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This paper studies the geographical breadth of knowledge spillovers. Previous research suggests 
that knowledge spillovers benefit from geographical proximity in technologically active and rich 
regions more than elsewhere. An alternative view explains the geographical breadth of knowledge 
spillovers as a function of the characteristics and personal networks of the individuals. We test these 
two competing theories by using information provided directly by the inventors of 6,750 European 
patents (PatVal-EU survey). Our results confirm the importance of inventors’ personal background. 
However, compared to previous research, we find that the level of education of the inventors is key 
in shaping the geographical breadth of knowledge spillovers. Highly educated inventors rely more 
on geographically wide research networks than their less educated peers. This holds after 
controlling for the mobility of the inventors and for the scientific nature of the research performed. 
Differently, location matters only in the very rare regions in Europe that perform the bulk of the 
research in the specific discipline of the inventors.  
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1. Introduction and research setting 

The importance of knowledge spillovers has encouraged scholars in economics and 

management to document their existence and to study their boundaries (Jaffe, 1989; Acs et al., 

1994; Jaffe, Trajtenberg and Fogarty, 2000; Funke and Niebuhr, 2005). The fact that knowledge 

spreads out from its source lowers the incentives to produce it. However, by producing increasing 

returns, spillovers foster economic growth (e.g., Romer, 1990; Grossman and Helpman, 1991). 

Moreover, the geographical boundaries of the spillovers affect the spatial distribution of innovative 

and economic activities (Saxenian, 1994; Verspagen, 1997).  

This paper focuses on the knowledge spillovers that the inventors use to develop patented 

inventions in Europe. It provides new evidence on the extent to which knowledge flows are 

geographically localized, and the factors that affect their geographical breadth. It offers the unique 

opportunity to explore these issues by means of an indicator of knowledge spillovers provided 

directly by the inventors of 6,750 European patents (the PatVal-EU survey). The indicator is based 

on the assessment given by the inventors about the use of interactions such as meetings, 

discussions, and circulation of ideas during the research leading to the patented invention.  

Our paper builds on the existing literature on the role of geography on knowledge flows. In a 

seminal paper, Jaffe et al. (1993) use US patent citations to measure knowledge spillovers. By 

employing a matching method that controls for the pre-existing distribution of production activities 

they show that knowledge spillovers are geographically concentrated between and within countries 

(for Europe see Verspagen, 1997; Verspagen and De Loo, 1999). 

More recent contributions, however, show that patent citations are a noisy measure of the 

extent and direction of knowledge flows. Alcacer and Gittelman (2006) indicate that an important 

fraction of patent citations – 41% for the US patents and 93% for the EPO patents – are inserted by 

the patent examiners rather than the inventors (Jaffe et al., 1998, Harhoff et al., 2006). Other authors 

cast doubts about the fact that spillovers are geographically bounded. Thompson and Fox Kean 
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(2005) revisit the Jaffe et al. work. They employ finer criteria to select the control sample of patents 

and find that this eliminates the intra-national location of knowledge spillovers. Thompson (2004) 

uses a different identification methodology, which compares the geographic matching of the US 

cited and citing patents when citations are added by the inventors or the patent examiners. He finds 

modest evidence of location effects.  

Finally, not only are the measurement and geographical breadth of knowledge spillovers 

under debate, but also the traditional notion of spillovers being “in the air” is now discussed against 

other mechanisms whereby individuals and their personal networks shape geography of knowledge 

flows. For example, Zucker et al. (1998) show that what appears to be localized knowledge 

spillovers in the US biotechnology industry is in fact a market mechanism through which star 

scientists are either employees or collaborators of biotechnology companies in the regions. Almeida 

and Kogut (1999) use US patents in semiconductors and find that an important mechanism by 

which knowledge is transferred is the inter-firm mobility of human capital. By using the inventor as 

the unit of analysis, other authors show that knowledge flows and regional co-location are driven by 

the underlying social networks among researchers (e.g., Agrawal et al., 2007; Breschi and Lissoni, 

2004; Singh, 2005; Fleming et al., 2007).  

Our study makes three major contributions to this literature. First, it employs an indicator of 

knowledge spillovers provided directly by the inventors. This indicator mimics the idea of 

“marshallian” knowledge spillovers, therefore avoiding the problem of using indirect measures like 

patent citations. Second, it investigates the geographical breadth of knowledge spillovers at the 

micro level of the users of these spillovers, i.e., the individual inventors, rather than the regions or 

groups of patents. This leads to our third contribution; that is, our data provide the opportunity to 

estimate the relative effect of both location and inventor individual factors on the geographical 

extent of knowledge spillovers. This is important, as most of the existing contributions on this 

matter either lacks data at the individual level, or acknowledges the need to control for the 
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characteristics of the regions (e.g., Audretsch and Stephan, 1996). Moreover, this enables us to test 

two competing theories about the geographical breadth of knowledge spillovers. As a matter of fact, 

one strand of the literature emphasizes the local dimension of knowledge spillovers; that is, 

inventors in technologically more “vibrant regions” (Almeida and Kogut, 1999) interact locally to a 

greater extent than elsewhere. However, especially in recent years, a new strand of the literature has 

emphasized that knowledge spillovers depend on the characteristics of the individual inventors and 

their personal networks. In this case, spillovers follow the networks of these individuals, which are 

not necessarily local (e.g., links with former colleagues in PhD programs). Our results show that the 

key factor shaping the geographical breadth of knowledge spillovers is the inventor, and particularly 

his level of education: highly educated inventors are more often involved in geographically wide 

research networks. This holds after controlling for the typical factors explored in the literature, i.e., 

inventor mobility and the scientific nature of the research performed. Inter-regional variation in the 

extent to which knowledge spillovers develop locally exists as well, but only in the very top regions 

in Europe that host the bulk of research in the specific technology of the invention.  

This paper is organized as follows. Section 2 develops the hypotheses about the role of 

regions and individuals in affecting the breadth of knowledge spillovers. Section 3 discusses our 

measure of knowledge spillovers and provides descriptive statistics about their geographical 

extension. Section 4 illustrates the variables used in the regression analysis and the identification 

method. Section 5 discusses the results and Section 6 concludes.  

 

2. Our hypotheses: knowledge spillovers and heterogeneity across regions and inventors 

The traditional argument about knowledge spillovers being geographically localized stems 

from the idea that physical proximity makes it easier to access information produced by others (for 

a survey, see Doring and Schnellenbach, 2006; Feldman, 1999). The evidence suggests that 

inventive activities benefit more than manufacturing from co-location, particularly in skilled and 
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R&D-intensive industries and in sectors that rely to a greater extent on tacit knowledge and 

learning-by-doing (Pavitt, 1987; Audretsch and Feldman, 1996; Maskell, 2001).  

Some authors also argue that there is variation across regions in the extent to which 

spillovers develop locally; that is, knowledge flows are stimulated in some regions more than in 

others according to their local technological endowment. Almeida and Kogut (1999) show that the 

localization of knowledge varies across US regions, with Silicon Valley, New York, and Southern 

California at the top of the list for semiconductors. Thompson (2006) indicates that knowledge 

spillovers are stronger in California, Texas, and Massachusetts than elsewhere (see also Jaffe et al., 

1993).  

Our first hypothesis develops from this literature, and it focuses on the impact of the 

technological milieu external to the inventor’s organization on the probability that he or she benefits 

from local knowledge spillovers during the inventive process. The expectation is that inventors 

located in technologically well-endowed regions have a higher probability of benefitting from local 

knowledge spillovers and a lower likelihood to resort to spillovers produced in other regions 

compared to inventors located in technologically poor regions.  

Let us label N the pool of people located in all regions with whom an inventor can 

potentially interact with and receive knowledge spillovers from. N is unevenly distributed across the 

regions. Let us call Pii the probability that an inventor located in region i benefits from knowledge 

spillovers produced by people located in his/her region; and Pij the probability to benefit from 

knowledge spillovers produced by people in other regions, with j ≠ i. Two factors affect Pii: the 

pool of people ni in the home region, and the probability pii to develop interactions with them. 

