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MANIPULATION AND STABILITY IN THE COLLEGE

ADMISSIONS PROBLEM
�

Jinpeng Ma y

This version March 30, 1997

Implementation theory should, I believe, be largely driven by applications; and in prin-

ciple each application should bring with it some assumption about how the agents in

that speci�c situation will plausibly behave. John Moore

Abstract

Roth and Vande Vate (1991) studied the marriage problem and introduced the notion of
truncation strategies and showed in an example that unstable matchings can arise at Nash
equilibria in truncations. This paper studies the college admissions problem and shows that all
rematching proof or strong equilibria in truncations produce stable matchings, even though the
equilibrium pro�les are manipulated, and all stable matchings can be achieved in rematching
proof or strong equilibria in truncations. It is showed that a preference pro�le that is a re-
matching proof or strong equilibrium in truncations for one stable matching mechanism is also
a rematching proof or strong equilibrium for all stable matching mechanisms. This result shows
that there is no di�erence among all stable matching mechanisms in rematching proof or strong
equilibria in truncations, which is in the contrast to the situation in which agents report their
preferences in a straightforward manner.
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1 Introduction

In the college admissions problem (Gale and Shapley (1962) and Roth (1985)) there are two disjoint

sets of students and colleges with each college a quota of enrollments. The marriage problem is the

college admissions problem with each college precisely one enrollment. An outcome in the college

admissions problem is a matching such that each student is enrolled in at most one college and each

college enrolls students up to its quota. A matching is bilateral in nature in the sense that a student

is matched to a college if and only if the college is matched to the student. A pair of a college and

student blocks a matching if they are not matched under that matching but the student prefers to

be matched with the college and the college prefers the student to one of its assigments under the

matching. A matching is stable if it is individually rational for each student and college and is not

blocked by any college and student pairs. This notion of (pairwise) stability has been extensively

studied in the literature of the matching markets since Gale and Shapley (1962) originated the

study of the kind. A well account of the literature has been provided by Roth and Sotomayor

(1990) (henceforth, RS)

A stable matching mechanism assigns each pro�le a stable matching with respect to that pro�le.

Therefore, a stable matching mechanism induces a direct revelation game and it has to work

with reported pro�les since the underlying true preference pro�le is not publicly known. When a

mechanism is executed in practice, an incentive issue arises: Is it always the best for each participant

to reveal his/her true preferences? We say that a mechanism is not manipulable if it does have this

incentive property. But very few reasonable mechanisms have the nonmanipulable property. In the

college admissions problem Roth's impossibility results show that a stable matching mechanism is

manipulable by individual students or colleges; see Section 3. Consequently, as long as students

and colleges are sophisticated, the reported pro�les may be far from the true one. Therefore, the

matching arrived at by a stable matching mechanism, though stable with respect to the reported

preference pro�le, may be unstable with respect to the true preference pro�le. Indeed Roth showed

that in the college admissions problem all individually rational matchings can arise in the Nash

equilibria of the game induced by a stable matching mechanism; see Theorem 2. Individually

rational matchings include not only the stable matchings but also the unstable ones. This motivates

the question: under what conditions does a stable matching mechanism produce an outcome that

is stable with respect to the underlying true preference pro�le?1

This issue of stability under manipulation in the matching market literature was �rst addressed

in Roth (1984b) for the marriage problem. Roth (1984b) studied the Gale and Shapley (1962)

deferred proposal matching mechanism and showed that the Gale and Shapley mechanism produces

1The question was �rst articulated in Roth (1984b, 1990). See open question 5 in RS and the question raised
in Roth (1990). Our results here provide a partial answer to the question for the college admissions problem. His

question has motivated many recent related works; see, e.g., Alcalde (1994), Kara and S�onmez (1993, 1994), Ma

(1994b), Shin and Suh (1994), and S�onmez (1996).
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stable matchings for the true preference pro�le in a class of undominated strategy equilibria, even

though the equilibrium pro�les are manipulated. A truncation strategy Qa for an agent a contains

k elements such that the k (� 0) elements of Qa are the �rst k elements, with the same order, in

her true preference Pa. Roth and Vande Vate (1991) (henceforth, RV) introduced this notion of

truncation strategies for the marriage problem and showed that truncation strategies are a class

of plausible strategies and the sets of truncation strategies can result in stable matchings at which

everyone is matched. Ma (1995) proposed the notion of rematching proofness to extend Roth's

(1984b) result to any stable mechanism in the marriage problem and showed that all rematching

proof equilibria produce stable matchings. A rematching proof equilibrium is a Nash equilibrium

and has the property that there does not exist a pair of college and student who can make pro�tably

joint deviations, given the others stay put. The rematching proof equilibrium is an analogy to the

strong equilibrium. It di�ers from the strong equilibrium in the aspect that it pays attention only

to coalitions of size two, one from each side of the market.

Truncations relative to some other more sophisticated strategies has a great advantage in the

information aspect in the sense that an agent can submit her truncation strategies regardless of

the others' true preferences. Mongell and Roth (1990) found, in the American college sororities in

which the \preferential bidding symtem" is used to match new members to sororities, that very

high percentage of reported preferences was truncated to the �rst choice. But truncations alone do

not always produce stable matchings, even at Nash equilibria. Indeed RV showed in an example

that truncations may often produce unstable matchings in Nash equilibria; also see Mongell and

Roth (1990). Their example is for the marriage problem but it also applies to the college admissions

problem. They resolved this unstable issue associated with the Nash equilibria in truncations by

devoting to the subgame perfect equilibrium of a dynamic random matching procedure (Roth and

Vande Vate (1990)) in which agents have the opportunity to extend their truncation strategies in

a random order manner.

The present paper is to address the same unstable issue by the combination of truncations in RV

and the rematching proofness in Ma (1994b, 1995) to study the college admissions problem. Our

main results show that all rematching proof equilibria in truncations produce stable matchings and

all stable matchings can be achieved in rematching proof equilibria in truncations. All rematching

proof equilibria in truncations are the same for all stable matching mechanisms. These results also

apply to the strong equilibria in truncations. It is known that di�erent stable matching mechanisms

produce di�erent stable matchings when agents report their preferences in a straightforward man-

ner. But our results show that all stable matching mechanisms produce the same stable matching

at a rematching proof or strong equilibrium in truncations. There is no di�erence among all stable

matching mechanisms in the rematching proof or strong equilibria in truncations.

The remaining of the paper is organized as follows. Section 2 introduces the college admissions
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problem. The model follows Gale and Shapley (1962), Roth (1985) and RS. Section 3 presents

Roth's impossibility theorems and examples to show that the stable matching correspondence is

not implementable in the Nash equilibrium. Section 4 provides a characterization of all Nash equi-

libria whose outcomes are stable matchings. This result is useful for showing Roth's impossibility

theorems and examining which pro�les are not Nash equilibria. Section 5 presents some results

related to Nash equilibria in truncations. The main results are reported in Section 6. A remark in

Section 7 on the undominated strategy equilibrium that does not always produce stable matchings

concludes the paper.

