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Abstract

Consider a society with a �nite number of individuals. A coalition structure is a partition
of the set of individuals. Each individual has personal preferences over the set of all coalition
structures. We study the coalition structure core and the von Neumann and Morgenstern
(vN&M) solutions.

A roommate problem is a coalition formation problem in which each coalition contains at
most two members. We show that as long as the core is single-valued, the core is coalitionally
strategy proof. Moreover the core mechanism is characterized by three properties, namely,
strategy proofness, individual rationality and Pareto optimality, in the domain with single-
valued core. The single-valued core de�nes the largest domain to obtain a mechanism with the
three properties.

We show in an example that the single-valued core is manipulable if coalitions contain more
than two members. Nevertheless we show that the single-valued vN&M solution is coalitionally
strategy proof and it is individually rational and Pareto optimal. In fact the vN&M solution is
the only mechanism with the three properties in the domain with single-valued vN&M solution.
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1 Introduction

There are numerous organizations or coalitions in a society and an economy. Cartels, �rms, families,

clubs and political parties are a few examples of coalitions. Many such situations can be formalized

and analyzed by means of coalitional form games. Indeed, since von Neumann and Morgenstern

(1944) published their seminal book, The Theory of Games and Economic Behavior, coalitional

form games have been used to study coalition structures in a great number of papers; see Thrall and

Lucas (1963), Aumann and Maschler (1964), Aumann and Dr�eze (1974), Myerson (1977), Dr�eze

and Greenberg (1980), Hart and Kurz (1983), Aumann and Myerson (1988), Greenberg (1990,

1994), and lately, Nouweland (1993), Jackson and Wolinsky (1995) and Qin (1995), among many

others1.

Individuals may form coalitions for many reasons: monetary bene�ts, exchange of information,

friendships or mutual concerns. When an individual decides in which coalition he likes to joint,

he may often concern with the qualitative and quantitative characteristics of that coalition (Dr�eze

and Greenberg (1980)). Therefore, personal preferences over coalitions are important for coalition

formation and they can be very complicated. For examples, \personal, family, patriotic, geograph-

ical or professional relationship" (Aumann and Dr�eze (1974)) and \political a�nity, ideological

similarity and attitudinal proximity" (Kahan and Rapoport (1984)) may be parts of these pref-

erences. This paper explores a framework in one way to treat these preferences as the primitive

data in the study of coalition formation. The framework works as follows. Consider a society or an

economy with a �nite number of players or individuals. A player has personal preferences over the

coalitions in which he joints. An outcome is a coalition structure which is a partition of the set of

players. Player's preferences over coalition structures are naturally obtained from his preferences

over coalitions.

This framework is closely related to Dr�eze and Greenberg (1980). Dr�eze and Greenberg de�ned

individual's preferences on his consumption bundle and the coalition to which he belongs. They used

coalitional form games to study individually stable equilibrium and individually stable contractual

equilibrium and the existence properties of their two equilibrium notions. Our framework may be

considered as the counterpart of theirs. We are mainly concerned with the vN&M solutions and

the core.

The vN&M solutions and the core are the two very notions in the study of coalition formation,

1One should note that networks in Myerson (1977), Aumann and Myerson (1988), Nouweland (1993) and Jackson
and Wolinsky (1995) admit richer graphic structures than coalitions.
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especially in the coalitional form games. A solution, as it was presented in the �rst place in von

Neumann and Morgenstern (1953, p.436), may be considered \a stable standard of behavior in [a

possible social or economic organization]". The coalitional form games de�ne the solutions and the

core in terms of payo�s. In this paper we de�ne the solutions and the core in terms of coalition

structures. Given a preference pro�le, a coalition structure A is dominated by another B if there

exists a coalition B in B such that every member in it prefers coalition structures B to A. Note

that in this de�nition of domination, coalition structure B is not necessary to be the one agreed

upon by all individuals. But this de�nition makes sense because if the coalition B can guarantee

each member better o� by separating from previous coalition structure A no matter what the rest

individuals do, then there is no reason not to believe that the coalition B may well deviate from the

coalition structure A and work alone by themselves. Therefore, the coalition structure A is not so

reasonable when such a coalition exists. With this de�nition of domination, the de�nitions of the

vN&M solutions and the core become routine. A vN&M solution is a set of coalition structures such

that no element in the solution dominates the other in it and any coalition structure outside the

solution is dominated by at least one element in it. Therefore, a solution satis�es both internal and

external stability. In contrast, the (strict) core is de�ned to satisfy the internal stability only and

contains all coalition structures that are not (weakly) dominated by any other coalition structures.

We study the strategic aspects of the core and the vN&M solutions in the formation of coalitions

in the institutional framework. A mechanism is a function from the set of preference pro�les to the

set of coalition structures. A vN&M solution (the core) mechanism, if well-de�ned, is the one that

assigns a coalition structure in a vN&M solution (the core) for each revealed preference pro�le. To

prevent from opportunistic misrepresentation of the true preferences, a mechanism should induce

each individual to reveal his truth. This property is known in the literature by strategy proofness.

In addition to the strategy proof property, we require a mechanism to satisfy individual rationality

and Pareto optimality. An immediate question is what a mechanism with the three properties may

look like. The answer to the question is closely related to the core and the vN&M solution.

We �rst consider the roommate problem in which each coalition contains at most two members.