Similarly, the probability Pij depends on the pool of people in these regions (nj) and the probability 

pij to interact with them. Given N, our hypothesis is that inventors located in technologically better-

endowed regions have a higher Pii and a lower Pij compared to inventors located in technologically 

poorer regions. This is because inventors in “better” regions can rely on higher ni and lower nj than 
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inventors in “worse” regions. Moreover, there is no reason suggesting that pij can be greater than pii. 

If anything, the literature suggests the opposite, viz., geographical proximity facilitates knowledge 

spillovers. Thus, pii cannot be smaller than pij. Our first hypothesis then is: 

Hypothesis 1. Inventors located in technologically more active regions have a higher 

probability to benefit from local knowledge spillovers. Moreover, they have a lower probability to 

rely on spillovers generated in other regions compared to inventors in technologically poorer 

regions.  

Note that Hypothesis 1 regards Pii and Pij only. It does not look at the separate effects of nii 

(nij) and pii (pij) on Pii (Pij). That is, this hypothesis does not say anything about whether 

geographical proximity has an effect on Pii on top of nii.  

An alternative view is that, rather than the location in a technological cluster, the individual 

characteristics of the researcher and his/her “social” network shape the geographical breadth of 

knowledge spillovers (see, among others, Audretsch and Stephan, 1996; Breschi and Lissoni, 2001; 

Sorenson and Singh, 2007). By studying patenting co-authorship in the US, Fleming et al. (2007) 

argue that previous working relationships among inventors produce robust ties that are then used for 

future interactions, also after the inventor moves geographically (see also Agrawal et al., 2006). 

They also find that close ties between university professors and their students are maintained by 

attending conferences and through personal visits. Earlier work by Allen (1977) indicates that 

inventors use their social “networks” composed of friends and colleagues who are knowledgeable 

about specific research issues, as sources of new knowledge. By means of patent citations, Singh 

(2005) finds that once inventors’ interpersonal ties are controlled for, geographical proximity and 

firm co-affiliation produce a small additional effect on the probability of knowledge flows. 

Oostergaard (2007) uses survey data from a sample of engineers in the wireless communications 

cluster in North Denmark and shows that informal knowledge flows are more likely with former 

classmates and friends, and with people with similar educational background or earlier joint work 
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experience. A related literature shows that social institutions provide individuals with a specific set 

of norms and values that model their later behavior. This also applies to people attending the same 

Universities, making it easier to diffuse ideas and practices among them (for a review see Bercovitz 

and Feldman, 2008).  

Our survey offers unique data on inventors’ personal characteristics. This makes it possible 

to estimate the relative contribution of individual and location factors on the geographical breadth 

of knowledge spillovers. Thus, after controlling for the age and mobility of the inventors, we 

estimate the marginal effect that the level of education of the inventors produces on the 

geographical reach of knowledge spillovers. Our expectation is that the higher the level of 

education, the higher the likelihood that the inventors benefit from spillovers with people located 

distant from them. There are three reasons for this. 

First, inventors with a high level of education spent quite a few years in other institutions 

and in specific research communities with university and PhD classmates before working at their 

current positions. This creates opportunities to build research connections with individuals sharing 

common scientific interests and research languages. These relationships are likely to be “enduring” 

as they are established early in the inventors’ lives, during the formative stages, with members of a 

scientific community that share rules of trust and reputation. We expect inventors with a higher 

level of education to have a higher probability to be part of these networks. And since the 

geographical coverage of these networks is typically different and larger than the current inventors’ 

location, we expect the exchange of knowledge to take place across distances. In other words, the 

fact that the inventors rely on these networks limits the importance of co-location for knowledge 

interactions. Second, inventors with a high level of education are more likely to meet their peers by 

attending conferences, seminars, and meetings that cut across regions and countries. These events 

are a locus where interactions take place, therefore enlarging the inventor networks. Third, the level 

of education of the inventors contributes to their absorptive capacity. In turn, absorptive capacity is 
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important to appraise the potential value of knowledge and to absorb it, in particular when this 

comes from outside the inventors’ organization and when the source is distant from the inventor.  

These considerations lead to our second hypothesis: 

Hypothesis 2. All else being equal, the higher the education of the inventor, the higher the 

probability that he or she benefits from knowledge spillovers with distant people. The lower the 

level of education, the higher the probability to rely on local interactions. 

 

3. Our measure of knowledge spillovers 

An important contribution of this paper is that it documents the use of knowledge spillovers 

in producing invention without resorting to indirect indicators like patent citations. Since 

knowledge flows are invisible and they leave “[…] no paper trial” (Krugman 1991), we collected 

direct information from the inventors. The PatVal-EU survey interviewed the inventors of 9,550 

patents granted by the European Patent Office (EPO) between 1993 and 1998 in Denmark, France, 

Germany, Hungary, Italy, the Netherlands, Spain and the United Kingdom. The survey was directed 

to the first inventor listed in the patent and provides information on the individual inventors, the 

invention process, and the resulting patents. Giuri et al. (2007) report the details of the survey and 

the key descriptive statistics. This paper uses information on a sub-sample of 6,750 patents that we 

obtained by dropping patents with missing data.1  

To the specific purpose of studying the geographical breadth of knowledge spillovers we 

asked the inventors the following question:  

                                                 
1 We also excluded the French patents from the analysis. This is because in all countries, but France, the inventors 
responded to the questions posed by the questionnaire. In France, depending on the issue, the questionnaire was filled 
out by either the inventors or the managers of the applicant organizations. Since this creates a potential source of bias in 
the data, we excluded French patents from the dataset. 
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“Were interactions such as discussions, meetings and sources of ideas with the 

following types of people (apart from co-inventors) important during the research that 

led to the patented invention? (0 = not used, 1 = not important, 5 = very important): 

• People belonging to other unaffiliated organizations, and that it typically takes less 

than an hour of travel time to reach their office or location (hereafter, Close people); 

• People belonging to other unaffiliated organizations, and that typically takes more 

than an hour of travel time to reach their office or location (hereafter, Distant 

people)”.2 

 

We deliberately defined geographical proximity in terms of the time that the inventor needs to 

reach the location of the interacting party. This limits problems associated with other measures of 

geographical distance. For example, two locations might be similar in terms of mile distance for an 

inventor, but extremely different in terms of effort/time that he needs to reach them. Mile-based 

measures would consider them as equivalent for the researcher. Our measure does not. Moreover, 

compared to measures of geographical distance based on administrative boundaries, our definition 

solves cases in which locations are considered distant because they belong to different 

administrative regions, though they are geographically close; or cases in which, though distant in 

space, locations are considered close because they belong to the same administrative region.  

Further, a recent work by Gittelman (2007) looks at the importance of geography for research 

collaborations in the US biotechnology industry. For more than 5,000 collaborative research papers 

published by small US biotechnology firms she calculated the mile distance between co-authoring 

organizations in each paper, and found that distance is largely bimodal: there is one mode in which 

                                                 
2 We explicitly asked the inventors to exclude interactions with co-inventors. We did not ask to exclude informal 
interactions set up within other forms of collaborative agreements. However, our data indicate that more than 40% of 
“non-collaborative” patents involve informal interactions. Yet, the importance of the latter is higher for “collaborative” 
than for “non-collaborative” patents. This is consistent with the idea that when knowledge spillovers are important 
inputs for the invention process, firms also engage in cooperative R&D agreements (Cassiman and Veugelers, 2002). 
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team members are co-located within 50 miles (about 18% of the cases) and a second larger group of 

papers (60% of the sample) with an average distance between team members higher than 800 miles. 

Our Close and Distant measures are consistent with this bimodal distribution. 

We transformed the 0-5 scores into two dichotomous variables: Close is equal to 0 if the 

inventors did not establish any Close interaction for developing the patent (score = 0); it is equal to 

1 if they used them, regardless of their importance (score = 1 to 5). The same applies to Distant 

interactions (0/1). This transformation is based on the consideration that the 1-5 score might be 

highly subjective and therefore difficult to compare across inventors. This problem is unlikely to 

apply to the distinction between 0 (i.e., no interactions at all) and 1 (i.e., interactions are used, 

regardless of their importance). 

Our empirical analysis develops in three steps. It first shows the unconditional probabilities of 

the use of Close and Distant interactions during the inventive process. It then moves to the Bivariate 

Probit regressions to study the factors that affect the use of Close and Distant interactions. This is 

the premise for our third step in which we compute the marginal effects of the covariates for the 

predicted probabilities of different combinations of outcomes.  