2 The College Admissions Problem

We use some de�nitions from RS. The college admissions problem consists of two �nite and disjoint

sets, S = fS1; � � � ; Sng of students and C = fC1; � � � ; Crg of colleges, with each college Cj 2 C a

quota qCj
� 1 of enrollments. Each student Si 2 S is enrolled in at most one college. Each student

Si 2 S has strict preferences PSi
over the set C[fSig and each college Cj 2 C has strict preferences

PCj
over the set S [ fCjg. Hence PCj

is college Cj 's preferences over individual students. Both

PSi
and PCj

leave the possibility that a student may prefer not to be enrolled in some colleges and

a college may prefer not to enroll some students. Denote 
Si
the set of all strict preferences for

a student Si 2 S and 
Cj
the set of all strict preferences (over individual students) for a college

Cj . Denote 
 =
Q

Si2S

Si

�
Q

Cj2C

Cj

. The marriage problem is the college admissions problem

with qCj
= 1 for every college Cj 2 C.

Following RS, we de�ne an unordered family of elements of any set X to be a collection of ele-

ments in which the order is immaterial. Note that an element in an unordered family may contain

the same element in X more than once. The set of unordered families of elements of X is denoted

by X.

De�nition. A matching � is such a function � : S [ C ! S [ C such that (a) j�(Si)j = 1

for every Si 2 S and �(Si) 2 C whenever �(Si) 6= Si; (b) j�(Cj)j = qCj
for every Cj 2 C, and

if j S \ �(Cj) j< qCj
then �(Cj) is ful�lled to qCj

by copies of Cj ; (c) �(Si) = Cj if and only if

Si 2 �(Cj). Denote M the set of all matchings.

De�nition. Let �; � 2 M. We say that a preference �PCj
for a college Cj over sets of students

is responsive to its preference PCj
over individual students if, whenever �(Cj) = �(Cj)[ f�g n f�g

for � 2 �(Cj) and � 62 �(Cj), then �(Cj) �PCj
�(Cj) if and only if �PCj

� .

Roth (1985) �rst reformulated the college admissions problem in Gale and Shapley (1962) to
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allow colleges to have preferences over groups of students as well as preferences over individual stu-

dents. He was the �rst to propose the responsive preferences and found that the college admissions

problem is not equivalent to the marriage problem in many substantial aspects. Henceforth we

follow him and assume that colleges' preferences over groups of students are responsive, complete

and transitive. We always use �PCj
with a bar for college Cj 's preferences over groups of students

and PCj
without a bar for college Cj's preferences over individual students in the context. No

confusion will be made.

We say that a pair (Si; Cj) 2 S � C, with �(Si) 6= Cj , blocks a matching � if CjPSi
�(Si) and

SiPCj
� for some � 2 �(Cj).

De�nition. Given a pro�le P 2 
, a matching � is (a) individually rational if :SiPSi
�(Si) for

all Si 2 S and :CjPCj
� for every � 2 �(Cj) for all Cj 2 C; (b) pairwise stable if it is not blocked

by any pairs of student and college; (c) stable if it is both individually rational and pairwise stable.

Denote S(P ) the set of all stable matchings with respect to P 2 
.

Denote IR(P ) the set of all individually rational matchings, P 2 
.

De�nition. A matching mechanism  : 
 ! M is a map from pro�les to matchings. A

matching mechanism ' : 
 ! M is stable if '(P ) is stable for all P 2 
. Denote the set of all

stable matching mechanisms by �.

It follows from Lemma 5.6 in RS and the existence of a stable matching in Gale and Sotomayor

(1962) that S(P ) is nonempty for any pro�le of preferences P 2 
. Therefore, a stable matching

mechanism is well de�ned. A stable matching mechanism ' 2 � and an underlying true pro�le of

preferences P 2 
 induce a normal form game �('; P ).

3 Nash Equilibrium

In the literature of mechanism design, the �rst question to ask is perhaps if it is always the best

for every player to reveal his true preferences. While this nonmanipulable property is quite appeal-

ing, very few reasonable mechanisms own this property. In the college admissions problem Roth's

impossibility results show that a stable matching mechanism is manipulable by individual students

or colleges.

Theorem 1.1 (Roth). There does not exist any stable matching mechanism that makes it a

dominant strategy for all students and all colleges to report their true preferences.
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Theorem 1.2 (Roth). There does not exist a stable matching mechanism that makes it a

dominant strategy for all colleges to report their true preferences.

Theorem 1.2 is from Roth (1985), which is in the sharp contrast to those in the marriage prob-

lem. In the marriage problem the Gale and Shapley man or woman proposal algorithm makes it a

dominant strategy for every man or woman to report his or her true preference.

De�nition. A pro�le Q 2 
 is a Nash equilibrium (in pure strategies) of a game �('; P ) if

:'Si
(Q�Si

; Q0
Si
)PSi

'Si
(Q�Si

; QSi
)

for all Si 2 S, Q
0
Si
2 
Si

and

:'Cj
(Q�Cj

; Q0
Cj
) �PCj

'Cj
(Q�Cj

; QCj
)

for all Cj 2 C, Q
0
Cj
2 
Cj

.

Denote N('; P ) the set of all Nash equilibria of the game �('; P ).

Roth also found that even if S(P ) contains a unique element, the pro�le P may not be a Nash

equilibrium.

Example 1 (Roth). Let C = fC1; C2; C3g and S = fS1; S2; S3; S4g. Assume qC1
= 2

and qC2
= qC3

= 1. The preferences of colleges are as follows: PC1
= (S1; S2; S3; S4; C1),

PC2
= (S1; S2; S3; S4; C2) and PC3

= (S3; S1; S2; S4; C3). The preferences of students are as follows:

PS1 = (C3; C1; C2; S1), PS2 = (C2; C1; C3; S2), PS3 = (C1; C3; C2; S3) and PS4 = (C1; C2; C3; S4).

The matching x = [(C1;S3; S4); (C2;S2); (C3;S1)] is the unique stable matching with respect to this

pro�le P of preferences. Now suppose that college C1 reports that QC1
= (S2; S4; C1; S1; S3). The

unique stable matchingwith respect to the pro�le (QC1
; P�C1

) is y = [(C1;S2; S4); (C2;S1); (C3;S3)].

