (0.69)

(0.190) (0.452) (0.297) (0.559) (0.274) (0.515) (0.081) (0.603) (0.143) (0.317) (0.059) (0.199) (0.080) (0.268) (0.078) (0.264) (0.045) (0.356) (0.066) (0.275)

0.5 0.0 1.046 (0.09) 1.024 (0.05) 0.935 (0.11) 0.965 (0.68) 0.598 (0.82) 1.157 (0.90) 1.084 (0.22) 1.061 (0.15) 1.005 (0.66) 0.901 (0.32)

(0.151) (0.154) (0.205) (0.200) (0.187) (0.187) (0.056) (0.248) (0.134) (0.124) (0.052) (0.056) (0.069) (0.076) (0.067) (0.075) (0.037) (0.155) (0.081) (0.123)

0.5 0.5 1.142 (0.33) 1.189 (0.16) 1.091 (0.15) 1.181 (0.83) 0.712 (0.56) 1.303 (0.97) 1.199 (0.67) 1.175 (0.63) 1.154 (0.84) 1.040 (0.46)

(0.165) (0.264) (0.238) (0.330) (0.218) (0.305) (0.051) (0.363) (0.139) (0.185) (0.058) (0.122) (0.076) (0.169) (0.074) (0.167) (0.034) (0.249) (0.074) (0.187)

0.5 0.8 1.342 (0.59) 1.507 (0.42) 1.390 (0.37) 1.535 (0.93) 0.892 (0.43) 1.442 (0.95) 1.339 (0.80) 1.313 (0.78) 1.343 (0.89) 1.198 (0.70)

(0.194) (0.471) (0.301) (0.577) (0.278) (0.532) (0.081) (0.621) (0.146) (0.330) (0.065) (0.236) (0.085) (0.303) (0.083) (0.298) (0.046) (0.392) (0.073) (0.308)

0.8 0.0 1.182 (0.28) 1.108 (0.05) 1.010 (0.08) 1.025 (0.68) 0.655 (0.64) 1.475 (1.00) 1.313 (0.94) 1.284 (0.91) 1.127 (0.69) 1.033 (0.25)

(0.171) (0.184) (0.222) (0.235) (0.202) (0.219) (0.061) (0.285) (0.150) (0.149) (0.066) (0.074) (0.083) (0.110) (0.081) (0.109) (0.049) (0.209) (0.110) (0.173)

0.8 0.5 1.255 (0.47) 1.268 (0.21) 1.162 (0.18) 1.246 (0.85) 0.766 (0.45) 1.699 (1.00) 1.442 (0.91) 1.410 (0.89) 1.292 (0.85) 1.188 (0.54)

(0.181) (0.313) (0.254) (0.376) (0.232) (0.347) (0.054) (0.407) (0.153) (0.216) (0.076) (0.176) (0.091) (0.241) (0.089) (0.237) (0.043) (0.320) (0.105) (0.259)

0.8 0.8 1.466 (0.66) 1.611 (0.48) 1.485 (0.42) 1.634 (0.93) 0.967 (0.42) 1.896 (1.00) 1.613 (0.90) 1.580 (0.89) 1.534 (0.90) 1.404 (0.75)

(0.212) (0.556) (0.322) (0.659) (0.297) (0.607) (0.083) (0.702) (0.160) (0.379) (0.085) (0.354) (0.102) (0.428) (0.100) (0.420) (0.055) (0.517) (0.099) (0.424)