The roommate problem is a symmetric version of the marriage problem in Gale and Shapley

(1962). It is a special instance of the generalized matching problem in Sonmez (1995). Sonmez

(1995) strenghthened a result in Demange (1987) and showed that the core is coalitionally strategy

proof if it is single-valued and satis�es the external stability (in weak domination). We improve

Sonmez's result and show that the single-valued core is always coalitionally strategy proof in the

roommate problem. We also give an example to show that the single-valued core in the roommate
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and marriage problems may not satisfy the external stability, i.e., the core is singleton but the

vN&M solution is not. Sonmez (1995) also showed that as long as the core is well de�ned, there

exists a mechanism that is strategy proof, individually rational and Pareto optimal only if the

core is single-valued. Further it must be the core, as long as the core is nonempty and such a

mechanism exists. His result extended those in Roth (1982b), Bird (1984) and Ma (1994) for the

housing swapping market (Shapley and Scarf (1974)) to the generalized matching market. Our

strategy proof core together with his result provides a characterization of the core, namely, a

mechanism is strategy proof, individually rational and Pareto optimal if and only if it is the core

in the domain with single-valued core in the roommate and marriage problems. Since the single-

valued core de�nes the largest domain with a mechanism satisfying the three properties, we show

that this largest domain is achievable in certain situations.

When we turn to the general coalition structures, things become more complicated. We adopt

an example from Roth (1985) to show that the single-valued core is no longer strategy proof when

coalition structures are beyond bilateral matchings. Nevertheless we identify a domain that admits

at least one mechanism with the three properties. This is the domain with single-valued vN&M

solution. This later domain is smaller than that with single-valued core. We show that the single-

valued vN&M solution is always coalitionally strategy proof. Moreover it is individually rational

and Pareto optimal. In fact we show that the vN&M solution is the only mechanism with the three

properties in the domain with single-valued vN&M solution. We also show in the general coalition

structures that there exists a mechanism with the three properties only if the core is single-valued.

Moreover it must be the core, as long as the core is nonempty and such a mechanism exists. This

is a parallel result to that in Sonmez (1995) for the generalized matching problems.

The rest of the paper is structured as follows. Section 2 introduces the formal model in this

paper. Section 3 introduces several additional de�nitions. Section 4 studies the roommate prob-

lem. We extend the decomposition lemma and the blocking lemma in the marriage problem to

the roommate problem and show that the single-valued core is always strategy proof. Section 5

studies the general coalition structures. Section 6 presents the characterization of the core and the

vN&M solution in terms of the three properties. Section 7 provides remarks on admissible coalition

structures and the networks.
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2 A Formal Model

Consider a society that consists of a �nite number of players, N = f1; 2; � � � ; ng. A coalition

structure is a partition of the set N of players. Denote the set of all coalition structures by P(N).

A coalition structure in P(N) may represent a social or an economic structure. A coalition in a

coalition structure may represent an organization. Let

Ni = fS 2 2N : i 2 Sg

denote the set of all coalitions that contain player i. Player i has personal (ordinal) preferences Ri

over coalitions in Ni.

Given a coalition structure A 2 P(N), we use A(i) to denote the coalition in A that contains

player i. A player's personal preferences over coalition structures in P(N) are naturally derived

from his preferences over coalitions, i.e., player i prefers coalition structures A to B if and only if he

prefers A(i) to B(i). We abuse notion slightly and also use Ri (Pi, Ii) to represent player i's (strict,

indi�erence) preferences over coalition structures. Denote by Ri the set of player i's preferences

over coalition structures. De�ne Rn = �i=ni=1Ri. A preference pro�le R 2 Rn is a list of preferences

R = (R1; R2; � � � ; Rn), one from each player.

De�nition (Domination) Let R 2 Rn be a pro�le of preferences. A coalition structure

B 2 P(N) dominates another A if there exists a coalition B 2 B such that BPiA for all i 2 B.

For any subset X of P(N), de�ne

E(X) = fA 2 P(N) : A is dominated by some B 2 Xg: (1)

E(X) is the set of all coalition structures each of which is dominated by some coalition struc-

ture(s) in the set X .

A subset V of P(N) is called a stable set or a vN&M solution whenever

V \E(V ) = ; (2)

V [E(V ) = P(N): (3)

These two de�nitions are called internal and external stability, respectively. No coalition struc-

ture in a solution V dominates the other in V and any coalition structure outside V is dominated

by some coalition structures in V . We use V (R) rather than V to denote a vN&M solution and
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V(R) to denote the set of all vN&M solutions under R 2 Rn.

De�nition (Weak domination) Let R 2 Rn be a pro�le of preferences. A coalition structure

B 2 P(N) weakly dominates another coalition structure A if there exists a coalition B 2 B such

that BRiA for all i 2 B and BPiA for some i 2 B.

Weak domination may not be equivalent to domination. But when preferences are strict, they

are the same.2 Henceforth we assume that preferences are strict and make no distinction between

weak domination and domination.

Let P 2 Rn be a pro�le of strict preferences, the core C(P ) consists of all coalition structures

that are not dominated by any other coalition structures. The core may be empty and the vN&M

solutions may not exist. It is known that when the number of agents is at most 4, the vN&M

solutions always exist in the coalitional form games; see Neumann and Morgenstern (1953) and

Bondareva, Kulakovskaya and Naumova (1979). Example 1 below shows that some conclusions in

the coalitional form games may not apply to the current model. The vN&M solutions may not

exist in a situation with three players n = 3.

Example 1 N = f1; 2; 3g. P(N) = fA1;A2;A3;A4;A5g, where

A1 = ff1g; f2g; f3gg A2 = ff1g; f2; 3gg A3 = ff1; 2g; f3gg

A4 = ff1; 3g; f2gg A5 = ff1; 2; 3gg

The preferences are as follows

P1 = (f1; 2g; f1; 3g; f1; 2; 3g; f1g) P2 = (f2; 3g; f1; 2g; f1; 2; 3g; f2g)

P3 = (f1; 3g; f2; 3g; f1; 2; 3g; f3g):

Then a vN&M solution does not exist. Note that A2 is dominated by A4 via f1; 3g, A3 is

dominated by A2 via f2; 3g and A4 is dominated by A3 via f1; 2g. The internal stability requires

that only one among these three is available for a vN&M solution. But then it is impossible to �nd

a set of coalition structures to satisfy the external stability. 2

2By de�nition, if B weakly dominates A, then there exists a coalition B 2 B such that BRiA for all i 2 B. By
strict preferences, we must have BPiA for all i 2 B.
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3 Some De�nitions

In what follows we provide some additional de�nitions.