Because college C1 prefers S2 to S3, by responsiveness, college C1 prefers the classes fS2; S4g to

fS3; S4g. Thus, college C1 gets better o� by unilaterally deviating. 2

A dominant strategy equilibrium is quite demanded. One may wonder whether all Nash equi-

librium outcomes are stable. Unfortunately, this is not the case. The Nash equilibrium bites two

little. Almost all meaningful matchings could be sustained by Nash equilibria.

Theorem 2 (Roth). For any ' 2 �, IR(P ) � '(N('; P )) for all pro�les P 2 
.
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Roth's results and example show that when a stable matching mechanism is implemented, stu-

dents and colleges may have strong incentives to misreport their preferences. With the misreported

preferences, the outcome achieved by a stable matching mechanism though stable with respect to

the reported preferences may not be stable for the true preferences. Given this common knowl-

edge, the obtained unstable matching under a stable matching mechanism may provide incentives

for players not to commit to the achieved outcome because they may bypass the mechanism and do

better on their own. Therefore the implemented mechanism may break down. This could happen

even in the Nash equilibrium outcomes. But the empirical works found otherwise: Almost all stable

matching mechanisms employed in the entry-level labor markets successfully resolved the market

failures that seem associated with instability experienced when the markets are decentralized; see

Roth (1984a, 1991). Therefore there is some gap between the empirical �ndings and the theoretical

results. This motivates the question whether there is some meaningful re�nement of the Nash equi-

librium that is helpful to eliminate unwanted unstable outcomes. We attack this question in Section

6. First we would like to present several results about the Nash equilibrium and the truncations.

4 A Characterization of Nash Equilibria

In this section we provide a result that is useful to show Theorems 1.1 and 1.2. We �rst show a

lemma that is useful for its own sake. Lemma 1 shows that there is no matching � 2 S(Q) at a

Nash equilibrium pro�le Q such that a college Cj strictly prefers any new class �(Cj) to her old

class 'Cj
(Q) with respect to any responsive preference �Pc.

Lemma 1. Suppose Q 2 N('; P ) is a Nash equilibrium. Then for any matching � 2 S(Q),

'Si
(Q)PSi

�(Si) for every Si 2 S such that 'Si
(Q) 6= �(Si) and :�(Cj) �PCj

'Cj
(Q) for every Cj 2 C

such that 'Cj
(Q) 6= �(Cj).

Proof. First, suppose on the contrary that �(Si)PSi
'Si

(Q) for some Si 2 S with 'Si
(Q) 6=

�(Si). Then let Q0
Si

= (�(Si); Si; � � �) and note that f�g 2 S(Q�Si
; Q0

Si
). Theorem 5.12 in

RS shows that the set of students employed is the same at every stable matching. Therefore,

'Si
(Q�Si

; Q0
Si
) = �(Si). It follows that 'Si

(Q�Si
; Q0

Si
)PSi

'Si
(Q�Si

; QSi
), which contradicts that

Q is a Nash equilibrium.

Second, suppose on the contrary that �(Cj) �PCj
'Cj

(Q) for some Cj 2 C. Then let Q0
Cj

=

(Si1 ; � � � ; Siq ; Cj; � � �), where q =j S \ �(Cj) j� qCj
, such that SikQ

0
Cj
Sil if and only if SikQCj

Sil for

any Sik ; Sil 2 �(Cj)\ S and CjQ
0
Cj
Si for all Si 2 S n�(Cj). Now we show that � 2 S(Q�Cj

; Q0
Cj
).

Suppose not, then 9(Si; ~Cj) 2 S � C with �(Si) 6= ~Cj such that ~CjQSi
�(Si) and SiQ ~Cj

� for some

� 2 �( ~Cj). Note that ~Cj 6= Cj by the construction of Q0
Cj
. This implies that � 62 S(Q) because
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(Si; ~Cj) blocks �. Therefore, � 2 S(Q�Cj
; Q0

Cj
).

Theorem 5.13 in RS shows that any college that does not �ll its quota at some stable matching

is assigned precisely the same set of students at every stable matching. Therefore, it follows that

if Cj 2 �(Cj), then �(Cj) = �(Cj) for all � 2 S(Q�Cj
; Q0

Cj
) since � 2 S(Q�Cj

; Q0
Cj
).

Now suppose �(Cj) 6= �(Cj) for some � 2 S(Q�Cj
; Q0

Cj
) and 6 9Cj 2 �(Cj). Then there must

exist some Cj 2 �(Cj). Theorem 5.13 in RS shows that �(Cj) = �(Cj). This is a contradiction.

Therefore 'Cj
(Q�Cj

; Q0
Cj
) = �(Cj). And then, 'Cj

(Q�Cj
; Q0

Cj
) �PCj

'Cj
(Q�Cj

; QCj
). This contra-

dicts that Q is a Nash equilibrium. 2

Given ' 2 � and P 2 
, the outcome '(Q) 2 S(Q) for Q 2 
. But '(Q) may or may not be

in S(P ). Of course, if '(Q) 2 S(P ), then S(Q) contains at least one element in S(P ). But, the set

S(Q) may contain more than one such outcome. The next result shows that whenever the outcome

'(Q) is in S(P ), then '(Q) is the unique outcome in both S(P ) and S(Q), providing the pro�le Q

is a Nash equilibrium.

Theorem 3. For every Q 2 N('; P ) such that '(Q) 2 S(P ), S(Q)\ S(P ) = f'(Q)g.

Proof. Suppose, by the way of contradiction, that j S(Q) \ S(P ) j> 1. Thus there exists

� 2 S(Q) \ S(P ) such that 'k(Q) 6= �(k) for some k 2 S [ C. Theorem 5.26 in RS shows that a

college Cj is indi�erent (over groups of students) between � and '(Q) only if �(Cj) = 'Cj
(Q). It

follows that either �(Cj) �PCj
'Cj

(Q) or 'Cj
(Q) �PCj

�(Cj) for all Cj 2 C with 'Cj
(Q) 6= �(Cj). Then

Lemma 1 shows that 'Si
(Q)PSi

�(Si) for all Si 2 S with 'Si
(Q) 6= �(Si) and 'Cj

(Q) �PCj
�(Cj) for

all Cj 2 C with 'Cj
(Q) 6= �(Cj). But this contradicts Theorem 5.33 in RS which shows that S(P )

is a lattice under the common preferences of colleges, �PC , and due to the common preferences of

students, PS . 2

Clearly Theorem 3 is not true for an arbitrary pro�le Q. It is often di�cult in the college

admissions problem to determine whether a pro�le is a Nash equilibrium. The contribution of The-

orem 3 helps eliminate a large class of pro�les that are not in the equilibrium. Especially, we can

use Theorem 3 to show Theorem 2.1. For examples, suppose that there are two stable matchings

in S(P ). Then Theorem 3 shows that such a pro�le P is not an equilibrium pro�le for any game

�('; P ) induced by any ' 2 �. This shows that there does not exist any game �('; P ) such that

the pro�le P is a dominant strategy equilibrium.
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5 Truncations

We saw from Roth's result in Theorem 2 that the set of Nash equilibrium outcomes includes both

stable and unstable matchings. We now use the notion of truncations which is introduced in RV

for the marriage problem and obtain several results for the college admissions problem that are

quite similar to theirs in the marriage problem. Truncation strategies alone may produce stable

matchings under certain conditions.