Note: Estimates of tail index for the AR(1) process Yi = ρYi−1 + ǫi, with innovations ǫi following P (X > x) = x−1(1 + c(x−1
− 1)) , x > 1, c ∈ [0, 1). Results over 10,000 Monte Carlo simulations with

sample size N = 2000 and varying tail width (Top-50 vs. Top-500 observations), for different values of c and ρ. CDF and PDF estimates computed with 15 bins. For each combination: the first line reports
point estimates of tail index averaged over the replications and, in parenthesis, the percentage of times the null of unitary tail index is rejected (at 5% confidence level); the second line shows, in parenthesis,
the theoretical standard errors (usual OLS for CDF and PDF estimators; propagated via Taylor expansion of the asymptotic variance as in Gabaix and Ibragimov (2011) for the Rank−1/2 estimator; given
in 2.4 for the Hill estimator) together with the sample standard errors.
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Table 5: MA(1) data with sub-asymptotic deviation from Zipf Law
Top 50 Top 500

c θ Hill Rank−1/2 Rank CDF PDF Hill Rank−1/2 Rank CDF PDF

0.0 0.0 1.022 (0.07) 1.010 (0.05) 0.923 (0.12) 0.955 (0.68) 0.589 (0.84) 1.002 (0.05) 0.998 (0.05) 0.978 (0.08) 0.967 (0.67) 0.853 (0.55)

(0.147) (0.149) (0.202) (0.195) (0.185) (0.182) (0.055) (0.242) (0.131) (0.121) (0.045) (0.045) (0.063) (0.063) (0.062) (0.063) (0.034) (0.137) (0.069) (0.104)

0.0 0.5 1.065 (0.17) 1.077 (0.11) 0.987 (0.15) 1.048 (0.75) 0.634 (0.73) 1.073 (0.40) 1.052 (0.21) 1.031 (0.18) 1.023 (0.74) 0.912 (0.41)

(0.154) (0.202) (0.215) (0.277) (0.197) (0.257) (0.055) (0.330) (0.133) (0.157) (0.048) (0.066) (0.067) (0.095) (0.065) (0.094) (0.035) (0.182) (0.067) (0.132)

0.0 0.8 1.075 (0.20) 1.077 (0.12) 0.988 (0.17) 1.013 (0.73) 0.603 (0.72) 1.078 (0.43) 1.055 (0.22) 1.034 (0.19) 1.008 (0.70) 0.896 (0.36)

(0.155) (0.218) (0.215) (0.292) (0.198) (0.272) (0.067) (0.348) (0.147) (0.182) (0.048) (0.068) (0.067) (0.098) (0.065) (0.097) (0.039) (0.177) (0.081) (0.138)

0.5 0.0 1.046 (0.09) 1.024 (0.05) 0.935 (0.11) 0.965 (0.68) 0.598 (0.82) 1.157 (0.90) 1.084 (0.22) 1.061 (0.15) 1.005 (0.66) 0.901 (0.32)

(0.151) (0.154) (0.205) (0.201) (0.187) (0.187) (0.056) (0.248) (0.134) (0.124) (0.052) (0.055) (0.069) (0.076) (0.067) (0.075) (0.037) (0.155) (0.081) (0.123)

0.5 0.5 1.087 (0.20) 1.091 (0.11) 0.999 (0.15) 1.059 (0.76) 0.645 (0.70) 1.221 (0.96) 1.131 (0.47) 1.108 (0.39) 1.061 (0.74) 0.958 (0.34)

(0.157) (0.209) (0.218) (0.284) (0.200) (0.264) (0.056) (0.338) (0.136) (0.162) (0.055) (0.080) (0.072) (0.112) (0.070) (0.111) (0.038) (0.203) (0.077) (0.153)

0.5 0.8 1.097 (0.22) 1.090 (0.13) 1.000 (0.17) 1.024 (0.73) 0.613 (0.70) 1.226 (0.96) 1.133 (0.48) 1.110 (0.40) 1.046 (0.70) 0.945 (0.29)

(0.158) (0.225) (0.218) (0.300) (0.200) (0.279) (0.067) (0.355) (0.149) (0.186) (0.055) (0.083) (0.072) (0.115) (0.070) (0.114) (0.042) (0.198) (0.091) (0.159)