De�nition Let P 2 Rn be a pro�le of strict preferences. A coalition structure B 2 P(N) is

Pareto optimal under P if B is not dominated by any A 2 P(N) via the grand coalitionN . Denote

by PO(P ) the set of all Pareto optimal coalition structures under P .

If a player i stays single in a coalition structure S = (fig; � � �), this coalition structure is denoted

by Si. Note that there are an equivalent class of coalitions like Si under Ri. Without confusion,

we use Si to represent this class or an element in it.

De�nition Let P 2 Rn be a pro�le of strict preferences. A coalition structure B is individually

rational if BRiSi for all i 2 N . Denote by IR(P ) the set of all individually rational coalition

structures under P .

De�nition A mechanism ' : Rn ! P(N) is a map from preference pro�les Rn to coalition

structures P(N). A mechanism ' and the underlying true pro�le P induce a direct revelation game

�('; P ).

This de�nition may deserve some comments. Why are we interested in what players may re-

port? One reason is that no matter where preferences come from, only players know in reality the

\values" of their coalitions (coalition structures). If the value of a coalition depends on players'

underlying preferences or their ideology, then these underlying preferences are not known publicly.

Therefore, the consideration of the reported information of the above mechanism is as usual as in

the literature of mechanism design such as voting. We see this as a merit in the study of coalition

formations over the coalitional form games in some aspects because the incentive issues naturally

arise in the current framework. The strategic issues, though important, are often too complicated

to consider in the coalitional form games.

De�nition A mechanism ' : Rn ! P(N) satis�es the individual rationality and Pareto opti-

mality if '(P ) 2 IR(P ) \ PO(P ) for all pro�les P 2 Rn.
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An additional key property of a mechanism is the strategy proofness. A strategy proof mech-

anism prevents agents from misrepresenting their true preferences toward to their own interests.

Let T � N . Denote PT = (Pi)i2T and P�T = PN�T .

De�nition A strict pro�le Q 2 Rn is a dominant strategy equilibrium of the game �('; P ) if

'(Q�i; Qi)Pi'(Q�i; Q
0
i) (4)

for all Q�i, Q
0
i and all i 2 N .

De�nition A mechanism ' : Rn ! P(N) is (individually) coalitionally strategy proof if each

underlying true pro�le P is a dominant strategy equilibrium of the game �('; P ) for all coalitions

T � N (with size j T j= 1).

4 The Roommate Problem

Let M � P(N) be a subset of P(N) such that j A(i) j� 2 for all i 2 N for every A 2 M. That

is each player forms a coalition with at most one other player. Given an element A 2 M, de�ne

�(i) = j if j 2 A(i) and �(i) = i otherwise to be the matching corresponding to the coalition

structure A. A matching � is bilateral in the sense that �(�(i)) = 1 for all i 2 N . We assume that

the matching � such that �(i) = i for all i 2 N is inM. This is the noted roommate problem, a

symmetric version of the marriage problem (Gale and Shapley (1962)).

A pair (i; j) blocks a matching � if �(i) 6= j but jPi�(i) and iPj�(j). A matching � is stable

if �(i)Rii for all i 2 N and it is not blocked by any pair. Let S(P ) denote the set of all stable

matchings under P . Unlike the marriage problem, this roommate problem may not have stable

matchings, i.e., S(P ) may be empty for some P . A matching � dominates the other � via a

coalition T � N if �(i) 2 T for all i 2 T and all agents in T prefer � to �. Given P 2 Rn, the

core C(P ) is a subset ofM each of which is not dominated by any other matching via any coalition.

Theorem 2 Let P 2 Rn be a pro�le of strict preferences. Then S(P ) = C(P ).

Proof Clearly C(P ) � S(P ). Let � be a stable matching. Suppose that � is not in the core.

Then � is dominated by some other matching � via some coalition T . Since � is individually ra-

tional, it follows that j T j� 2. Let i 2 T and j = �(i). The fact that � dominates � via T implies
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that jPi�(i) and iPj�(j), since preferences are strict. This shows that � is not stable. 2

Sonmez (1995) considered a generalized matching problem that uniforms the roommate problem

(thus the marriage problem) and the housing swapping problem in Shapley and Scarf (1974). He

de�ned a matching � to be a map from the setN into itself such that �(i) 2 Ni and j �
�1(i) j= 1 for

all i 2 N . This matching � is not necessarily bilateral as in the roommate and the marriage prob-

lems. Clearly the roommate and the marriage problems are examples of the generalized matching

problem.

Demange (1987) de�ned a notion of coalitionally strategy proofness for correspondences and

showed that the core is coalitionally strategy proof if it is nonempty and satis�es the external sta-

bility (in domination). Sonmez (1995) showed that the core mechanism in the generalized matching

problem is coalitionally strategy proof if the core is single-valued and satis�es the external stability

(in weak domination).

Theorem 3 (Sonmez) Let j C(R) j= 1 and assume that C(R) satis�es the external stability

(in weak domination) for all pro�les R 2 Rn of preferences in the generalized matching problem.

Then the core C is coalitionally strategy proof.

Our theorem below improves this result for the roommate problem and it shows that the core is

coalitionally strategy proof as long as the core is single-valued, no matter whether the core satis�es

the external stability or not.

Theorem 4 Let j C(P ) j= 1 for all pro�les P 2 Rn of strict preferences. Then the core C is

coalitionally strategy proof in the roommate problem.