We �rst introduce the truncations in RS. A truncation strategy QSi
(with respect to PSi

) for

a student Si contains k (0 � k � r) elements such that the k elements of QSi
are the �rst k

elements, with the same order, in her true preference PSi
. Similarly, a truncation strategy QCj

for

a college Cj (with respect to PCj
) contains k (0 � k � n) elements such that the k elements of

QCj
are the �rst k elements, with the same order, in her true preference PCj

. We �rst show that

all stable matchings can be achieved in the strong equilibrium in truncations. Therefore, a strong

Nash equilibrium in truncations always exists. This result is somehow sharping Theorem 3 (i) in RV.

De�nition. A pro�le Q is a strong equilibrium of the game �('; P ) if it has the property that

there exists no coalition T � C [ S and Q0
T 2 �k2T
k such that

'k(Q�T ; Q
0
T )Pk'k(Q)

for all k 2 T \ S and

'k(Q�T ; Q
0
T )

�Pk'k(Q)

for all k 2 T \ C. Denote the set of all strong equilibria in truncations of the game �('; P ) by

N ts('; P ).

One additional notation is helpful. Given a matching � 2 M and P 2 
, de�ne t
�
j 2 �(Cj)\ S

such that �PCj
t
�
j for all � 2 �(Cj) \ S n ft

�
j g. Given a preference pro�le P 2 
 and a matching

�, we say a truncation strategy pro�le Q� 2 
 exact, with respect to P and �, if (a) the strat-

egy Q
�
Si
2 
Si

for Si ranks the colleges in the same order as in PSi
, up to �(Si), who is then

immediately followed by Si, whenever �(Si) 6= Si, and Q
�
Si

= QSi
if �(Si) = Si, for all Si 2 S;

(b) the strategy Q
�
Cj
2 
Cj

for Cj ranks all students in the same order as in PCj
, up to the stu-

dent t
�
j , who is then immediately followed by Cj, whenever �(Cj) \ S 6= ;, and Q

�
Cj

= QCj
if

�(Cj)\ S = ;, for all Cj 2 C. For example, suppose PSi
= (C1; C2; C3; C4; Si; � � �) and �(Si) = C2.

Then Q
�
Si

= (C1; C2; Si; � � �) 2 
Si
is an exact truncation for Si. QSi

= (C1; C2; C3; Si; � � �) 2 
Si

and Q0
Si

= (C1; Si; � � �) 2 
Si
are both truncation strategies for Si but they are not exact trun-

cations. Similarly, suppose college Cj 's true preference is PCj
= (S1; S2; S3; S4; S5; Cj; � � �) 2 
Cj

and his quota qCj
= 3. Given a matching � such that �(Cj) = fS1; S3; Cjg, one exact trunca-

tion strategy for Cj is Q
�
Cj

= (S1; S2; S3; Cj; � � �) 2 
Cj
. Both QCj

= (S1; S2; Cj; � � �) 2 
Cj
and
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Q0
Cj

= (S1; S2; S3; S4; Cj; � � �) are truncations but they are not exact truncations. Hence if a student

Si is matched with a college, then the ranking orders and the elements in her exact truncations

before Si are uniquely determined by PSi
and her matched college. If a college Cj is matched with

at least one student under a matching, the ranking orders and the elements in its exact truncations

before Cj are uniquely determined by PCj
and the least preferred student in its assignment under

that matching. If a student is not matched with any college or a college is not matched with at

least one student under a matching, any truncation for the student or college is exact.

Theorem 4. For all pro�les P 2 
 and all ' 2 �, S(P ) � '(N ts('; P )).

Proof. It follows from Lemma 5.6 in RS that S(P ) 6= ; for any pro�le P 2 
. Given � 2 S(P ),

let Q� be an exact strategy pro�le in truncations. Then '(Q�) = � for all stable matching

mechanisms ' 2 � since S(Q�) = f�g. We claim that this is a strong equilibrium in truncations

of �('; P ) for all ' 2 �.

Suppose that this is not true for some stable matching mechanism '. Then by the de�nition

of the strong equilibrium, there exists a coalition T � C [ S, with strategies RT 2 �k2T
k, such

that, for all Si 2 T \ S,

'Si
( ~Q)PSi

'Si
(Q�); (1)

and for all Cj 2 T \ C,

'Cj
( ~Q) �PCj

'Cj
(Q�); (2)

where ~Q = (Q
�
�T ; RT).

De�ne T1 = fSk 2 S : 'Sk
( ~Q)PSk

'Sk
(Q�)g and T2 = fCl 2 C : 'Cl

( ~Q) �PCl
'Cl

(Q�)g. Thus,

T � T1 [ T2. We consider two cases.

(a). T2 = ;. Then T1 6= ; since T � T1. Let Cl = 'Si
( ~Q). It follows that Si 62 'Cl

(Q�) = �(Cl)

since ClPSi
'Si

(Q�) = �(Si). Because T2 = ;, by the de�nition of Q
�
Cl

that is a truncation of PCl
, it

follows that SiQ
�
Cl
t
�
l whenever �(Cl)\S 6= ; or SiQ

�
Cl
Cl if �(Cl)\S = ;. Since QCl

is a truncation

of PCl
, we also have that SiPCl

t
�
l whenever �(Cl) \ S 6= ; or SiPCl

Cl if �(Cl) \ S = ;. Hence

(Si; Cl) blocks � with respect to P . This is a contradiction.

(b). T2 6= ;. For any college Cj in T2, by the responsiveness of �PCj
and (2), there exists a

student � 2 'Cj
( ~Q) and � 2 'Cj

(Q�) with � 62 'Cj
(Q�) such that �PCj

� . Note that � is not

in T1. Otherwise, CjP�'�(Q
�) implies that (�; Cj) blocks � with respect to P . This means that

:CjP�'�(Q
�). Now by the individual rationality, it follows that '�(Q

�)P�CjP��. But this is

impossible because there does not exist Cj between '�(Q
�) and �. 2

Given a pro�le P 2 
, Theorem 4 shows that there always exist a strong equilibrium in trun-

cations of �('; P ) for all ' 2 �. Theorem 5 below shows that the set of stable matchings with
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respect to a Nash equilibrium in truncations always contains a unique element.