0.8 0.0 1.182 (0.28) 1.108 (0.05) 1.010 (0.08) 1.025 (0.68) 0.655 (0.64) 1.475 (1.00) 1.313 (0.94) 1.284 (0.91) 1.127 (0.69) 1.033 (0.25)

(0.171) (0.184) (0.222) (0.235) (0.202) (0.219) (0.061) (0.285) (0.150) (0.149) (0.066) (0.074) (0.083) (0.110) (0.081) (0.109) (0.049) (0.209) (0.110) (0.173)

0.8 0.5 1.208 (0.36) 1.169 (0.14) 1.070 (0.15) 1.121 (0.78) 0.699 (0.56) 1.588 (1.00) 1.368 (0.92) 1.338 (0.89) 1.192 (0.76) 1.098 (0.40)

(0.174) (0.246) (0.234) (0.325) (0.214) (0.301) (0.059) (0.380) (0.149) (0.190) (0.071) (0.112) (0.087) (0.164) (0.085) (0.162) (0.049) (0.270) (0.107) (0.217)

0.8 0.8 1.216 (0.37) 1.167 (0.15) 1.070 (0.16) 1.088 (0.74) 0.670 (0.57) 1.599 (1.00) 1.371 (0.92) 1.341 (0.89) 1.174 (0.72) 1.089 (0.34)

(0.175) (0.263) (0.233) (0.343) (0.214) (0.318) (0.072) (0.401) (0.163) (0.215) (0.072) (0.117) (0.087) (0.169) (0.085) (0.167) (0.055) (0.267) (0.123) (0.225)

Note: Estimates of tail index for the MA(1) process Yi = ǫi + θǫi−1, with innovations ǫi following P (X > x) = x−1(1 + c(x−1
− 1)) , x > 1, c ∈ [0, 1). Results over 10,000 Monte Carlo simulations with

sample size N = 2000 and varying tail width (Top-50 vs. Top-500 observations), for different values of c and θ. CDF and PDF estimates computed with 15 bins. For each combination: the first line reports
point estimates of tail index averaged over the replications and, in parenthesis, the percentage of times the null of unitary tail index is rejected (at 5% confidence level); the second line shows, in parenthesis,
the theoretical standard errors (usual OLS for CDF and PDF estimators; propagated via Taylor expansion of the asymptotic variance as in Gabaix and Ibragimov (2011) for the Rank−1/2 estimator; given
in 2.4 for the Hill estimator) together with sample standard errors.

20



Table 6: Robustness to pooling over time with Laplace growth shocks
α β Hill Rank−1/2 Rank CDF PDF

0.5 0.8 0.630 (1.00) 0.603 (1.00) 0.591 (1.00) 0.573 (1.00) 1.512 (1.00)

(0.028) (0.047) (0.038) (0.065) (0.037) (0.064) (0.018) (0.106) (0.041) (0.082)

0.9 0.576 (1.00) 0.571 (1.00) 0.560 (1.00) 0.572 (1.00) 1.505 (1.00)

(0.026) (0.048) (0.036) (0.068) (0.035) (0.067) (0.019) (0.116) (0.032) (0.082)

1.0 0.505 (1.00) 0.505 (1.00) 0.495 (1.00) 0.499 (1.00) 1.400 (1.00)

(0.023) (0.045) (0.032) (0.063) (0.031) (0.062) (0.026) (0.099) (0.050) (0.070)

0.7 0.8 0.882 (0.69) 0.845 (0.70) 0.827 (0.76) 0.803 (0.88) 1.717 (0.93)

(0.040) (0.066) (0.053) (0.091) (0.052) (0.090) (0.025) (0.149) (0.057) (0.115)

0.9 0.806 (0.93) 0.800 (0.83) 0.784 (0.87) 0.801 (0.86) 1.707 (0.96)

(0.036) (0.068) (0.051) (0.096) (0.050) (0.094) (0.026) (0.162) (0.045) (0.115)

1.0 0.708 (1.00) 0.707 (0.98) 0.694 (0.98) 0.699 (0.93) 1.564 (0.99)