The single-valued core is a strong assumption. But Sonmez (1995) showed in the generalized

matching problem that as long as the core mechanism is well de�ned, there exists a strategy proof

mechanism that is also individually rational and Pareto optimal only if the core is single-valued.

Moreover it must be the core. Applying his result to the roommate problem, one obtains that

Theorem 5 (Sonmez) Suppose that C(P ) 6= ; for all P 2 Rn and let ' : Rn ! M be a

strategy proof mechanism that also satis�es individual rationality and Pareto optimality. Then

j C(P ) j� 1 for all P 2 Rn. Moreover '(P ) = C(P ) for all P with C(P ) 6= ;.

9



Theorems 4 and 5 show that in the roommate problem the core mechanism is characterized by

three properties of strategy proofness, individual rationality and Pareto optimality in the domain

with a single-valued core.

Corollary 6 A mechanism ' : Rn ! M is strategy proof, individually rational and Pareto

optimal if and only if ' = C in the roommate problem in the domain with single-valued core, i.e.,

the domain such that j C(P ) j= 1 for all P 2 Rn.

In what follows we will show Theorem 4. The proof depends on the extensions of the decom-

position and the blocking lemmas in the marriage problem to the roommate problem.

Given a pro�le P of strict preferences, let � and � be two core matchings in C(P ). De�ne

J(�; �) = fi 2 N : �(i)Pi�(i)g

to be the set of all agents who prefer � to �. The next lemma, an analogy to the decomposition

lemma in the marriage problem (see Corollary 2.21 in Roth and Sotomayor (1990)), shows that

both � and � de�ne isomorphisms between J(�; �) and J(�; �). The proof follows from that of

Lemma 2.20 in Roth and Sotomayor (1990).

Lemma 7 (Decomposition lemma) Let P 2 Rn be a pro�le of strict preferences. Then for any

two core matchings � and � in C(P ),

J(�; �)
�
 ! J(�; �)

�
 ! J(�; �):

Proof Let i 2 J(�; �) and j = �(i). Since j = �(i)Pi�(i)Rii, it follows that j 6= i. Moreover

�(j)Pj�(j). Otherwise j = �(i)Pi�(i) and i = �(j)Pj�(j) contradicting � is a stable matching

(Theorem 2). This shows that j 2 J(�; �). Thus �(J(�; �)) � J(�; �). It also follows that

�(J(�; �)) � J(�; �). Since � and � are one-to-one, the conclusion follows because both J(�; �)

and J(�; �) are �nite. 2

An immediate result of Lemma 7 is that

Corollary 8With strict preferences a player who is single under a core matching remains single

under every core matching.
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Lemma 9 (Local blocking lemma) Let P 2 Rn be a pro�le of strict preferences such that

j C(P ) j= 1. Let T � N and let QT 2 RjT j such that j C(P�T ; QT ) j= 1, where (P�T ; QT ) is

a pro�le of strict preferences. Let � 2 C(P ) and � 2 C(P�T ; QT). Let K denote all agents who

prefer � to �. Suppose that T � K and � is individually rational under P . Then there exists a

pair (i; j) that blocks � under P such that i 2 N �K and j 2 �(K).

The matching � in Lemma 9 can be any individually rational one in the blocking lemma in

the marriage problem; see Lemma 3.5 in Roth and Sotomayor (1990). The local blocking lemma

above only applies to the special matching �, not any one. The proof below follows closely from the

original idea in the second proof of the blocking lemma in Roth and Sotomayor (1990, pp.57-58)

for the marriage problem. In the marriage problem with any individually rational matching �, it is

possible that �(K) = �(K). Due to the assumption on �, this case has been excluded in the local

blocking lemma above.

Proof We will show that �(K) 6= �(K). If this is the case, then let k 2 K and �(k) = j

such that j 2 �(K) � �(K). Hence j = �(k)Pk�(k): Since � is stable under P , it follows that

�(j)Pj�(j) = k. Let i = �(j). Then i 62 K since j 62 �(K). Hence j = �(i)Pi�(i). Thus (i; j) is the

blocking pair of �.

We now show that �(K) 6= �(K). Suppose on the contrary that �(K) = �(K). Since �(k)Pk�(k)

for all k 2 K and � is stable for P , it follows �(j)Pj�(j) for all j 2 �(K).

We now de�ne a marriage problem (M;W;P 0) such that M = K and W = �(K). The prefer-

ences P 0 are de�ned as follows. For all m 2 M , P 0
m is the same as Pm restricted to W [ fmg. For

all w 2 W , P 0
w is the same as Pw restricted to M [ fwg except that w is now ranked just below

�(w). Note that � restricted to M [W is still a stable matching in the market (M;W;P 0), since

any pair that blocks � under P 0 would also block it under P . Let �M be the M-optimal stable

matching for the market (M;W;P 0). Thus

(�) �M (m)Rm�(m) 8m 2M:

If �M = �, then Theorem 2.27 in Roth and Sotomayor (1990) shows that no individually rational

matching � restricted to M [W exists such that �(m)Pm�(m) for all m 2M contradicting to the

de�nition of M . Thus it follows that

(��) �M (m)Pm�(m) for some m 2M:
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Since no player in W is single under the matching �, it follows from Corollary 8 that no player in

W is single under �M . Hence, by the construction of P 0, we must have that

(� � �) �M (w)Rw�(w) 8w 2W:

De�ne � on N such that � = �M on M [W and � = � on N �M �W . Since � 6= �, by (**),

� is not stable under P . So let (i; j) be a blocking pair of �. First we show that we cannot have

fi; jg in M or fi; jg in W . Suppose fi; jg in M . Then (�) yields

jPi�M(i)Ri�(i) and iPj�M (j)Rj�(j)

contradicting � is stable under P . Suppose that fi; jg is in W . Hence fi; jg is not in T since

T � K. Then (� � �) shows that

jPi�M (i)Ri�(i) and iPj�M (j)Rj�(j)

contradicting � is stable under (P�T ; QT ).