Theorem 5. Let Q 2 N('; P ), ('; P ) 2 �� 
, in truncations. Then S(Q) = f'(Q)g.

Proof. Suppose on the contrary that � 2 S(Q). Then by Lemma 1, 'Si
(Q)PSi

�(Si) for all

Si 2 S with 'Si
(Q) 6= �(Si) and :�(Cj) �PCj

'Cj
(Q) for all Cj 2 C with �(Cj) 6= 'Cj

(Q). Since

Q 2 
 is a truncation of P , we also obtain that 'Si
(Q)QSi

�(Si) for all Si 2 S with 'Si
(Q) 6= �(Si)

and :�(Cj) �QCj
'Cj

(Q) for all Cj 2 C with �(Cj) 6= 'Cj
(Q). But this is a contraction to Theorem

5.33 in RS which shows that S(Q) is a lattice under the common preferences of colleges, QC , and

dual to the common preferences of students, QS . 2

DenoteN t('; P ) the set of all Nash equilibria in truncations of the game �('; P ), ('; P ) 2 ��
.

Corollary 1. For any P 2 
, N t('1; P ) = N t('2; P ) for any '1; '2 2 �.

Theorem 3(ii) in RV shows that no set of truncation strategies can result in an unstable matching

at which everyone is matched. Their result in the college admissions problem has the following form.

Theorem6. Let Q 2 
 be any truncation preference pro�le and � 2 S(Q) such that �(Si) 6= Si

for all Si 2 S and �(Cj) \ S 6= ; for all Cj 2 C. Then � 2 S(P ).

Proof. It follows, from the truncations and � 2 IR(Q), that � 2 IR(P ). Now suppose on

the contrary that � 62 S(P ), then 9(Si; Cj) 2 S � C such that CjPSi
�(Si) and SiPCj

� for some

� 2 �(Cj). Recall that t
�
j 2 �(Cj) \ S such that �QCj

t
�
j for all � 2 �(Cj) \ S n ft

�
j g. � may

not exist if t
�
j is the only element in �(Cj) but t

�
j always exists since �(Cj) \ S 6= ;. Because

CjPSi
�(Si)PSi

Si and QSi
is a truncation of PSi

, it follows that CjQSi
�(Si)QSi

Si. Because SiPCj
�

for some � 2 �(Cj) and QCj
is a truncation of PCj

, it follows that SiQCj
t
�
j . This shows that

(Si; Cj) blocks � with respect to Q, a contradiction to � 2 S(Q). 2

Truncations in Theorem 6 are crucial. In Example 1 every student is matched with a college

and every college is matched with at least one student under the matching y. But the matching y

is not stable with respect to P . This is because the pro�le (QC1
; P�C1

) is not a truncation pro�le.

Nevertheless truncations do not always produce stable matchings, even at a Nash equilibrium.

Example 2 (RV). Let n = r = 2, PSi
= (C1; C2; Si) for i = 1; 2 and PCj

= (S1; S2; Cj) for

j = 1; 2. Each college has quota of 1. Construct a truncated pro�leQ as follows: QSi
= (C1; Si; C2)

11



for i = 1; 2 and QCj
= (S1; Cj; S2) for j = 1; 2. Now the matching � = [(S1;C1); (S2;S2); (C2;C2)]

is not stable for the true pro�le P but it is a unique stable matching for the pro�le Q. Thus,

'(Q) = � for all stable mechanisms. To see that Q is a Nash equilibrium of the game �('; P ),

it is su�cient to observe that C2 can not do better by unilaterally listing S2 and S2 can not do

better by unilaterally listing C2. Further, this equilibrium is an undominated strategy equilibrium

(Lemma 2 in RV). 2

6 Rematching Proof Equilibrium

A reported pro�le is a rematching proof equilibrium if it is a Nash equilibrium and there are no

pairs of a college and student who have joint deviations to make both better o�, given the oth-

ers' reports �xed. Therefore, the notion of rematching proof equilibria excludes all possibilities of

strategically joint playing by a pair of a college and student. The rematching proof equilibrium

may be considered as bilateral rationality, in contrast to the unilateral rationality of the Nash

equilibrium. Since the college admissions problem of the study is bilateral in nature, the proposed

rematching proof equilibrium notion captures this bilateral feature of the market.

De�nition. A rematching proof equilibrium Q of a game �('; P ) is a Nash equilibrium and

has the property that if

'Si
(Q�fSi;Cjg; Q

0
Si
; Q0

Cj
)PSi

'Si
(Q);

then

:'Cj
(Q�fSi;Cjg; Q

0
Si
; Q0

Cj
) �PCj

'Cj
(Q);

for all (Si; Cj) 2 S�C, all (Q
0
Si
; Q0

Cj
) 2 
Si

�
Cj
. Denote the set of all rematching proof equilibria

in truncations of the game �('; P ) by N trp('; P ).

The intuition why the rematching proof equilibria are helpful in producing stable matchings

may be understood by the marriage problem. Assume that qCj
= 1 for all Cj 2 C. Suppose

Q 2 N rp('; P ) is a rematching proof equilibrium and '(Q) is not stable. That is, there is a pair

of student Si and college Cj that blocks '(Q), i.e., SiPCj
'Cj

(Q) and CjPSi
'Si

(Q). Now construct

two strategies Q0
Si

= (Cj; Si; � � �) and Q0
Cj

= (Si; Cj; � � �) and consider the outcome of a stable

matching mechanism at the new pro�le (Q�fSi;Cjg; Q
0
Si
; Q0

Cj
). It is easy to see that Si and Cj will

be matched with each other under a stable matching mechanism. This disputes the assumption

that Q is rematching proof.

While the above intuition is instructive but it is somehow misleading for the college admissions

problem. For example, y is not stable in Example 1 because C1 and S3 blocks it. One may hope
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that both the student S3 and the college C1 will get better o� by constructing such strategiesQ0
S3

=

(C1; S3; � � �) 2 
S3 and Q
0
C1

= (S2; S3; C1; � � �) 2 
C1
, the same idea used in the marriage problem.

But this is not the case because the unique stable outcome at the new pro�le (P�fC1;S3g; Q
0
C1
; Q0

S3
)

is z = [(C1;S3; C1); (C2;S2); (C3; S1); (S4; S4)], which matches college C1 with fS3; C1g rather than

fS2; S3g. Because C1's preferences over group of students are responsive and transitive, C1 prefers

fS2; S4g to fS2; C1g to fS3; C1g. Hence C1 gets worse o� in comparison with the matching y in

which C1 is matched with fS2; S4g. The same idea that works for the marriage problem does

not apply to the college admissions problem. This is why the proof of Theorem 7 becomes more

sophisticated in the college admissions problem relative to the marriage problem.