The unconditional probabilities of Close and Distant interactions are in Table 1. The table 

reports the share of patents invented with either Close or Distant interactions, with both Close and 

Distant interactions, and with none of them. 

 

[TABLE 1] 

 

Over half of the patents (54.6%) are developed with no interactions with people external to 

the inventor’s organization. This suggests that external interactions, those with geographically close 

or distant people, are not a major input in the inventive process or, at least, they are not as diffused 
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as one might think according to the numerous contributions on the importance of knowledge 

spillovers.3 Further, the inventors of 25.7% of the patents establish external interactions regardless 

of the distance with the interacting parties (both Close and Distant). Geographical proximity matters 

only in 4.8% of the cases: this is the share of patents developed by using interaction with Close 

individuals only. This share is lower that the share of patents (14.9%) developed with interactions 

with Distant people.  

Though unexpected, given the many contributions on the role of geographical proximity for 

knowledge spillovers, this evidence is consistent with the following two considerations. The first 

one is that the share of potentially matching people outside a one hour reach of the inventor (nj) is 

much larger than the share of people within a one hour reach (ni). This makes the unconditional 

probability to interact with Distant people higher than the probability to link with Close individuals. 

Second, other authors find similar results. Audretsch and Stephan (1996) find that most of the links 

between scientists and private biotechnology companies in the USA are not local. Gittelman (2007) 

shows that, apart from a core of regional ties, a much larger number of research collaborations by 

US biotechnology firms are across distance. For a sample of SMEs in New Zealand, Davenport 

(2005) finds that non-local interactions matter for innovation more than local links (see also Hendry 

et al., 2000; Staber, 1996). Our share of local interactions is also consistent with the paper by Jaffe 

et al. (1993), who find that the share of local citations (excluding self-citations) within a 

Metropolitan Statistical Area is between 4.3% and 8.8%, depending on the type of applicant 

organization.  

 

4. Empirical analysis: method and measures  

                                                 
3 We also have information on the importance of interactions with people Internal to the inventor’s organization. Only 
19.5% of the patents are invented with no internal interactions (excluding co-inventors), suggesting that knowledge 
spillovers in the form of discussions, meetings, etc., are mostly internalized within the organization of the inventor.  
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We estimate two equations to explain the geographical breadth of knowledge spillovers. Our 

dependent variables are the dichotomous Close and Distant variables. Close (Distant) takes the 

value 1 if the inventors use Close (Distant) interactions during the inventive process; it takes the 

value 0 if no Close (Distant) interactions are established.  

By means of a Bivariate Probit regression we estimate the two equations simultaneously. 

This does not produce gains in efficiency compared to the univariate estimations (i.e., same 

coefficients and same standard errors).4  It helps, however, to estimate the net effect of the 

covariates on the geographical breadth of the spillovers (Close vs. Distant), regardless of the impact 

they have on the institutional setting of the spillovers (Internal vs. External). To do this we estimate 

the marginal effects of the regressors on the predicted probabilities of the four combinations of 

outcomes (i.e., Close=1&Distant=1, Close=0&Distant=0, Close=1&Distant=0, 

Close=0&Distant=1) computed after the Bivariate Probit model. 

To test our hypotheses, we include variables for the technological endowment of the regions 

and for the level of education of the inventors, as well as a large number of controls for the regions, 

the inventors, the patented inventions, and the applicant organizations. Table 2 provides the 

descriptive statistics of the variables. Table 3 shows the correlation matrix. 

 

[TABLE 2] 

 

The regions. We complemented the PatVal-EU database with information on the 

technological endowment of the regions where the inventors were located at the time of the 

invention, and incorporated this information in different specifications of the econometric model.  

                                                 
4 We thank Brownyn Hall for helpful suggestions on this point. As a robustness check we also employed the 0-5 
importance score of Close and Distant interactions as dependent variables, and estimated them by means of two 
Ordered Probit regressions. These produced no relevant changes in the signs and statistical significance of the estimated 
coefficients compared to those of the Bivariate Probit model. The results are available from the authors.  
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General technological endowment. The “general” technological endowment of the regions is 

measured by REGPATS: the total number of patents applied in all sectors (average in 1994-1996) 

and invented in the NUTS3 region of the inventor (source: Regio Eurostat). We use this variable as 

a proxy for the size of the local pool of potential ties.5 Then, in order to distinguish between private 

and public sources of knowledge (e.g., Jaffe, 1989; Zucker et al.,1998; Furman et al., 2007; Alcacer 

and Chung, 2007) we downloaded from the European R&D database a stock of about 20,000 R&D 

laboratories located in Europe in 1995 and included them in the PatVal-EU database: the 1995 stock 

of private research laboratories (LABS_PRIVATE), public research laboratories (LABS_PUBLIC) 

and higher education laboratories (LABS_UNI) located in the NUTS3 region of the inventors. 

“Specific” technological endowment. We control for the strength of the region in the 

specific technology of the patent (see, for example, Jaffe, 1989; Furman et al., 2007). We classified 

the patents in our sample according to the ISI-INPI-OST classification (see Appendix 1 for the list 

of the technological classes). The breadth of the technological classes is such that they include inter-

connected micro fields, without being too narrow to capture only research in the very micro-

specialty. From the Regio-Eurostat database we collected the 1994-1996 number of regional patents 

applied at the EPO in each ISI-INPI-OST class. We used them to compute the ratio Techit/Techt, 

that is, the ratio between the patents invented in the region i in the specific technology t and the total 

number of patents invented in that technology in all regions. Based on this ratio we constructed 

three dummy variables that indicate the strength of the region in the discipline of the invention: 

TOP5_TECH that is equal to 1 if the region is top 5% in the specific technology, and 0 otherwise 

(ratio between 1.4% and 15%); TOP1_TECH that is 1 if the region is top 1% (ratio between 4% and 

15%); TRESH5_TECH for regions with more than 5% of the patents in the technology. By 

employing these variables we limit the problem of variation in patenting activity across 

                                                 
5 By using the number of patents rather than the individuals that developed them, we account for differences in 
inventors’ productivity. In most of the cases, the size of the NUTS3 regions is consistent with our “within one hour 
travel distance.” The list of regions is available from the authors and from the website 
http://ec.europa.eu/comm/eurostat/ramon/nuts/codelist_en.cfm?list=nuts.  
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technologies (e.g., 100 patents in a discipline might cover 80% of all patents in that discipline; it 

might cover only 10% of total patenting in a different field). Also, we can capture possible 

threshold effects in the rise of knowledge spillovers.6  

Regional controls. In order to estimate the net effect of the technological characteristics of 

the regions after controlling for their scale, density, and development we include exogenous 

regional controls for size (AREA, i.e., area of the region in square kilometers), population (POP, 

thousands of people living in the region, average 1994-1996), and general economic conditions 

(GDPPC, i.e., regional per capita Gross Domestic Product in 000 of purchasing power parity 

corrected for inflation, average 1994-1996) at the NUTS3 level.  

The inventor. The PatVal-EU survey provides information on the individual characteristics 

of the inventor who established the interactions. Our key explanatory variable for Hypothesis 2 is 

the level of education of the inventors. 

Education. We know the degree of education of the inventors at the time of the invention. 

We employ three dummy variables, i.e., Secondary and High School (HIGH_DEGREE), University 

BSc or Master (UNI_DEGREE), PhD (PhD_DEGREE), to test our second hypothesis that the 

higher the level of education of the inventor, the higher (lower) the probability that he or she 

benefits from knowledge spillovers with geographically distant (close) people.  

Age. The age of the inventors (AGE) is calculated as the years between the date of birth and 

the date of the patent application. Our suspicion is that older and more experienced inventors are 

more likely to be a source rather than a recipient of knowledge spillovers: they are more likely to 

produce knowledge that is beneficial to others than to benefit from spillovers generated by others. 