(0.032) (0.063) (0.045) (0.088) (0.044) (0.087) (0.036) (0.139) (0.071) (0.099)

0.9 0.8 1.134 (0.70) 1.087 (0.35) 1.064 (0.31) 1.032 (0.77) 1.921 (0.41)

(0.051) (0.085) (0.069) (0.117) (0.067) (0.116) (0.032) (0.192) (0.073) (0.148)

0.9 1.037 (0.33) 1.029 (0.30) 1.008 (0.30) 1.031 (0.79) 1.910 (0.53)

(0.046) (0.087) (0.065) (0.123) (0.064) (0.121) (0.034) (0.209) (0.059) (0.147)

1.0 0.910 (0.56) 0.909 (0.48) 0.892 (0.53) 0.897 (0.68) 1.728 (0.74)

(0.041) (0.081) (0.057) (0.113) (0.056) (0.112) (0.046) (0.178) (0.093) (0.128)

1.0 0.8 1.260 (0.98) 1.207 (0.69) 1.182 (0.62) 1.147 (0.81) 2.024 (0.35)

(0.056) (0.095) (0.076) (0.130) (0.075) (0.128) (0.036) (0.214) (0.082) (0.165)

0.9 1.152 (0.74) 1.143 (0.51) 1.120 (0.46) 1.146 (0.84) 2.011 (0.45)

(0.052) (0.097) (0.072) (0.137) (0.071) (0.135) (0.037) (0.232) (0.065) (0.164)

1.0 1.011 (0.32) 1.010 (0.32) 0.991 (0.33) 0.997 (0.64) 1.812 (0.49)

(0.045) (0.090) (0.064) (0.125) (0.063) (0.124) (0.051) (0.197) (0.103) (0.142)

1.1 0.8 1.386 (1.00) 1.328 (0.91) 1.301 (0.88) 1.262 (0.86) 2.126 (0.46)

(0.062) (0.104) (0.084) (0.143) (0.082) (0.141) (0.039) (0.235) (0.090) (0.181)

0.9 1.267 (0.97) 1.257 (0.78) 1.233 (0.73) 1.261 (0.88) 2.112 (0.53)

(0.057) (0.107) (0.080) (0.150) (0.078) (0.148) (0.041) (0.256) (0.072) (0.180)

1.0 1.112 (0.59) 1.111 (0.44) 1.090 (0.40) 1.096 (0.68) 1.895 (0.28)

(0.050) (0.099) (0.070) (0.138) (0.069) (0.136) (0.056) (0.217) (0.114) (0.157)

1.3 0.8 1.639 (1.00) 1.570 (1.00) 1.537 (0.99) 1.491 (0.93) 2.332 (0.72)

(0.073) (0.123) (0.099) (0.169) (0.097) (0.167) (0.047) (0.278) (0.106) (0.215)

0.9 1.498 (1.00) 1.486 (0.98) 1.457 (0.97) 1.491 (0.93) 2.314 (0.77)

(0.067) (0.126) (0.094) (0.178) (0.092) (0.175) (0.049) (0.302) (0.085) (0.213)

1.0 1.314 (0.98) 1.313 (0.86) 1.289 (0.82) 1.295 (0.82) 2.062 (0.20)

(0.059) (0.117) (0.083) (0.163) (0.081) (0.161) (0.066) (0.257) (0.135) (0.187)

1.5 0.8 1.892 (1.00) 1.812 (1.00) 1.774 (1.00) 1.721 (0.97) 2.537 (0.86)

(0.085) (0.142) (0.115) (0.195) (0.112) (0.193) (0.054) (0.320) (0.123) (0.247)

0.9 1.729 (1.00) 1.715 (1.00) 1.681 (1.00) 1.721 (0.96) 2.516 (0.89)

(0.077) (0.145) (0.108) (0.205) (0.106) (0.202) (0.057) (0.349) (0.098) (0.246)