Given a college admissions problem one can construct a related marriage problem by making as

many copies as its quota for each college, with each copy of a college one enrollment and the same

preferences over individual students. A matching is stable in this related marriage problem if and

only if it is stable for the college admissions problem (Lemma 5.6 in RS). But this technique is not

so useful to discuss the strategic aspects of a stable matching mechanism because it requires every

copy of the same college in the related marriage problem must have the same strategies and the

same underlying true preferences. A Nash equilibrium in the related marriage problem in which

every copy is considered as an independent individual is not identical to a Nash equilibrium in the

college admissions problem, and vice versa.

Lemma 2. Every exact truncation strategy pro�le that is also rematching proof produces a

stable matching with respect to P .

Proof. Let ('; P ) 2 � � 
. Let Q 2 N trp('; P ) be an exact rematching proof equilibrium

in truncations. Suppose on the contrary that '(Q) 62 S(P ). Then 9(Si; Cj) 2 S � C such that

CjPSi
'Si

(Q) and SiPCj
� for some � 2 'Cj

(Q). (Note that '(Q) 2 IR(P ) since Q is a truncation

and '(Q) 2 IR(Q)). We discuss four cases.

Case a. 'Si
(Q) 6= Si and 6 9Cj 2 'Cj

(Q).

Because CjPSi
'Si

(Q) and QSi
is a truncation of PSi

up to 'Si
(Q), it follows that CjQSi

'Si
(Q).

Because SiPCj
� for some � 2 'Cj

(Q) and QCj
is a truncation of PCj

, it follows that SiQCj
t
'(Q)
j

(t
'(Q)
j exists since 'Cj

(Q) � S). This shows that (Si; Cj) blocks '(Q) with respect to Q, a contra-

diction to '(Q) 2 S(Q).

Case b. 'Si
(Q) = Si and 6 9Cj 2 'Cj

(Q).

13



Since QCj
is a truncation of PCj

, the assumption that SiPCj
� for some � 2 'Cj

(Q) implies that

SiQCj
t
'(Q)
j QCj

Cj . Since CjPSi
'Si

(Q) and QSi
is a truncation of PSi

, it follows that SiQSi
Cj. Oth-

erwise, CjQSi
Si implies that (Si; Cj) blocks '(Q) with respect to Q. Now let Q0

Si
= (� � � ; Cj; Si; � � �)

be a truncation of PSi
, up to Cj. Then we show that 'Si

(Q�Si
; Q0

Si
) 6= Si.

Suppose on the contrary that 'Si
(Q�Si

; Q0
Si
) = Si. Then �QCj

Si for all � 2 'Cj
(Q�Si

; Q0
Si
).

Otherwise, SiQCj
� for some � 2 'Cj

(Q�Si
; Q0

Si
) implies that (Si; Cj) blocks '(Q�Si

; Q0
Si
) with re-

spect to (Q�Si
; Q0

Si
). Therefore, 'Cj

(Q�Si
; Q0

Si
) � S. Thus there exists a student � 2 'Cj

(Q�Si
; Q0

Si
)

such that � 62 'Cj
(Q) and �QCj

t
'(Q)
j , since 'Cj

(Q) � S and Si is not in 'Cj
(Q�Si

; Q0
Si
) but

SiQCj
t
'(Q)
j . This implies that CjQ�'� (Q) since Q� is a truncation up to '�(Q). Because �QCj

t
'(Q)
j ,

(�; Cj) blocks '(Q) with respect to Q. This shows that 'Si
(Q�Si

; Q0
Si
) 6= Si.

It follows that either 'Si
(Q�Si

; Q0
Si
) = Cj or 'Si

(Q�Si
; Q0

Si
)QSi

Cj. Either case implies that

'Si
(Q�Si

; Q0
Si
)PSi

'Si
(Q);

contradicting the fact that Q is a Nash equilibrium.

Case c. 'Si
(Q) = Si and 9Cj 2 'Cj

(Q).

Construct a strategy Q0
Si
= (� � � ; Cj; Si; � � �) for the student Si by shifting Cj right to the front

of Si in QSi
and the rest ranking order in Q0

Si
is exactly the same as in QSi

. Construct a strategy

Q0
Cj

for the college Cj such that Q0
Cj

= QCj
if SiQCj

Cj; otherwise, Q
0
Cj

= (� � � ; Si; Cj; � � �) by

shifting Si right to the front of Cj and the rest ranking order in Q0
Cj

is exactly the same as in QCj
.

Denote ~Q = (Q�fSi;Cjg; Q
0
Si
; Q0

Cj
). We show that

'Si
( ~Q) = Cj and 'Cj

( ~Q) = 'Cj
(Q) [ fSig n fCjg:

First, if 'Si
( ~Q) = Si, then 'Cj

( ~Q) � S. Otherwise, 9Cj 2 'Cj
( ~Q) implies that (Si; Cj) blocks

'( ~Q) with respect to ~Q. But if 'Cj
( ~Q) � S, then there exists � 2 'Cj

( ~Q) such that � 62 'Cj
(Q).

Because � 6= Si, it follows that CjQ�'�(Q) since Q� is a truncation. By the construction of Q0
Cj
,

we have that �QCj
Cj. Therefore (�; Cj) blocks '(Q) with respect to Q. Therefore, 'Si

( ~Q) 6= Si.

Second, suppose that 'Si
( ~Q) 6= Cj . Then '( ~Q) 2 S(Q) by the constructions of Q0

Si
and

Q0
Cj
. But Theorem 5.12 in RS shows that the set of students enrolled is the same at every stable

matching. Therefore, the fact that 'Si
( ~Q) 6= Si and '( ~Q) 2 S(Q) implies that 'Si

(Q) 6= Si. This

is a contradiction to our assumption in Case c. Therefore, 'Si
( ~Q) = Cj .

Finally, 'Si
( ~Q) = Cj implies 'Cj

( ~Q) = 'Cj
(Q)[ fSig n fCjg. This is because S(Q) = f'(Q)g

and any blocking pair (�; Cj) of '( ~Q) will be a blocking pair of '(Q) with respect to Q, by the

constructions of Q0
Si

and Q0
Cj
.

Now, since �PCj
is responsive and SiPCj

Cj, it follows that

Cj = 'Si
( ~Q)PSi

'Si
(Q)
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and

'Cj
( ~Q) �PCj

'Cj
(Q);

which is a contradiction to the rematching proofness of Q. This completes the proof of Case c.

Case d. 'Si
(Q) 6= Si and 9Cj 2 'Cj

(Q).

Let Sk1; � � � ; Skq 2 'Cj
(Q)\S such that Sk1QCj

� � �QCj
Skq. Note that q < qCj

and t
'(Q)
j = Skq.