Second we show that fi; jg is not in M [W . Suppose not. Then, without loss of generality, let

j 2M and i 2 W . Hence

jPi�M (i) and iPj�M (j):

Then the construction of P 0 implies that (i; j) also blocks �M in the market (M;W;P 0) contradicting

�M is stable under P 0.

This leaves three possibilities: (a) j 2M and i 2 N �M �W ; (b) j 2 W and i 2 N �M �W ;

and (c) i 2 N � M � W and j 2 N � M � W . We will show that all of them will lead to a

contradiction.

(a) Suppose that j 2M and i 2 N �M �W . Then, by (�) and the de�nition of �,

iPj�(j) = �M (j)Rj�(j) and jPi�(i) = �(i)

contradicting � is stable under P .

(b) Suppose j 2 W and i 2 N �M �W . Then both i and j are not in T . Thus, by (� � �) and

the de�nition of �, M and W , we have

iPj�(j)Rj�(j) and jPi�(i)Ri�(i)

contradicting � is stable under (P�T ; QT ).

(c) Suppose that both i and j are in N �M �W . Then, by the de�nition of �, we have

iPj�(j) and jPi�(i)

12



contradicting � is stable under P . This completes the proof. 2

With the help of Lemma 9, we now show Theorem 4.

Proof of Theorem 4 Let T � N and QT 2 R
jT j such that j C(P�T ; QT ) j= 1. Let � 2

C(P�T ; QT) and � 2 C(P ). Suppose that 8i 2 T ,

�(i)Pi�(i):

We �rst show that � is individually rational. Suppose not. Then there exists i 2 N such that

iPi�(i). This implies that i 2 T . But then �(i)Pi�(i)Rii, if i 2 T , a desired contradiction.

Let K denote all players who prefer � to �. Then T � K. The local blocking lemma (Lemma

9) shows that there exists a pair (i; j) that blocks � such that i 2 N � K and j 2 �(K). Since

j 2 �(K), it follows that �(j)Pj�(j), by the stability of �. Hence j 62 T . Thus both i and j are not

in T . The fact that (i; j) blocks � implies that � is not stable under (P�T ; QT). Theorem 2 shows

that � is not in the core C(P�T ; QT ), a contradiction. 2

In the close of this section we use an example from Roth (1982) to show that the single-valued

core may not satisfy the external stability in the roommate and marriage problems; as assumed in

Theorem 3. Yet the single-valued core is coalitionally strategy proof.

Example 10 (Roth (1982)) Let M = fm1; m2; m3g be the set of men and W = fw1; w2; w3g

be the set of women. The strict preferences are as follows:

Pm1
= (w2; w1; w3; m1) Pw1

= (m1; m2; m3; w1)

Pm2
= (w1; w2; w3; m2) Pw2

= (m3; m1; m2; w2)

Pm3
= (w1; w2; w3; m3) Pw3

= (m1; m2; m3; w3):

Without any confusion, we represent these preferences in a manner that is consistent with the

marriage problem. Note that every matching in this example satis�es individual rationality. There

exists a unique stable matching � in the core C(P )

� = [(m1; w1); (m2; w3); (m3; w2)]:

The matching �

� = [(m1; w2); (m2; w3); (m3; w1)]

13



is not stable but it is in the vN&M solution. In fact one can show that this matching market has a

unique vN&M solution that consists of the two matchings f�; �g.3 Therefore the core C(P ) = f�g

does not satisfy the external stability since it does not dominate the matching �.

But it is known that the core mechanism is coalitionally strategy proof as long as the core is

single-valued in the marriage problem; see Dubins and Freedman (1981) and Roth (1982). Hence

the external stability is not a necessary condition for the single-valued core to be coalitionally

strategy proof in the roommate and the marriage problems. It remains open if the single-valued

core in the generalized matching problem in Sonmez (1995) is coalitionally strategy proof. In the

general coalition structure framework below we have an example to show that the single-valued core

is not strategy proof. Thus the results in this section depend on heavily the structures of matchings.

5 Coalition Structures

The set P(N) admits much richer coalition structures than the setM of matchings. When we pay

attentions toM, the single-valued core mechanism has the appealing coalitionally strategy proof

property as shown in Theorem 4. A natural question is if the single-valued core is coalitionally

strategy proof for the general situations with coalition strutures. We now adopt an example4 in

Roth (1985) to show that this is not the case. Even if the core is single-valued, the core mechanism

is manipulable by some individual toward to his own interests.

Example 11 Let N = C [ S, where C = fC1; C2; C3g and S = fS1; S2; S3; S4g. The strict

preferences are as follows:

PC1
= (fC1; S1; S2g; fC1; S2; S3g; fC1; S1; S4g; fC1; S2; S4g;

fC1; S3; S4g; fC1; S1g; fC1; S2g; fC1; S3g; fC1; S4g; fC1g)

PC2
= (fC2; S1g; fC2; S2g; fC2; S3g; fC2; S4g; fC2g)

PC3
= (fC3; S3g; fC3; S1g; fC3; S2g; fC3; S4g; fC3g)

PS1 = (fC3; S1g; fC1; S1g; fC2; S1g; fS1g)

PS2 = (fC2; S2g; fC1; S2; S3g; fC1; S2; S4g; fC1; S2g; fC3; S2g; fS2g)

PS3 = (fC1; S3; S4g; fC1; S2; S3g; fC3; S3g; fC2; S3g; fS3g)

3A formal proof of this is available from the author.
4This example is di�erent from that in Roth (1985) in students' preferences. In the college admissions problem in

Roth (1985), students have preferences over individual colleges and they are not concerned with the other students
the colleges may be assigned.
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PS4 = (fC1; S3; S4g; fC1; S2; S4g; fC2; S4g; fC3; S4g; fS4g):