We therefore expect older inventors to rely less frequently on knowledge interactions external to 

their organization compared to their younger peers. As far as the geographical breadth of the 

                                                 
6 These dummy variables are calculated at the NUTS2 regional level because NUTS3 level data by micro technological 
classes are not available from Regio-Eurostat. However, as a robustness check, we used the IPC1-digit technological 
classification to compute the three dummies at the NUTS3 regional level, with no significant changes in the estimated 
results.  
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interactions is concerned, older inventors might have wide personal networks developed over their 

life cycle, leading to more Distant interactions.  

Gender. The gender of the inventor (MALE, which is 1 if male; 0 if female) controls for the 

effort and time that, on average, male inventors can spend in doing research compared to women.  

Mobility. Finally, a specification of our econometric model includes a variable on inventors’ 

mobility across employer organizations before the patent was invented. MOBILITY, that is equal to 

1 if the inventor changed employer at least once in the ten years before the patent (0 otherwise) is 

provided by the survey. Mobility of people across organizations and places is described in the 

literature as an important mechanism through which knowledge spillovers take place. The source of 

these spillovers is twofold. First, the inventor himself, by moving, transfers knowledge (see Song et 

al 2004). Second, he/she can develop personal networks in the different locations and organizations 

that he/she visits (see, for example, Almeida and Kogut, 1999; Fleming, King and Juda, 2007, 

Agrawal et al., 2006). Our goal is to estimate the additional effect of the level of education of the 

inventors on the breadth of knowledge spillovers after controlling for other inventors’ 

characteristics, including mobility.  

The patented invention. We control for the following characteristics of the inventions. 

Science as a source of knowledge. The variable SCIENCE indicates the importance of the 

scientific literature as a source of knowledge for the research leading to the patent. It is provided by 

the PatVal-EU survey. It ranges between 0 (not used) and 5 (very important). Because of the more 

open nature of scientific research compared to applied work (Merton, 1942; Dasgupta and David, 

1994) we expect the probability to interact with people external to the inventor’s organization and 

geographically Distant to be higher for science-based patents than for patents that rely less on 

scientific knowledge. This would be consistent with recent work by Sorenson and Singh (2007) and 

Gittelman (2007) who show that, because of the more open and spatially dispersed communities of 
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individuals involved in science, the benefits of geographical proximity are less important in science 

than in technology.  

Co-inventorship. We deliberately asked the inventors to exclude interactions with co-

inventors from the answer to the question on Close and Distant interactions. Yet, we use the number 

of inventors listed in the patent (N_INVENTORS) to control for the role of other types of 

interactions in the invention process. This variable is also an indicator of the research effort and the 

scale of the project leading to the patent (see, for example, Gittelman and Kogut, 2003).  

Reasons to patent. Inventors might be more inward-looking when inventions are patented in 

order to be exploited commercially or to prevent others from imitation. Differently, they might 

interact more with external parties when patents are to be licensed out. By using our survey 

information we include three variables on whether the patent was applied for commercial 

exploitation (COMM_EXPLOIT), to be licensed out (LICENSING), or to prevent others from 

imitation (IMITATION). All three variables range between 0 (not important) to 5 (very important). 

The applicant organization. The attributes of the applicant organization may affect the use, 

costs and benefits of Close and Distant interactions, as well as the decision to develop external 

links.  

Type of applicant. About 92% of the patents in our database are granted to business 

companies. In the remaining 8% of the cases they are granted to individual inventors and public 

research organizations including universities. We use three dummy variables for the type of 

applicant organization: PRI_APPLIC takes the value 1 if the applicant organization is a university 

or a public research institution, INDIVIDUAL_APPLIC takes the value 1 if the applicant is an 

individual inventor, and the baseline FIRM_APPLIC.  

Size and R&D intensity. For patents granted to private companies we complemented the 

PatVal-EU database with information on the size and R&D intensity of the firms (average 1990-

1996). We collected these data from Compustat (1998) and Amadeus (2005). Both variables are at 
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the level of the parent company. The number of employees (EMPLOYEES) is a proxy for the size 

of the firms, while the ratio between R&D expenditure and sales (R&DINT) measures their R&D 

intensity. For missing observations we include two dummy variables: D_MISS_EMPLOYEES and 

D_MISS_R&D.7 By controlling for both firm size and R&D intensity, we separate the effect of the 

scale of the organization from its capacity and effort devoted to innovation. The development of 

inventions requires technical equipment, research laboratories, instruments, research personnel, and 

complementary expertise. Firm size and R&D intensity might signal the availability of these 

resources internally, and therefore the extent to which inventors might need to resort to interactions 

external to firm. The sign of the correlations depends on whether, in the case of patents, internal and 

external resources are complements or substitutes.8 These variables also control for the different 

costs that firms can bear to set up the interactions. More specifically, if Distant interactions requires 

higher organizational capabilities and financial resources than Close interactions, then inventors in 

smaller firms might suffer more from this constrain and interact Close more frequently than Distant.  

Other controls.  All regressions include dummies for the application year (YEAR, 1993 to 

1998), country of the inventors (DE, DK, ES, IT, HU, NL, UK) and the 30 ISI-INPI-OST 

technological classes of the patent (TECH_FIELD).  

 

5. Results 

5.1 Univariate probabilities 

The dependent variables of the two equations in the Bivariate Probit model are the dichotomous 

variables Close and Distant. The two equations are correlated with rho 0.81 (chi-sq1 = 1077.37, p = 

                                                 
7 Data on EMPLOYEES are available for 77.78% of the patents; data on R&DINT for 41.92% of the patents.  
8 See, for example, Acs, Audretsch and Feldman (1994), Feldman (1999), Cassiman and Veugelers (2002). 
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0.00).9 While interpreting the results shown in Tables 4 and 5, however, it is worth bearing in mind 

that the purpose of the Bivariate Probit regressions is to set the stage for the next step of the 

empirical analysis in Section 5.2.  

 

[TABLES 4 and 5] 

 

The six specifications in Tables 4 and 5 differ for the inclusion of the regional variables and 

for MOBILITY that is in Model 6 only. The Tables report the marginal effects that a one unit 

change in the independent variables produce on the probability of having Close (Distant) 

interactions. For continuous variables, the marginal effect is calculated at the mean of the 

independent variables. For dummy variables, it measures the difference in the dependent variable 

between having and not having the specific characteristic. For the covariates with a large range of 

variation (EMPLOYEES, GDPPC, POP, AREA, REGPATS, LABS) we used logs as indicated in 

the Tables. All specifications include dummies for missing values in EMPLOYEES and R&DINT, 

as well as dummies for the country of the inventor, year of application, and technological field of 

the patent (not shown in the Tables).  

Hypothesis 1 is about the role of inventors’ location on the probability to set up Close and 

Distant interactions. Model 1 estimates the effect of REGPATS, the general technological 

environment. The results show that, after controlling for other regional characteristics, the 

correlation has the expected signs on Close and Distant, but it is not statistically significant. Model 

2 differentiates between different sources of spillovers in the region: public, private, and University 

                                                 
9 All regressions include Cluster robust estimators on firms and sampling weights for the hypothetical unbiased sample 
of patents that we initially selected. This differs from the final dataset due to the non-responses and to the over-
sampling of “important” patents (for details, see Giuri et al., 2007). 
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research laboratories. Again, none of these variables produces a statistically significant effect on 

Close and Distant.10  

It might be, however, that knowledge spillovers are more likely to come from people who 

share close research interests. We therefore introduce in Models 3, 4 and 5 the variables 

TOP5_TECH, TOP1_TECH and THRESH5_TECH that measure the strength of the regions in the 

specific technology of the patent. These variables are positively correlated with Close and 

negatively correlated with Distant interactions. The effect, however, is statistically significant (10% 

level) only for TOP1_TECH and THRESH5_TECH. This suggests that location matters for 

knowledge spillovers only in the top regions in Europe in the specific technology of the invention. 