If t
'(Q)
j does not exists, letQ0

Si
= (Cj ; Si; � � �) andQ

0
Cj

= (Si; Cj; � � �). Clearly, 'Si
(Q�fSi;Cjg; Q

0
Si
; Q0

Cj
) =

Cj . This is a contradiction to the rematching proofness of Q.

Assume that t
'(Q)
j exists. We want to construct a strategy Q0

Si
for Si and a strategy Q0

Cj
for

Cj to crowd out Cj .

Let Q0
Si
= (Cj ; Si; � � �) and Q

0
Cj

= (Si; Sk1; � � � ; Sk(q�1); Skq; Cj; � � �). We show that 'Si
( ~Q) = Cj

and 'Cj
( ~Q) = fSig [ 'Cj

(Q) n fCjg, where ~Q = (Q�fSi;Cjg; Q
0
Si
; Q0

Cj
).

First, suppose that 'Si
( ~Q) = Si. Then there exists Cj 2 '( ~Q). This follows from the construc-

tion of Q0
Cj
. But then this implies that '( ~Q) 62 S( ~Q) since (Si; Cj) blocks '( ~Q). This shows that

'Si
( ~Q) = Cj .

Second, suppose that 'Cj
( ~Q) 6= fSig[ 'Cj

(Q)nfCjg. Then there exist at least one Cj 2 'Cj
( ~Q)

and at least one student Sk 2 'Cj
(Q) such that Sk 62 'Cj

( ~Q). Since Sk 6= Si, it follows thatCjQSk
Sk

since 'Sk
(Q) = Cj . Because 9Cj 2 'Cj

( ~Q) and '( ~Q) 2 S( ~Q), it follows that 'Sk
( ~Q)QSk

Cj by the

fact that QSk
is a truncation of PSk

up to Cj. Hence, we have that 'Sk
( ~Q)QSk

CjQSk
Sk.

Let Cl = 'Sk
( ~Q). Note that Cl 6= Cj. It follows that SkQCl

Cl, by individual rationality.

Since Sk 62 'Cl
(Q), it follows from the stability of '(Q) that 'Cl

(Q) � S. From the stability of

'(Q) again, �QCl
Sk for every student � 2 'Cl

(Q). Therefore, �QCl
SkQCl

Cl for every student

� 2 'Cl
(Q). But QCl

is an exact truncation of PCl
. There is no such a student Sk between � and

Cl. This is a contradiction.

Therefore, it is shown that 'Si
(Q0) = Cj and 'Cj

(Q0) = fSig [ 'Cj
(Q) n fCjg. Since �PCj

is

responsive and SiPCj
Cj , we have that

Cj = 'Si
( ~Q)PSi

'Si
(Q)

and

'Cj
( ~Q) �PCj

'Cj
(Q);

which contradicts the assumption that Q is rematching proof. This completes the proof of Case d.

Four cases together complete the proof of the lemma since ('; P ) 2 �� 
 is arbitrarily chosen

and S(Q) = f'(Q)g according to Theorem 5. 2
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We now drop the exact condition in Lemma 2 to obtain the main result in this paper.

Theorem 7. Every rematching proof equilibrium in truncations produces a stable matching

with respect to P .

Proof. Let ('; P ) 2 � � 
, and Q 2 N trp('; P ) be a rematching proof equilibrium in trun-

cations. Denote Q� = Q'(Q) an exact preference pro�le with respect to P and '(Q). Theorem

5 shows that S(Q) = f'(Q)g. By the construction of Q�, '(Q) 2 S(Q�) and it follows that

S(Q�) = f'(Q)g. Then it follows from Lemma 2 that '(Q�) is in S(P ) if we can show that Q� is

rematching proof.

Step 1. Q� is a Nash equilibrium.

Suppose on the contrary that Q� is not a Nash equilibrium. Then there exists Si 2 S, with

Q0
Si
2 
Si

, such that

'Si
(Q�

�Si
; Q0

Si
)PSi

'Si
(Q�) = 'Si

(Q)

or there exists Cj 2 C, with Q
0
Cj
2 
Cj

, such that

'Cj
(Q�

�Cj
; Q0

Cj
) �PCj

'Cj
(Q�) = 'Cj

(Q):

Consider �rst that it is Si who deviates. Then denote Cl = 'Si
(Q�

�Si
; Q0

Si
). It follows that

SiQ
�
Cl
� for some � 2 'Cl

(Q�). We consider two cases: (i) 'Si
(Q�) 6= Si and (ii) 'Si

(Q�) = Si.

In case (i), we have that ClQ
�
Si
'k(Q

�) and then (k; j) blocks '(Q�) under Q�. (�): In case (ii),

let Q̂Si
= (Cl; Si; � � �). For any � 2 S(Q�Si

; Q̂Si
), �(Si) = Si implies that (Si; Cl) blocks � under

(Q�Si
; Q̂Si

). Therefore �(Si) = Cl for every � 2 S(Q�Si
; Q̂Si

). But this is a contradiction to the

fact that Q is a Nash equilibrium.

Second consider that it is Cj that deviates. Then CjQ
�
�'�(Q) for every � 2 'Cj

(Q�
�Cj

; Q0
Cj
)

and � 62 'Cj
(Q). Consider two cases: (i) 'Cj

(Q�)\S 6= ; and (ii) 'Cj
(Q�)\S = ;. In case (i) there

exists at least one � 2 'Cj
(Q�

�Cj
; Q0

Cj
) and � 62 'Cj

(Q�) such that �Q�
Cj
t
'(Q)
j , and then �QCj

t
'(Q)
j .

But then (�; Cj) blocks '(Q) under Q. In case (ii), choose a student � such that CjP�'�(Q), since

there exists � such that CjQ
�
�'�(Q). Let Q0

� = (Cj ; �; � � �) 2 
� and Q0
Cj

= (�; Cj; � � �) 2 
Cj
.

Clearly, �(�) = Cj for every � 2 S(Q�f�;Cjg; Q
0
� ; Q

0
Cj
). But this implies that Q is not rematching

proof. This is a contradiction.

Step 2. Q� is rematching proof.
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Suppose on the contrary that Q� is not rematching proof. Then there exists (Si; Cj) 2 S � C,

with (Q0
Si
; Q0

Cj
) 2 
Si

� 
Cj
, such that

'Si
( ~Q�) PSi

'Si
(Q�) = 'Si

(Q) (3)

'Cj
( ~Q�) �PCj

'Cj
(Q�) = 'Cj

(Q) (4)

where ~Q� = (Q�
�fSi;Cjg

; Q0
Si
; Q0

Cj
). We consider three cases.

Case a. 'Cj
(Q) � S.