1.0 1.516 (1.00) 1.515 (0.98) 1.487 (0.98) 1.496 (0.90) 2.233 (0.39)

(0.068) (0.134) (0.096) (0.188) (0.094) (0.186) (0.076) (0.299) (0.155) (0.218)

Note: Estimates on samples obtained from a DGP following the Power Law in (2.1), then brought forward in time for 4 time
periods according to (4.2) with Laplace shocks with variance σ = 0.05, and finally pooling the Top-500 observations in each time
period. Results over 10,000 Monte Carlo simulations with sample size N = 2000, for varying tail exponent α and varying AR
parameter β. CDF and PDF estimates computed with 15 bins. For each combination of α and β, the first line reports point
estimates of tail index averaged over the replications and, in parenthesis, the percentage of times the null of unitary tail index
is rejected (at 5% confidence level); the second line shows, in parenthesis, the theoretical standard errors (usual OLS for Rank,
CDF and PDF estimators; propagated via Taylor expansion of the asymptotic variance as in Gabaix and Ibragimov (2011) for
the Rank−1/2 estimator; and given in (2.4) for the Hill estimator) together with sample standard errors.
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Table 7: Robustness to pooling over time with Laplace growth shocks
α β Hill Rank−1/2 Rank CDF PDF

0.5 0.8 0.630 (1.00) 0.604 (1.00) 0.591 (1.00) 0.573 (1.00) 1.512 (1.00)

(0.028) (0.047) (0.038) (0.065) (0.037) (0.064) (0.018) (0.107) (0.041) (0.082)

0.9 0.576 (1.00) 0.571 (1.00) 0.560 (1.00) 0.573 (1.00) 1.505 (1.00)

(0.026) (0.048) (0.036) (0.068) (0.035) (0.067) (0.019) (0.116) (0.033) (0.082)

1.0 0.505 (1.00) 0.505 (1.00) 0.496 (1.00) 0.498 (1.00) 1.406 (1.00)

(0.023) (0.045) (0.032) (0.063) (0.031) (0.062) (0.025) (0.098) (0.052) (0.071)

0.7 0.8 0.883 (0.69) 0.845 (0.70) 0.828 (0.76) 0.803 (0.88) 1.717 (0.93)

(0.040) (0.066) (0.053) (0.091) (0.052) (0.090) (0.025) (0.149) (0.057) (0.115)

0.9 0.807 (0.93) 0.800 (0.83) 0.784 (0.86) 0.803 (0.85) 1.708 (0.96)

(0.036) (0.068) (0.051) (0.096) (0.050) (0.094) (0.026) (0.163) (0.046) (0.115)

1.0 0.708 (1.00) 0.707 (0.98) 0.694 (0.98) 0.698 (0.93) 1.574 (0.99)

(0.032) (0.063) (0.045) (0.088) (0.044) (0.087) (0.035) (0.139) (0.072) (0.101)

0.9 0.8 1.136 (0.70) 1.088 (0.35) 1.065 (0.31) 1.033 (0.76) 1.922 (0.40)

(0.051) (0.086) (0.069) (0.117) (0.067) (0.116) (0.032) (0.193) (0.074) (0.149)

0.9 1.037 (0.34) 1.029 (0.30) 1.009 (0.30) 1.033 (0.79) 1.910 (0.53)

(0.046) (0.087) (0.065) (0.123) (0.064) (0.121) (0.034) (0.210) (0.059) (0.148)

1.0 0.910 (0.56) 0.909 (0.47) 0.892 (0.53) 0.896 (0.69) 1.744 (0.70)

(0.041) (0.080) (0.057) (0.113) (0.056) (0.111) (0.045) (0.179) (0.093) (0.132)

1.0 0.8 1.262 (0.98) 1.209 (0.69) 1.184 (0.63) 1.148 (0.81) 2.025 (0.35)