When the inventors are located in these rare regions the probability to interact with local people 

increases, while the probability to link to people in other regions decreases.11  

We now turn to Hypothesis 2. The signs of UNI_DEGREE and PhD_DEGREE are positive 

and statistically significant (1% level) on Distant. They are not correlated with the probability of 

setting up Close interactions. This result holds across all specifications and after controlling for the 

other inventors’ characteristics. In particular, the age of the inventors is negative and statistically 

significant on both Close and Distant interactions and the magnitude of the marginal effects is 

similar in the two equations. This suggests that AGE is negatively correlated with the probability of 

developing external linkages, rather than with their geographical breadth: senior researchers are less 

likely to receive spillovers from people external to their organization. A 10-year increase in age 

corresponds to a lower probability of Close and Distant interactions of the about 3.5% and 2.7% 

                                                 
10 We are aware of the fact that a firm location decision might depend on the characteristics of the region (e.g., Alcacer 
and Chung, 2006) and that the firm itself might contribute to shape the regional technological characteristics. However, 
since our unit of analysis is the individual inventor, these issues are not a major concern in our paper. It is unlikely that 
the strategic behavior of a firm applies also to the individual employees. It is also unlikely that the specific inventor 
determines the technological characteristics of the region. Moreover, we use pre-determined regional variables that, as 
such, are not the results of later knowledge interactions.  

11 We also performed Models 3 to 5 by using the number (or the share) of patents in the technology rather than the 
dummy variables. Number and share were not statistically significant, suggesting that a threshold effect exists. We also 
employed the number of patents in all technologies rather those in the specific technology of the invention to construct 
the three dummy variables. Again, these variables were never statistically significant, both at the NUTS3 and NUTS2 
regional level. 
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respectively.12 In Model 6 we add MOBILITY. The estimated marginal effect is positive and 

statistically significant (5% level) on both Close and Distant, with similar magnitude. This suggests 

that MOBILITY increases the probability to set up interactions external to the organization, but it 

does not affect their geographical extent.13

At the level of the invention, the marginal effect of SCIENCE is positive on both Close and 

Distant and it is statistically significant at 1% level. A one unit change in the importance of 

SCIENCE from its mean produces an increase of 3.1% in the predicted probability of Close 

interactions and of 4% of Distant interactions. This suggests that science-based research relies more 

on long-distance spillovers.14 Also, LICENSING has a positive and statistically significant effect on 

both Close and Distant, with similar marginal effects: inventors are more likely to engage in both 

Close and Distant interactions if the invention is intended to be licensed out.  

Finally, at the level of the applicant organization, the higher the R&D intensity of a firm, the 

lower the probability to establish both Close and Distant interactions (statistically significant at 5% 

and 10% level respectively). Again, the magnitude of the marginal effects is similar in the two 

equations, suggesting that R&DINT is negatively correlated with the probability of establishing 

interactions external to the firm.  

Thus, so far, our results indicate that, first, the location of the inventors in a technological 

cluster increases the probability of local interactions only in the restricted club of top regions in 

Europe in the specific technology of the invention. Second, the educational background of the 

                                                 
12 A specification of our model used AGE2 together with AGE to test for possible non linear effects of AGE (e.g., Cole, 
1979). AGE2 was never statistically significant.  
13 We include MOBILITY only in Model 6 because of its potential endogeneity with respect to other inventor’s 
characteristics like the level of education. However, the correlation between MOBILITY and education is 0.03 for 
PhD_DEGREE (statistically significant at 10% level) and -0.02 for UNI_DEGREE (not statistically significant). 
Moreover, the marginal effect of MOBILITY does not change if it is included in place of the educational of the 
inventors. 
14 The correlation between SCIENCE and PhD_DEGREE is 0.29. When we drop SCIENCE from the estimations, the 
marginal effect of PHD becomes positive and statistically significant on both Close and Distant, but the effect on Close 
is much smaller than that on Distant. This suggests that if we do not control for SCIENCE, the PHD variable captures 
part of the effect due to the scientific nature of the patent. 
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inventors and the scientific nature of the research conducted matter as well. Specifically, inventors 

with a PhD degree and those who rely more on science as a source of knowledge have a higher 

probability to benefit from spillovers with distant people. Yet, an issue arises here concerning the 

effect of our covariates on the “geographical” breadth of the interactions net of the effect on the 

“institutional” choice. The next Section will take care of this issue.  

 

5.2 Institutional and geographical breadth of knowledge interactions: bivariate probabilities 

 Both dependent variables of the Bivariate Probit regressions are the result of two choices: the 

choice of the institutional setting of the interactions (Internal vs. External) and the choice of their 

geographical breadth (Close vs. Distant). The marginal effects in Tables 4 and 5 do not indicate the 

effect of the regressors on each dimension separately. In other words, they do not reveal the net 

effect of the covariates on the geographical breadth of the spillovers.15  

One way to address the problem is to estimate the marginal effects of the covariates on the 

predicted probabilities of the four combinations of outcomes computed after the Bivariate Probit 

model; that is, Close=1&Distant=1, Close=0&Distant=0, Close=1&Distant=0, 

Close=0&Distant=1. Table 6 reports the results for the variables in Model 4. Table 7 shows the 

marginal effects for selected regressors introduced in Models 2, 3, 5 and 6. 

 

[TABLES 6 and 7] 

 

The first column in Tables 6 and 7 shows the factors correlated with the probability to 

interact with people external to the inventor’s organization, irrespective of their geographical 

                                                 
15 Thus, the Close equation indicates the factors that influence the probability to set up interactions External to the 
inventor’s organization and geographically Close. Similarly, the Distant equation show the factors that affect the 
probability to develop interactions External to the inventor’s organization and geographically Distant.  
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distance pr(Close=1&Distant=1). The second column reports the effects of the covariates on the 

probability of not having any external interaction pr(Close=0&Distant=0). We can therefore use 

these two columns to isolate the effects of the covariates on the choice of the institutional setting of 

the interactions. Differently, the last two columns in the Tables indicate the net effect of the 

regressors on the geographical breadth of the spillovers. Indeed, given that the inventors benefit 

from interactions with people external to their organization, the only difference between 

pr(Close=1&Distant=0) and pr(Close=0&Distant=1) is the geographical breadth of the spillovers. 

The results show that a group of factors influences the institutional setting in which the 

spillovers take place, irrespective of the geography of the links. The AGE of the inventors has a 

positive and statistically significant effect on pr(Close=0&Distant=0) while it is negative and 

statistically significant on pr(Close=1&Distant=1). Differently, the marginal effects of 

PhD_DEGREE and MOBILITY are positive and statistically significant on 

pr(Close=1&Distant=1); they are negative and statistically significant on pr(Close=0&Distant=0). 

The same correlations hold for SCIENCE and LICENSING. Thus, younger, highly educated, and 

mobile inventors are more likely to take advantage of spillovers generated outside the employer 

organization. This is particularly true for science-based inventions and inventions that are intended 

to be licensed out. As expected, however, the higher the R&D intensity of the firm, the lower the 

likelihood to interact with external people: the marginal effect of R&DINT is positive and 

statistically significant on pr(Close=0&Distant=0) and it is negative and statistically significant on 

pr(Close=1&Distant=1).  

  Let us now answer the question of our paper: What shapes the geographical breadth of 

knowledge spillovers? The level of education of the inventors plays a key role: not only do highly 

educated inventors establish interactions with people external to the organization, but these 

interactions also tend to be with Distant people. In particular, inventors with PhD level training 

enter into geographically wide research networks more than their less educated peers. This supports 

 22



Hypothesis 2 and it is robust to different specifications. A 0 to 1 change in PHD_DEGREE 

corresponds to a 4.9% increase of pr(Close=0&Distant=1) and a 1.4% decrease of 

pr(Close=1&Distant=0). It is worth keeping in mind that this effect comes after controlling for 

inventors’ mobility, age and gender.  

  It also holds after controlling for the more open nature of science-based research 

(SCIENCE) that, as expected, is positively correlated with the probability of setting up 

geographically Distant interactions (the marginal effect of SCIENCE is positive and statistically 

significant on pr(Close=0&Distant=1)). Also, inventors in large firms and in public research 

institutions are more likely to interact with Distant people, as shown by the marginal effects of 

EMPLOYEES and PRI_APPLIC.  

Finally, Hypothesis 1 is also confirmed, but only for the very rare regions in Europe where 

the bulk of the research in the specific technology is performed. TOP1_TECH and 

THRESH5_TECH are positive and statistically significant on pr(Close=1&Distant=0); negative 

and statistically significant on pr(Close=0&Distant=1).  

 

5.3 Robustness checks 

We performed a number of robustness checks in addition to those described in various parts 

of the paper. We first controlled for the possible multicollinearity between the regional variables. 