By responsiveness of �PCj
and (4), 9� 2 'Cj

( ~Q�) and � 2 'Cj
(Q�) such that � 62 'Cj

(Q�) and

�PCj
� . It follows from the construction ofQ�

Cj
that �QCj

� . If Si = �, then CjPSi
'Si

(Q�) = 'Si
(Q).

We consider two cases: (i) 'Si
(Q�) 6= Si and (ii) 'Si

(Q�). In case (i) we have CjQSi
'Si

(Q) and

then (Si; Cj) blocks '(Q) with respect to Q, a contradiction. In case (ii) let Q̂Si
= (Cj; � � �) 2 
Si

and then �(Si) = Cj for every � 2 S(Q
�
�Si

; Q̂Si
) (see �), which contradicts to the fact that Q� is

a Nash equilibrium. This shows that � 6= Si.

But if � 6= Si, then either (i) CjQ
�
�'�(Q

�) if '�(Q) 6= � or (ii) CjQ�� if '�(Q) = �. (i)

follows from (3), the assumption '�(Q) 6= � and the construction of Q�
� . Either case implies that

CjQ�'�(Q). This implies that (�; Cj) blocks '(Q) with respect to Q.

Case b. 'Cj
(Q�) \ S 6= ; and 9Cj 2 'Cj

(Q�).

First suppose Cj = 'Si
( ~Q�). We discuss two subcases, (i) 'Si

(Q�) 6= Si and (ii) 'Si
(Q�) = Si.

In case (i), CjPSi
'Si

(Q) implies that CjQ
�
Si
'Si

(Q). And then (Si; Cj) blocks '(Q�) with

respect to Q�, since Cj 2 'Cj
(Q�) and SiQ

�
Cj
Cj . In case (ii), let Q̂Si

= (Cj ; Si; � � �) and denote

Q̂ = (Q�Si
; Q̂Si

). Again, �(Si) = Cj for every � 2 S(Q̂); see �. But this implies that Q is not a

Nash equilibrium, a contradiction.

Second, suppose Cl = 'Si
( ~Q�) and then Cl 6= Cj . It follows that SiQ

�
Cl
� for some � 2 'Cl

(Q�).

Let Q̂Si
= (Cl; Si; � � �) and consider 'Si

(Q̂�), where Q̂� = (Q�
�Si

; Q̂Si
). If 'Si

(Q̂�) = Cl, then Q
� is

not a Nash equilinrium. Therefore, 'Si
(Q̂�) = Si. This implies that 'Cl

(Q̂�) � S and �Q�
Cl
Si for

all students � 2 'Cl
(Q̂�). Moreover, �Q�

Cl
� for some � 2 'Cl

(Q�) since SiQ
�
Cj
� . If ClQ

�
�'�(Q

�),

then (�; Cl) blocks '(Q
�) with respect to Q�. Therefore, we have that '�(Q

�)Q�
�Cl. By individual

rationality and the construction of Q�
� , we also have that ClQ

�
�� since � 6= Si. But this is impossible

because there does not exist any Cl between '�(Q
�) and � in Q�

� , no matter whether '�(Q
�) = �

or '�(Q
�) 6= �.

Case c. 'Cj
(Q)\ S = ;.
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First, suppose that Cj = 'Si
( ~Q). We have that SiPCj

Cj by individual rationality. Let Q̂Si
=

(Cj; Si; � � �) and Q̂Cj
= (Si; Cj; � � �). Denote Q̂ = (Q�fSi;Cjg; Q̂Si

; QCj
). For any stable matching

� 2 S(Q̂), we have �(Si) = Cj and Si 2 �(Cj). Therefore, by the responsiveness, we have,

'Si
(Q̂)PSi

'Si
(Q)

and

'Cj
(Q̂) �PCj

'Cj
(Q);

which contradicts to the assumption that Q is rematching proof.

Second, suppose Cl = 'Si
( ~Q) and Cl 6= Cj . Then one can repeat the proof of the last paragraph

in Case b above. This completes the proof. 2.

We conclude this section by two useful corollaries from Theorems 4 and 7, and Corollary 1.

They follow from the fact that a strong equilibrium is rematching proof.

Corollary 2. A rematching proof equilibrium in truncations always exists. The sets of all

rematching proof equilibria in truncations coincide for all stable matching mechanisms.

Corollary 3. All strong equilibria in truncations produce stable matchings with respect to

the true preference pro�le P . The sets of all strong equilibria in truncations coincide for all stable

matching mechanisms.

These results show that there is no di�erence among all stable matching mechanisms in re-

matching proof or strong equilibria in truncations. This is in the sharp contrast to the situation

in which agents report their preferences in a straightforward manner. It is known that the student

proposal algorithm (Gale and Shapley (1962), RS) produces a stable matching that is optimal for

all students but it is the least preferred stable matching for the college, and the college proposal

algorilthm produces a stable matching that is optimal for all colleges but it is a matching that is

the least preferred by all students. But at a rematching proof or strong equilibrium in truncations

one and only stable matching exists and this matching is stable not only for the (mis)reported

pro�le but also for the true pro�le. All stable matching mechanisms, either the college proposal

algorithm or the student proposal algorithm, produce precisely the same stable matching. Which

stable matching a stable matching mechanism will produce in a rematching proof or strong equi-

librium in truncations completely depends on agents' reported equilibrium strategies not on the

speci�c feature of the stable matching mechanism. These results may provide some instructive
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guidances in the design of a stable matching mechanism in practice.

7 Conclusions

When we consider a possible re�nement of Nash equilibrium in pure strategies, there are limited

choices of the existing equilibrium re�nements. One possible direction is to see if the undominated

strategy equilibrium may also have the properties as the truncated rematching proof or strong one

does. One important example in this direction is the work in Roth (1984b) for the marriage problem

and for the Gale and Shapley mechanism. In the general framework, the answer to this direction

of search is negative. A truncated equilibrium manipulation in RV for the marriage problem is

undominated and an outcome of such an equilibrium may produce unstable matchings, as shown

in Example 2. Since the marriage problem is a special situation of the college admissions problem,

the search in this direction will be negative either. Therefore, some additional conditions on this

class of strategies are necessary for them to produce stable outcomes. Or we have to give up stable

mechanisms. Indeed, Alcalde (1994) considered an unstable mechanism which fully implements

the stable matching correspondence in undominated strategy equilibria for the marriage problem.

Whether this is a prospective direction of investigation for the college admissions problem remains

unclear.

A remaining question is whether any Nash equilibriumwhose outcome is stable must be rematch-

ing proof. The other open question is whether Theorem 7 holds for more complicated preferences

beyond the responsiveness. For example, does it hold when colleges' preferences over classes are

substitutable2? These two questions are left for the future study.

2See RS for the de�nition of substitutable preferences (without money) and Kelso and Crawford (1982) for the

de�nition of the gross substitutes condition (with money).
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