(0.057) (0.095) (0.076) (0.130) (0.075) (0.129) (0.036) (0.214) (0.082) (0.166)

0.9 1.153 (0.74) 1.143 (0.51) 1.121 (0.46) 1.149 (0.84) 2.011 (0.44)

(0.052) (0.097) (0.072) (0.137) (0.071) (0.135) (0.038) (0.233) (0.066) (0.164)

1.0 1.011 (0.32) 1.010 (0.32) 0.991 (0.33) 0.996 (0.65) 1.830 (0.44)

(0.045) (0.089) (0.064) (0.125) (0.063) (0.124) (0.050) (0.199) (0.103) (0.147)

1.1 0.8 1.389 (1.00) 1.330 (0.92) 1.303 (0.88) 1.263 (0.86) 2.128 (0.46)

(0.062) (0.105) (0.084) (0.143) (0.082) (0.142) (0.040) (0.236) (0.090) (0.182)

0.9 1.268 (0.97) 1.258 (0.78) 1.233 (0.73) 1.264 (0.88) 2.112 (0.53)

(0.057) (0.106) (0.080) (0.150) (0.078) (0.148) (0.042) (0.257) (0.073) (0.180)

1.0 1.112 (0.58) 1.111 (0.44) 1.091 (0.40) 1.096 (0.69) 1.917 (0.26)

(0.050) (0.098) (0.070) (0.138) (0.069) (0.136) (0.054) (0.219) (0.112) (0.163)

1.3 0.8 1.644 (1.00) 1.574 (1.00) 1.541 (0.99) 1.494 (0.93) 2.334 (0.72)

(0.074) (0.124) (0.100) (0.170) (0.097) (0.168) (0.047) (0.279) (0.107) (0.215)

0.9 1.499 (1.00) 1.487 (0.98) 1.458 (0.97) 1.495 (0.93) 2.315 (0.77)

(0.067) (0.126) (0.094) (0.178) (0.092) (0.175) (0.050) (0.304) (0.087) (0.213)

1.0 1.314 (0.99) 1.314 (0.86) 1.289 (0.82) 1.296 (0.82) 2.091 (0.24)

(0.059) (0.115) (0.083) (0.163) (0.082) (0.161) (0.064) (0.262) (0.131) (0.194)

1.5 0.8 1.899 (1.00) 1.817 (1.00) 1.780 (1.00) 1.726 (0.97) 2.542 (0.86)

(0.085) (0.144) (0.115) (0.196) (0.113) (0.194) (0.054) (0.324) (0.123) (0.250)

0.9 1.731 (1.00) 1.717 (1.00) 1.683 (1.00) 1.725 (0.96) 2.517 (0.89)

(0.078) (0.145) (0.109) (0.205) (0.106) (0.202) (0.058) (0.350) (0.102) (0.245)

1.0 1.516 (1.00) 1.516 (0.99) 1.488 (0.98) 1.499 (0.90) 2.269 (0.48)

(0.068) (0.132) (0.096) (0.188) (0.094) (0.185) (0.074) (0.305) (0.149) (0.226)

Note: Estimates on samples obtained from a DGP following the Power Law in (2.1), then brought forward in time for 4 time
periods according to (4.2) with Laplace shocks with variance σ = 0.01, and finally pooling the Top-500 observations in each time
period. Results over 10,000 Monte Carlo simulations with sample size N = 2000, for varying tail exponent α and varying AR
parameter β. CDF and PDF estimates computed with 15 bins. For each combination of α and β, the first line reports point
estimates of tail index averaged over the replications and, in parenthesis, the percentage of times the null of unitary tail index
is rejected (at 5% confidence level); the second line shows, in parenthesis, the theoretical standard errors (usual OLS for Rank,
CDF and PDF estimators; propagated via Taylor expansion of the asymptotic variance as in Gabaix and Ibragimov (2011) for
the Rank−1/2 estimator; and given in (2.4) for the Hill estimator) together with sample standard errors.
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