We alternately omitted GDPPC, POP and AREA, and all of them together. We also performed 

Models 3 to 6 without controlling for REGPATS and LABS, and used the density of 

REGPATS/POP and REGPATS/GDPPC. In all these specifications the sign and statistical 

significance of the remaining variables did not change significantly compared to those in Tables 4 

and 5.  

At the inventor level, we controlled for the possible unobserved heterogeneity across 

individuals. For each inventor we collected the number of patents applied at the EPO before the 
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patent in our sample.16 This marginal effect of this variable was not statistically significant, while 

the coefficient and the statistical significance of the other variables did not change. 

Finally, we checked for the correlation between the firm level variables. We perform the 

regressions by omitting R&DINT. The statistical significance of EMPLOYEES did not change with 

respect to Tables 4 to 7. Also, the marginal effect of PHD_DEGREE does not change significantly 

when R&DINT is dropped from the regressions, which reduces the potential problem of correlation 

between the two variables. All these results are available from the authors. 

 

6. Conclusions 

This paper provides new evidence about the geographical breadth of knowledge spillovers. 

It employs information provided directly by the inventors of EPO patents that we interviewed 

through a large scale survey (the PatVal-EU survey).  

We found that, during the inventive process, knowledge spillovers from geographically 

distant people are more frequent than those from nearby individuals. We then investigated the 

factors that explain the geographical breadth of these spillovers. Our results show that the 

educational background of the inventors plays a key role. Specifically, a higher level of education, 

particularly a PhD, increases the likelihood of knowledge spillovers from geographically distant 

individuals. It also decreases the probability of interaction with people located close to the 

inventors. This result holds after controlling for other explanations provided by the existing 

literature on this matter, such as the age, gender, and mobility of the inventors. Our interpretation is 

that inventors with a higher level of education have better absorptive capacity and geographically 

wide personal networks. By helping inventors scout and obtain useful knowledge, irrespective of 

                                                 
16 Though individual productivity might be a good variable to control for unobserved heterogeneity, it is also correlated 
with other inventors’ characteristics such as age, education, gender, mobility, and, as such endogenous with respect to 
them (see, for example, Levin and Stephan, 1991, Turner and Mairesse, in press, Mariani and Romanelli, 2007). This is 
why we do not show the results in the Tables. 
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where it is generated, education and the resulting openness of the inventors reduce the importance 

of geographical proximity to exchange knowledge.  

We also find inter-regional differences in the extent to which inventors benefit from close 

vs. distant knowledge spillovers. These differences, however, apply only to the rare regions in 

Europe (top 1%) that host the bulk of the research in the specific technology of the patent. Inventors 

located in these regions have a higher probability to benefit from local spillovers and a lower 

probability to resort to distant ties. Finally, our results confirm previous findings in the literature 

about the open nature of scientific research: science-based patents are more likely to benefit from 

spillovers with people external to the inventor’s organization and geographically distant. 

Implications for the design of regional policies that, among other things, aim at fostering 

local knowledge spillovers, arise. Our paper shows that, at least in Europe, a strong threshold effect 

exists, as knowledge spillovers develop locally in the top 1% of regions in the specific technological 

field of the invention. This suggests that, in order to be effective, regional policies would need large 

investments in the creation of a critical mass of firms, institutions, and people working out related 

activities. This adds to the fact that, in general, there is not consensus in the literature on the specific 

role of geographical proximity in fostering knowledge spillovers beyond the effect of the 

concentration of the pool of potential interacting people.  

Our paper, however, suggests that policy interventions directed to the individuals to 

stimulate their “openness” – by means of education, travelling, exchange of students, etc. – can be 

effective in fostering the transmission of knowledge spillovers. They can be implemented in place 

of, or in addition to, regional policies, and allow people to benefit from spillovers also when 

knowledge is produced by geographically distant people. This reduces the importance of 

geographical proximity. In this sense, the reliance on local spillovers seems to be an option that 

inventors play when they do not have the capacity to take part in geographically wider networks.  
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Appendix 1. List of ISI-INPI-OST technological classes used in the paper and descriptive 
statistics. 

 Mean Std. Dev. 

Electrical devices, engineering, energy  0.074 0.262 
Audio-visual technology  0.020 0.139 
Telecommunications 0.032 0.176 
Information technology 0.022 0.146 
Semiconductors 0.010 0.101 
Optics 0.019 0.138 
Analysis, measurement, control technology 0.060 0.237 
Medical technology 0.024 0.153 
Organic fine chemistry 0.066 0.249 
Macromolecular chemistry, polymers  0.056 0.230 
Pharmaceuticals, cosmetics 0.017 0.131 
Biotechnology 0.009 0.093 
Materials, metallurgy 0.032 0.176 
Agriculture, food chemistry  0.015 0.121 
Chemical&petrol, basic materials chem. 0.037 0.188 
Chemical engineering 0.031 0.174 
Surface technology, coating  0.015 0.121 
Materials processing, textiles, paper  0.054 0.225 
Thermal processes and apparatus 0.022 0.148 
Environmental technology 0.018 0.135 
Machine tools  0.035 0.183 
Engines, pumps, turbines 0.032 0.176 
Mechanical Elements 0.043 0.203 
Handling, printing  0.076 0.264 
Agricultural&food proc-machin-apparatus 0.021 0.144 
Transport 0.066 0.248 
Nuclear engineering 0.003 0.057 
Space technology weapons  0.004 0.062 
Consumer goods and equipment 0.047 0.212 
Civil engineering, building, mining 0.039 0.195 
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Tables 
Table 1. Unconditional probabilities: share of patents invented with Close and/or Distant 
interactions (0 = external interactions not used; 1: external interactions used, regardless of their 
importance). 

 Distant = 0 Distant = 1 Total 

Close = 0 54.6% 14.9% 69.5% 

Close = 1 4.8% 25.7% 30.5% 

Total 59.4% 40.6% 100% 

Source: PatVal-EU dataset.  
N = 6750 
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 Table 2. Descriptive statistics  

 Mean St. Dev. Min Max
Dependent variables 

CLOSE 0.30 0.46 0 1
DISTANT 0.41 0.49 0 1

Applicant characteristics 
EMPLOYEESa 84523.46 114833.20 0 723328.60
D_MISS_EMPLOYEES 0.21 0.40 0 1
R&DINTb 0.05 0.03 0 0.41
D_MISS_R&D 0.57 0.49 0 1
PRI_APPLIC  0.03 0.16 0 1
INDIVIDUAL_APPLIC 0.05 0.21 0 1

Inventor characteristics 
AGE 44.89 9.71 20 81
MALE 0.97 0.16 0 1
HIGH_DEGREE 0.19 0.39 0 1
UNI_DEGREE 0.55 0.50 0 1
PhD_DEGREE 0.26 0.44 0 1
MOBILITY 0.34 0.47 0 1

Patent characteristics 
N_INVENTORS 2.28 1.54 1 22
SCIENCE 2.60 1.87 0 5
COMM_EXPLOIT 3.81 1.55 0 5
LICENSING 2.05 1.53 0 5
IMITATION 3.80 1.57 0 5

Regional characteristics 
GDPPC 23033.85 8972.21 5479.20 76910.80
POP 727.53 877.89 19.90 4634.40
AREA 1574.97 1990.27 35.60 18275.30
REGPATS 121.30 133.13 0.83 543.21
LABS_UNI 12.37 35.98 0 461
LABS_PUBLIC 7.17 14.16 0 118
LABS_PRIVATE 45.80 84.44 0 429
TOP5_TECH 0.44 0.50 0 1
TOP1_TECH 0.14 0.35 0 1
THRESH5_TECH 0.15 0.36 0 1

Other Controls 
DE 0.42 0.49 0 1
DK 0.06 0.24 0 1
ES 0.03 0.16 0 1
HU 0.00 0.06 0 1
IT 0.16 0.36 0 1
NL 0.15 0.36 0 1
UK 0.18 0.38 0 1
AppYear1993 0.03 0.16 0 1
AppYear1994 0.28 0.45 0 1
AppYear1995 0.26 0.44 0 1
AppYear1996 0.23 0.42 0 1
AppYear1997 0.16 0.36 0 1
AppYear1998 0.05 0.22 0 1