Then the coalition structure A

A = [(C1;S3; S4); (C2;S2); (C3;S1)]

is the unique one in the core C(P ). To see this, note that every player Si must be matched with

some Cj in a core coalition structure. For example, if a core coalition structure leaves S1 single,

then it is dominated by fC2; S1g. If a core coalition structure leaves S3 single, then it is dominated

by the coalition fC3; S3g. If a core coalition structure leaves S2 single, then it must match C2 with

S1, C3 with S3, and leave S4 single. But then it is dominated by fC1; S2; S4g. If a core coalition

structure � leaves S4 single, C2 and C3 must match with some player in fS1; S2; S3g in �. This

implies that C1 can only match at most (also at least) one player in fS1; S2; S3g in �. If C1 is

matched with S1 in �, then C3 must be matched with S3. Then � is dominated by fC1; S3; S4g. If

C1 is matched with S2 in �, then it is dominated by fC1; S2; S4g. If C1 is matched with S3 in �,

then it is dominated by fC1; S3; S4g.

There are four other possiblities in which every player is matched:

B = [(C1;S2; S4); (C2;S1); (C3;S3)] or [(C1;S2; S4); (C2;S3); (C3;S1)]

D = [(C1;S2; S3); (C2;S4); (C3;S1)]

E = [(C1;S2; S3); (C2;S1); (C3;S4)]

They are dominated by fC1; S2; S3g, fC2; S2g and fC3; S1g, respectively. This completes the proof

that A is the unique one in the core C(P ). But the core mechanism is not strategy proof at the

pro�le P . To show this, consider

QC1
= (fC1; S2; S4g; fS2; C1g; fS4; C1g; fC1g):

Then the coalition structure B

B = [(C1;S2; S4); (C2;S1); (C3;S3)]

is the unique one in the core C(QC1
; P�C1

). Hence any core mechanism must assign fS2; S4g to

C1 at (QC1
; P�C1

). But C1 prefers B to A. Thus the core is not strategy proof even if it is single-

valued, unlike Theorem 4. 2
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De�nition A mechanism ' : Rn ! P(N) is a vN&M solution mechanism if '(P ) 2 V (P ) for

some V (P ) 2 V(P ) for all P 2 Rn.

The above de�nition may not be well de�ned since a vN&M solution may not exist. This de�-

nition will not generate problems though in the context below because we are concerned with the

domain where a vN&M solution exists. Our next result shows that the vN&M solution as a mech-

anism is always coalitionally strategy proof as long as it is well de�ned and single-valued. First we

need a lemma and a corollary.

Lemma 12 Let P 2 Rn be a pro�le of strict preferences. Suppose V (P ) = fAg for some

V (P ) 2 V(P ). Then 6 9B � N such that BPiA(i) for all i 2 B.

Proof By the way of contradiction. Suppose that V (P ) = fAg for some vN&M solution

V (P ) 2 V(P ). Suppose on the contrary that there exists a coalition B such that BPiA(i) for all

i 2 B. Then we can construct an in�nite chain A1; A2; � � � ; of non-empty, disjoint sets in A, as

shown below. But A is �nite, a desired contradiction.

Let K 2 N . Given fA1; � � � ; AKg � A such that fB;A1; � � � ; AKg are disjoint (if K = 0, then

fBg is trivially disjoint). Let BK = fB;A1; � � � ; AK ; N �B �A1 �A2� � � ��AKg. Since BPiA(i)

for all i 2 B, it follows B 62 A. Hence BK 6= A. By external stability, there exists AK+1 2 A such

that AK+1PiBK(i) for all i 2 AK+1. For k = 1; � � � ; K, since Ak 2 BK and Ak 2 A, it follows that

AK+1 6= Ak and AK+1 \Ak = ;. Since BPiA(i) for all i 2 B, the fact that AK+1 2 A implies that

B \AK+1 = ;. Hence, B;A1; � � � ; AK+1 are disjoint and fA1; � � � ; AK+1g � A. This completes the

proof of the lemma. 2

Corollary 13 Let P 2 Rn be a pro�le of strict preferences such that V (P ) = fAg for some

V (P ) 2 V(P ). Then A dominates every other coalition structure and is not dominated by any

other coalition structure.

Next we need to relate the vN&M solution to the core and answer the question when there

exists a unique vN&M solution.

Theorem14 Let P 2 Rn. Suppose V (P ) = fAg for some V (P ) 2 V(P ). Then V(P ) = fV (P )g

and V (P ) = fAg. Moreover V (P ) = C(P ).
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Proof Let V1(P ); V2(P ) 2 V(P ) be any two distinct vN&M solutions. Suppose V1(P ) = fAg.

There exists D in V2(P ) such that D 6= A since V1(P ) 6= V2(P ). Moreover A 62 V2(P ), since A

dominates D, by the assumption V1(P ) = fAg. By the external stability of V2(P ), there exists

some coalition structure B dominates A via some coalition B, i.e., 9B 2 B such that BPiA(i) for

all i 2 B. But this is a contradiction to Lemma 12. V (P ) = C(P ) follows from Corollary 13. 2

Theorem 15 Let j V (P ) j= 1 for all pro�les P 2 Rn of strict preferences. Then the vN&M

solution V is coalitionally strategy proof.

First Proof of Theorem 15 Let ' = V be the vN&M solution mechanism. By the way of

contradiction suppose that there exists a pro�le (P�T ; QT) such that

'(P�T ; QT)Pi'(P�T ; PT ) 8i 2 T:

Let A = '(P�T ; QT ) and B = '(P�T ; PT ). Then A 62 V (P�T ; PT ) and B 62 V (P�T ; QT ). The

external stability shows that 9B 2 B such that BPiA for all i 2 B. Since B 62 V (P�T ; QT ), by the

external stability again, 9A 2 A such that APiB for i 2 A� T and AQiB for i 2 T \ A. But, by

the assumption that APiB for all i 2 T , it follows that APiB for all i 2 T \ A. Therefore, APiB

for all i 2 A contradicting Corollary 13. This completes the proof. 2

Next we provide a second proof of Theorem 15 by means of the core and the ideas in Demange

(1987) and Sonmez (1995).

Second Proof of Theorem 15 Again, by the way of contradiction, suppose that there exists

a pro�le P�T and QT such that

'(P�T ; QT )Pi'(P�T ; PT ); 8i 2 T:

Since '(P�T ; QT) is not in V (P ), there exists a coalition S such that '(P�T ; QT ) is dominated

by '(P�T ; PT ) via the coalition S. That is

'(P�T ; PT )Pi'(P�T ; QT); 8i 2 S:

Thus S \ T = ;. Since

'(P�T ; PT )(i) 2 S; 8i 2 S
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it follows that '(P�T ; PT ) dominates '(P�T ; QT ) under (P�T ; QT ) via S. Since S \ T = ;, it

follows that '(P�T ; QT ) is not in the core C(P�T ; QT ) contradicting Theorem 14. 2

If a core is singleton and satis�es the external stability, then it must be a singleton vN&M

solution. Theorem 14 shows that it will be the unique vN&M solution. Further Theorem 14 shows

that the converse is also true. If there exists a singleton vN&M solution, then it must coincide with

the core. Thus the core must be singleton and externally stable. Sonmez (1995) showed that the

singleton core with external stability is coalitionally strategy proof. Thus Theorem 15 is a corollary

of the result in Sonmez (1995) and Theorem 14. Or the result in Sonmez (1995) is a corollary of

Theorems 14 and 15. Either way, Lemma 12 is essential.

6 vN&M Solutions versus the Core

In this section we show an analogy to Theorem 5 and Corollary 6 for the general coalition structures.

Since a conclusion in the generalized matching model may not apply to the coalition structures, we

present a formal proof of them for the coalition structures.

The results presented here are closely related to those for the housing swapping market in

Shapley and Scarf (1974) in which each agent owns a house and consumes at most one house. An

allocation is a permutation of all houses. Roth and Postlewaite (1977) showed that the core in

the housing swapping market is single-valued and it satis�es the external stability (both de�ned in

weak domination). Roth (1982b) showed that the core is individually strategy proof. Bird (1984)

showed that the core is coalitionally strategy proof. Ma (1994) showed that the core mechanism is

the only mechanism that satis�es strategy proofness, individual rationality and Pareto optimality.

Sonmez (1995) generalized these results to the generalized matching market.

In what follows we prove that there exists a strategy proof mechanism that is also individually

rational and Pareto optimal only if the core is single-valued for the situations with the general

coalition strustures. Moreover it must be the core, as long as the core is nonempty and such

a mechanism exists. The main idea in the proof is to construct the pro�le Q in the use of the

induction approach. This idea has been used before in Ma (1994) and Sonmez (1995). The proof

in Sonmez (1995) depends on the structures of the matching �. The proof in Ma (1994) is for the

housing swapping market. Our proof below follows Ma (1994) closely. Before the proof, we need

two simple but useful lemmas.
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Let A and B be any two coalition structures in P(N), de�ne

J(A;B;P ) = fj 2 N : APjBg

to be the set of players who prefer A to B. Therefore, the three sets, J(A;B;P ), J(B;A;P ) and

N � J(A;B;P )� J(B;A;P ), form a partition of N .

Lemma 16 If A and B are Pareto optimal under P and A 6= B, then J(A;B;P ) 6= ;.

Proof If J(A;B;P ) = ;, then BRiA for all i 2 N . Since B 6= A, it follows that there exists at

least one i 2 N such that BPiA. This implies that A is not Pareto optimal. 2

Lemma 17 Let A 2 C(P ) be a core coalition structure and B 2 IR(P ) \ PO(P ) be an indi-

vidually rational and Pareto optimal coalition structure. If B 6= A, then 9j 2 J(A;B;P ) such that

APjBPjSj .

Proof Suppose on the contrary that B(j) = fjg for all j 2 J(A;B;P ).5 That is all agents in

J(A;B;P ) remain single in B. Lemma 16 shows that J(A;B;P ) 6= ;. Thus N � J(A;B;P ) forms

a coalition that weakly dominates A under the coaltion structure B. By strict preferences, there

exists a coalition B 2 B such that B dominates A via B. In fact J(B;A;P ) is such a coalition.

This is a contradiction to the assumption that A is in the core. 2

Theorem 18 Suppose that C(P ) 6= ; for all pro�les P 2 Rn of strict preferences and let

' : Rn ! P(N) be a strategy proof mechanism that also satis�es individual rationality and Pareto

optimality. Then j C(P ) j� 1 for all P 2 Rn. Moreover '(P ) = C(P ) for all P if C(P ) 6= ;.

Proof Let P 2 Rn such that C(P ) 6= ;. Let ' : Rn ! P(N) be a mechanism that is strategy

proof, individually rational and Pareto optimal. We �rst show that j C(P ) j� 1 for all P 2 Rn.

Let D 2 C(P ). Construct a pro�le Q of strict preferences as follows: 8i 2 N ,

Qi =

8>>><
>>>:

(

truncation of Pi up to Dz }| {
� � � � � � � � � � � � ;D; Si; � � �) if D(i) 6= Si

Pi otherwise

5By de�nition, APjB for all j 2 J(A;B;P ). If the lemma is false, it must be the case that SjRjB for all
j 2 J(A;B;P ). Since B is individually rational, it must be the case that B(j)IjSj for all j 2 J(A;B;P ).
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Step 1: C(Q) = fDg and IR(Q)\ PO(Q) = fDg.