Note: N = 6750. a N=5356. bN= 2882. 
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1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 2 23 24     1  2    
1 EMPLOYEES 1.00                        
2 R&DI  NT 0.5  6 1.  00                       
3 PRI_APPLIC  -0.26 -0.11 1.00                      
4 INDIVIDUAL_APPLIC -0.36 -0.15 -0.04 1.00                     
5 AGE -0.08 -0.07 -0.03 0.0

0 1
0

1 0

8 1.00                    
6 MALE 0.00 -0.03 -0.04 0. 2 0. 2 1.00                   
7 UNI_DEGREE -0.01 -0.05 -0.03 -0.03 -0.08 -0. 3 1.00                  
8 PhD_DEGREE 0.17 0.20 0.10 -0.05 -0.02 0.00 -0.65 1.00                 
9 MOBILITY -0.09 -0.06 0.03 -0.03 -0.07 0.02 -0.02 0.03 1.00                

10 N_INVENTORS 0.20 0.16 0.04 -0.13 -0.06 -0.07 -0. 0 0.24 -0. 4 1.00               
11 SCIENCE 0.12 0.13 0.09 -0.05 -0.08 -0.07 -0.06 0.29 0.00 0.21 1.00              
12 COMM_EXPLOIT -0.07 -0.03 -0.09 0.03 0.02 0.00 0.01 -0.01 0.04 0.01 0.04 1.00             
13 LICENSING -0.06 0.00 0.14 0.16 -0.06 0.01 -0.02 0.09 0.01 0.03 0.16 0.10 1.00            
14 IMITATION 0.01 0.01 -0.09 -0.06 -0.07 0.00 0.02 -0.04 -0.01 0.01 0.01 0.14 0.01 1.00           
15 GDPPC 0.23 0.19 -0.07 -0.06 0.00 0.03 -0.07 0.15 -0.12 0.12 0.10 -0.11 -0.01 0.03 1.00          
16 POP -0.04 -0.06 0.03 -0.01 -0.06 -0.08 0.05 -0.10 0.08 -0.02 0.00 0.00 -0.01 -0.09 0.01 1.00         
17 AREA -0.22 -0.21 0.01 0.05 -0.04 -0.05 0.07 -0.23 0.11 -0.13 -0.10 0.04 -0.06 -0.05 -0.51 0.51 1.00        
18 REGPATS 0.18 0.17 -0.06 -0.07 -0.04 -0.02 0.00 0.08 -0.05 0.06 0.06 -0.07 0.01 -0.06 0.40 0.60 0.07 1.00       
19 LABS_UNI 0.01 0.04 0.05 -0.01 -0.05 -0.06 0.03 0.02 0.10 -0.05 0.05 0.04 0.05 -0.09 0.09 0.57 0.11 0.37 1.00      
20 LABS_PUBLIC -0.01 0.00 0.07 -0.01 -0.06 -0.07 0.04 -0.03 0.06 -0.02 0.05 -0.01 0.04 -0.08 0.24 0.68 0.15 0.49 0.75 1.00     
21 LABS_PRIVATE 0.07 0.05 0.01 -0.05 -0.05 -0.06 -0.01 0.04 0.08 0.00 0.06 0.03 0.04 -0.06 0.22 0.72 0.11 0.59 0.69 0.75 1.00    
22 TOP1_TECH 0.17 0.15 -0.05 -0.05 0.03 0.02 -0.08 0.15 -0.10 0.11 0.04 -0.08 0.02 0.05 0.33 -0.08 -0.25 0.25 -0.10 -0.06 -0.03 1.00   
23 TOP5_TECH 0.18 0.15 -0.08 -0.06 0.01 0.02 -0.04 0.11 -0.13 0.07 0.06 -0.09 -0.01 0.03 0.45 -0.02 -0.27 0.43 -0.07 0.03 0.10 0.46 1.00  
24 THRESH5_TECH 0.23 0.22 -0.05 -0.06 0.03 0.02 -0.11 0.23 -0.11 0.17 0.08 -0.07 0.03 0.04 0.36 -0.09 -0.30 0.27 -0.11 -0.07 -0.02 0.78 0.47 1.00 

Table 3. Correlation matrix.  

 

 



Table 4. Bivariate probit estimation. Marginal effects on the univariate probability of Close and 
Distant. Models 1-3   

 Model 1:  
REGPATS  Model 2:  

LABS  Model 3:  
TOP5_TECH 

 Close Distant  Close Distant  Close Distant 
Applicant characteristics 

log(EMPLOYEES) -0.002 0.005 -0.002 0.005  -0.002 0.005
 (0.004) (0.004) (0.004) (0.004)  (0.004) (0.004)
R&DINT -0.826** -0.754* -0.817** -0.765*  -0.828** -0.752*
 (0.371) 0.406 0.370 0.404  0.374 0.405
PRI_APPLIC  -0.014 0.049 -0.015 0.052  -0.014 0.049
 (0.038) 0.040 (0.038) 0.040  0.039 0.040
INDIVIDUAL_APPLIC -0.030 -0.029 -0.030 -0.029  -0.030 -0.029
 (0.019) (0.023) (0.019) (0.023)  (0.019) (0.023)

Inventor characteristics 
AGE -0.004*** -0.003*** -0.004*** -0.003***  -0.004*** -0.003***
 (0.001) (0.001) (0.001) (0.001)  (0.001) (0.001)
MALE 0.020 -0.038 0.020 -0.037  0.019 -0.037
 (0.040) (0.039) (0.040) (0.039)  (0.040) (0.039)
UNI_DEGREE 0.003 0.056*** 0.003 0.056***  0.003 0.056***
 (0.020) (0.022) (0.020) (0.022)  (0.019) (0.022)
PhD_DEGREE 0.028 0.089*** 0.029 0.088***  0.027 0.090***
 (0.024) (0.026) (0.023) (0.026)  (0.023) (0.026)

Patent characteristics 
N_INVENTORS 0.000 0.001 0.000 0.001  0.000 0.001
 (0.005) (0.005) (0.005) (0.005)  (0.005) (0.005)
SCIENCE 0.031*** 0.040*** 0.031*** 0.040***  0.031*** 0.040***
 (0.004) (0.004) (0.004) (0.004)  (0.004) (0.004)
COMM_EXPLOIT 0.001 0.007 0.001 0.007  0.001 0.007
 (0.004) (0.005) (0.004) (0.005)  (0.004) (0.005)
LICENSING 0.023*** 0.026*** 0.023*** 0.026***  0.023*** 0.026**
 (0.004) (0.005) (0.004) (0.005)  (0.004) (0.005)
IMITATION 0.007 0.008 0.007 0.008  0.007 0.008
 (0.004) (0.005) (0.004) (0.005)  (0.004) (0.005)

Region characteristics 
log(GDPPC) -0.032 -0.060* -0.032 -0.067*  -0.033 -0.059*
 (0.028) (0.036) (0.026) (0.034)  (0.028) (0.036)
log(POP) 0.010 -0.002 0.013 -0.015  0.011 -0.002
 (0.014) (0.015) (0.015) (0.016)  (0.014) (0.016)
log(AREA) -0.017** -0.005 -0.017** -0.003  -0.016** -0.005
 (0.008) (0.009) (0.008) (0.009)  (0.008) (0.009)
log(REGPATS) 0.005 -0.004  0.001 -0.002
 (0.010) (0.011)  (0.011) (0.012)
log(LABS_UNI)  -0.007 0.004   
  (0.007) (0.008)   
log(LABS_PUBLIC)  0.007 -0.003   
  (0.011) (0.011)   
log(LABS_PRIVATE)  0.001 0.007   
  (0.009) (0.009)   
TOP5_TECH   0.016 -0.009
   (0.016) (0.018)
    
N 6750 6750  6750 
ll -31770.8 -31764.6  -31764.3 
Chi squared  956.86 982.06  972.33 
Note: Robust standard errors are in parentheses adjusted for clusters by firms’ identifier.  
Coefficient significant at * p<0.10, **p<0.05, ***p<0.01. 
All regressions include dummies for Missing value for EMPLOYEES, Missing values for R&DINT, Inventor 
country, Year of application and Technological field (30 ISI-INPI-OST classes).  
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Table 5. Bivariate probit estimation. Marginal effects on the univariate probability of Close and 
Distant. Models 4-6 