Proof Suppose there exists A 2 C(Q) or A 2 IR(Q)\PO(Q) such that A 6= D. Then Lemma

17 shows that there exists j 2 J(D;A;Q) such that DQjAQjSj . But there exists no A between D

and Sj under Qj . 2

Step 2: '(PT ; Q�T ) = D for all T � N .

Proof We use the induction on the size j T j of the coalition T to show this. When j T j= 0,

Step 1 shows that '(Q) = D, since '(Q) 2 IR(Q)\ PO(Q). Now assume that

'(PT ; Q�T ) = D

for all T � N such that j T j� k.

Suppose, by the way of contradiction, that '(PT ; Q�T ) 6= D for some T � N such that j T j=

k+ 1. Let Q0 = (PT ; Q�T ). Then Lemma 17 shows that there exists j 2 J(D; '(Q0);Q0) such that

DQ0
j'(Q

0)Q0
jSj : (5)

If j 2 N � T , then Q0
j = Qj . We obtain from the above that

DQj'(Q
0)QjSj :

But there exists no coalition structure '(Q0) between D and Sj under Qj . This shows that j 2 T .

If j 2 T , then it follows from (5) that

DPj'(Q
0): (6)

It follows from the induction hypothesis that

'(Qj ; Q
0
�j) = D: (7)

Thus it follows from (6) and (7) that

'(Qj ; Q
0
�j)Pj'(Pj; Q

0
�j)

contradicting ' is strategy proof. 2
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Since D is arbitrarily chosen, it follows that j C(P ) j� 1 for all P 2 Rn. Moreover it follows

from Step 2 that '(P ) = C(P ) for all P 2 Rn such that j C(P ) j= 1. This completes the proof. 2

Corollary 19 A mechanism ' : Rn ! P(N) is strategy proof, individually rational and Pareto

optimal if, and only if ' is the vN&M solution mechanism V in the domain with single-valued

vN&M solution.

Proof Theorem 15 shows that the vN&M solution V is coalitionally strategy proof. Theorem

14 shows that V coincides with the core C. Therefore V is a mechanism that is strategy proof,

individually rational and Pareto optimal. The \only if" part follows from Theorems 18 and 14. 2

These results are related to the question what may be the largest domain for a mechanism with

the three properties, namely, strategy proofness, individual rationality and Pareto optimality. The

largest domain admitting such a mechanism is that with the single-valued core (Theorem 18). We

also show that this largest domain is reached in the roommate and marriage problems (Theorem

4). But it cannot be reached for general coalition structures since the single-valued core may not

be strategy proof (Example 11). Nevertheless the domain with the single-valued vN&M solution,

though relatively smaller than that with single-valued core, admits at least one mechanism that

satis�es the three properties, since we show that the vN&M solution is coalitionally strategy proof

and it is individually rational and Pareto optimal (Theorems 14 and 15). Then Corollary 19 shows

that the vN&M solution is the only strategy proof, individually rational and Pareto optimal mech-

anism in this smaller domain.

7 Two Remarks

Remark 1 In practice whether a coalition structure forms depends on not only players' personal

preferences but also those factors beyond preferences. On one hand, there are many factors that

encourage coalitions to form. On the other hand, there are some factors that may prevent coalition

formation. For example, cultural di�erences, the law and communication costs may limit coalition

formation to certain degree. In Section 2, we de�ne players' preferences over the set of all coalition

structures. In this de�nition, we implicitly exclude the impacts of those factors beyond preferences

on coalition formation and assume that all coalition structures are admissible. This frictionless
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assumption may be unrealistic when those factors such as the law present. To embody these

factors into account, we can consider admissible coalition structures. Precisely, let Bf (N) � P(N)

such that (figi2N) 2 B
f (N) be an admissible subset of all coalition structures. Therefore, culture

and the law will at least give individuals the right to not joint in any coalition. We may then

restrict players' preferences to Bf(N). And then all results in this paper apply to Bf (N).

Remark 2 A network is a subset of the set of all subsets 2N with size 2. A link between i and j

is the subset fi; jg. A network is complete if each player in it is linked with each other. A complete

subnetwork is equivalent to a coalition in a coalition structure. Typically a network of the players

N admits a more general graphic structure than a coalition structure, because a coalition structure

often consists of several complete subnetworks. Due to these di�erences, the results obtained for

the coalition structures may not apply to the networks.

Example 20 Let N = f1; 2; 3; 4; 5g. The preferences are as follows

P1 = (f1; 2; 5g; f1; 2g; f1; 5g; f1g) P2 = (f1; 2; 3g; f2; 3g; f1; 2g; f2g)

P3 = (f2; 3; 4g; f3; 4g; f2; 3g; f3g) P4 = (f3; 4; 5g; f4; 5g; f3; 4g; f4g)

P5 = (f1; 4; 5g; f1; 5g; f4; 5g; f5g):

There are �ve (nontrivial) coalition structures that satisfy individual rationality.

B1 = ff1; 2g; f3; 4g; f5gg B2 = ff1; 2g; f4; 5g; f3gg

B3 = ff1; 5g; f2; 3g; f4gg B4 = ff2; 3g; f4; 5g; f1gg

B5 = ff1; 5g; f3; 4g; f2gg

These coalition structures are dominated by the coalitions f4; 5g, f2; 3g, f3; 4g, f1; 5g and f1; 2g,

respectively. Hence, the coalition structure core is empty.

But at the preference pro�le above the network core is nonempty and there exists a unique

network vN&M solution. Indeed, the network core and the network vN&M solution coincide and

consist of the network f12; 23; 34; 45; 51g, in which 1 is linked with 2 and 5, 2 with 1 and 3, 3 with

2 and 4, 4 with 3 and 5, and 5 with 1 and 4.
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