 
 Model 4:  

TOP1_TECH  Model 5: 
THRESH5_TECH  Model 6: 

TOP1_TECH +MOBILITY
 Close Distant  Close Distant  Close Distant 

Applicant characteristics 
log(EMPLOYEES) -0.002 0.005 -0.002 0.005  -0.002 0.005
 (0.004) (0.004) (0.004) (0.004)  (0.004) (0.004)
R&DINT -0.826** -0.761* -0.838** -0.753*  -0.824** -0.757*
 0.370 0.407 0.370 0.408  0.369 0.408
PRI_APPLIC  -0.015 0.050 -0.015 0.049  -0.011 0.053
 (0.038) 0.040 (0.038) 0.040  0.039 0.040
INDIVIDUAL_APPLIC -0.030 -0.029 -0.031* -0.028  -0.025 -0.025
 (0.019) (0.023) (0.019) (0.023)  (0.019) (0.022)

Inventor characteristics 
AGE -0.004*** -0.003*** -0.004*** -0.003***  -0.004*** -0.003***
 (0.001) (0.001) (0.001) (0.001)  (0.001) (0.001)
MALE 0.020 -0.037 0.019 -0.036  0.016 -0.041
 (0.040) (0.039) (0.040) (0.038)  (0.041) (0.039)
UNI_DEGREE 0.004 0.055** 0.004 0.055**  0.003 0.054**
 (0.019) (0.022) (0.019) (0.022)  (0.019) (0.022)
PhD_DEGREE 0.027 0.090*** 0.026 0.091***  0.023 0.086***
 (0.023) (0.026) (0.023) (0.026)  (0.024) (0.026)
MOBILITY   0.035** 0.035**
   (0.016) (0.015)

Patent characteristics 
N_INVENTORS 0.000 0.002 0.000 0.002  0.000 0.002
 (0.005) (0.005) (0.005) (0.005)  (0.005) (0.005)
SCIENCE 0.031*** 0.040*** 0.032*** 0.040***  0.031*** 0.040***
 (0.004) (0.004) (0.004) (0.004)  (0.004) (0.004)
COMM_EXPLOIT 0.001 0.006 0.001 0.006  0.001 0.006
 (0.004) (0.005) (0.004) (0.005)  (0.004) (0.005)
LICENSING 0.023*** 0.026*** 0.023*** 0.026***  0.023*** 0.026***
 (0.004) (0.005) (0.004) (0.005)  (0.004) (0.005)
IMITATION 0.007 0.008 0.007 0.008  0.006 0.008
 (0.004) (0.005) (0.004) (0.005)  (0.004) (0.005)

Region characteristics 
log(GDPPC) -0.035 -0.056 -0.036 -0.056  -0.037 -0.058
 (0.028) (0.035) (0.028) (0.035)  (0.028) (0.035)
log(POP) 0.012 -0.004 0.011 -0.003  0.011 -0.004
 (0.014) (0.015) (0.014) (0.015)  (0.014) (0.015)
log(AREA) -0.016** -0.005 -0.017** -0.005  -0.017** -0.006
 (0.008) (0.009) (0.008) (0.009)  (0.008) (0.009)
log(REGPATS) 0.002 -0.001 0.002 -0.001  0.002 0.000
 (0.011) (0.011) (0.011) (0.011)  (0.011) (0.011)
TOP1_TECH 0.034* -0.036*  0.034* -0.036*
 (0.020) (0.019)  (0.020) (0.019)
THRESH5_TECH  0.038* -0.037*   
  (0.022) (0.022)   
    
N 6750 6750  6750 
ll -31736.6 -31736.3  -31716.1 
Chi squared  980.81 966.49  993.89 
Note: Robust standard errors are in parentheses adjusted for clusters by firms’ identifier.  
Coefficient significant at * p<0.10, **p<0.05, ***p<0.01. 
All regressions include dummies for Missing value for EMPLOYEES, Missing values for R&DINT, Inventor 
country, Year of application and Technological field (30 ISI-INPI-OST classes).  
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Table 6. Bivariate probit estimation. Marginal effects on the bivariate probabilities of Close and 
Distant. Model 4. 

 
 pr (Close=1, Distant=1) pr (Close=0, Distant=0) pr (Close=1, Distant=0) pr (Close=0, Distant=1)

Applicant characteristics 
log(EMPLOYEES) 0.000 -0.003 -0.002* 0.005**
 (0.003) (0.004) (0.001) (0.003)
R&DINT -0.732** 0.854** -0.093 -0.028
 (0.328) (0.410) (0.086) (0.190)
PRI_APPLIC  0.002 -0.033 -0.016* 0.048*
 (0.033) (0.039) (0.009) (0.028)
INDIVIDUAL_APPLIC -0.027* 0.032 -0.003 -0.002
 (0.016) (0.021) (0.006) (0.013)

Inventor characteristics 
AGE -0.003*** 0.003*** -0.001*** 0.000
 (0.001) (0.001) (0.000) (0.000)
MALE 0.005 0.022 0.015 -0.042
 (0.034) (0.038) (0.010) (0.029)
UNI_DEGREE 0.018 -0.042** -0.014** 0.037***
 (0.016) (0.021) (0.006) (0.013)
PhD_DEGREE 0.041** -0.076*** -0.014** 0.049***
 (0.020) (0.025) (0.006) (0.017)

Patent characteristics 
N_INVENTORS 0.000 -0.001 0.000 0.001
 (0.004) (0.005) (0.001) (0.003)
SCIENCE 0.031*** -0.040*** 0.001 0.009***
 (0.004) (0.004) (0.001) (0.003)
COMM_EXPLOIT 0.003 -0.005 -0.001 0.004
 (0.003) (0.004) (0.001) (0.003)
LICENSING 0.021*** -0.027*** 0.001 0.004
 (0.003) (0.004) (0.001) (0.003)
IMITATION 0.006* -0.008 0.000 0.001
 (0.004) (0.005) (0.001) (0.003)

Region characteristics 
log(GDPPC) -0.038 0.054 0.002 -0.018
 (0.025) (0.034) (0.008) (0.019)
log(POP) 0.006 -0.001 0.005 -0.010
 (0.012) (0.015) (0.004) (0.008)
log(AREA) -0.012* 0.010 -0.005** 0.007
 (0.007) (0.009) (0.002) (0.005)
log(REGPATS) 0.001 0.000 0.001 -0.002
 (0.009) (0.011) (0.003) (0.006)
TOP1_TECH 0.009 0.011 0.025*** -0.045***
 (0.016) (0.020) (0.007) (0.011)
Note: Robust standard errors are in parentheses adjusted for clusters by firms’ identifier.  
Coefficient significant at * p<0.10, **p<0.05, ***p<0.01. 
All regressions include dummies for Missing value for EMPLOYEES, Missing values for R&DINT, Inventor 
country, Year of application and Technological field (30 ISI-INPI-OST classes).  
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Table 7. Bivariate probit estimation. Marginal effects on the bivariate probabilities of Close and 
Distant. Selected variables in Models 2, 3, 5 and 6. 

 
 pr (Close=1, Distant=1) pr (Close=0, Distant=0) pr (Close=1, Distant=0) pr (Close=0, Distant=1)

Model 2  
log(LABS_UNI) -0.003 -0.000 -0.004* 0.007
 (0.006) (0.008) (0.002) (0.005)
log(LABS_PUBLIC) 0.004 -0.001 0.003 -0.006
 (0.009) (0.011) (0.003) (0.006)
log(LABS_PRIVATE) 0.003 -0.005 -0.001 0.004
 (0.008) (0.009) (0.003) (0.006)
Model 3  
TOP5_TECH 0.007 0.001 0.008 -0.017
 (0.014) (0.017) (0.005) (0.011)
Model 5  
THRESH5_TECH 0.011 0.010 0.027*** -0.048***
 (0.018) (0.022) (0.008) (0.012)
Model 6  
MOBILITY 0.032** -0.038** 0.003 0.003
 (0.013) (0.015) (0.005) (0.011)
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