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ARMA-GARCH MODELS: BAYES ESTIMATION

VERSUS MLE,

AND BAYES NON-STATIONARITY TEST

Teruo Nakatsuma and Hiroki Tsurumi

Department of Economics, Rutgers University

New Brunswick, NJ, 08903, U.S.A.

Abstract

We compare small-sample properties of Bayes estimation and Maximum likelihood estimation

(MLE) of ARMA-GARCH models. Our Monte Carlo experiments indicate that in small

sample, the Bayes estimator beats the MLE. We also develop a Bayes method of testing strict

stationarity and ergodicity of the conditional variance in the GARCH(1,1) process, near epoch

dependence (NED), and finiteness of unconditional moments of the GARCH(1,1) process by

using a Markov chain Monte Carlo (MCMC) method. We apply this method to test these

properties in the ARMA-GARCH models of weekly foreign exchange rates.

KEY WORDS : Generalized Autoregressive Conditional Heteroskedasticity (GARCH), Markov

Chain Monte Carlo (MCMC), Near Epoch Dependence (NED).
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Introduction

One of purposes of our study is comparison between Bayes estimation and maximum likelihood

estimation (MLE) of a linear regression model with an ARMA error whose conditional variance

follows a generalized autoregressive conditional heteroskedasticity (GARCH) process. We call

this model an ARMA-GARCH model. GARCH by Bollerslev (1986), its predecessor

autoregressive conditional heteroskedasticity (ARCH) by Engle (1982), and other GARCH

variants have been widely studied and applied in economics and finance. While many of the

previous studies of GARCH models have been made in the classical or frequentist framework,

some researchers (Geweke (1989a, 1989b), Kleinbergen and Van Dijk (1993), Müller and Pole

(1995), Nakatsuma (1996), among others) studied the GARCH models in the Bayesian

framework. It will be interesting to examine which estimation, Bayes or MLE, is better. To

answer this question, we attempt to compare estimation results of the ARMA-GARCH model

between the Bayes estimation and the MLE in various scenarios by Monte Carlo experiments.

As the measurement of accuracy of estimation, we calculate root relative mean square errors

(RRMSE) of the posterior mean (Bayes estimation) and the MLE of parameters in the ARMA-

GARCH model replicated in the Monte Carlo experiments, and see which estimation produces

smaller RRMSE's. The results of our Monte Carlo experiments indicate that the posterior mean

is a better estimator than the MLE.

Another purpose of our study is to test stationarity and other properties in the

GARCH(1,1) process. Nelson (1990) derived a condition for strict stationarity and ergodicity of

the conditional variance in the GARCH(1,1) process as well as conditions for finiteness of
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unconditinal moments of the GARCH(1,1) process. Hansen (1991) derived a condition for near

epoch dependence (NED) of the GARCH(1,1) process. These conditions in Nelson (1990) and

Hansen (1991) are expressed as inequalities of parameters in the GARCH(1,1) model. In our

study, we test a) NED, b) finite unconditional variance, c) finite unconditional standard deviation,

and d) strict stationary and ergodicityin the GARCH(1,1) process by testing whether the

corresponding inequalities hold. In the frequentist framework, it is difficult to test whether those

inequalities hold or not. In the Bayesian framework, on the other hand, we can test the

inequalities by estimating their posterior probabilities. To do so, however, we need to calculate

multiple integrals of the posterior density with respect to nuisance parameters, and it may be a

difficult task. Kleinbergen and Van Dijk (1993) used an importance sampling method to estimate

the posterior probabilities of these inequalities. In this paper, we apply a Markov chain Monte

Carlo (MCMC) method to estimate the posterior probabilities, and we test whether the

GARCH(1,1) process has these properties. As an example, we test these properties in the ARMA-

GARCH model of weekly foreign exchange rates of five major currencies against U.S. dollar:

British pound, Canadian dollar, Deutsche mark, Japanese yen, and Swiss franc.

Organization of this paper is as follows. In Section 1, we explain the ARMA-GARCH

model and its estimation methods. In Section 2, we present results of our Monte Carlo

experiments to compare the Bayes estimation with the MLE. In Section 3, we present conditions

for stationarity and other properties of the GARCH(1,1) process and show how to test these

properties. In Section 4, we estimate ARMA-GARCH models of weekly foreign exchange rates,

and test these properties of the GARCH(1,1) process. In Section 5, conclusion remarks are given.
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1. ARMA-GARCH Model and Estimation Methods

We consider the following linear regression model with an ARMA(p,q)-GARCH(r,s) error, or

simply an ARMA-GARCH model:

where xt andγ are k×1 vectors, andεt follows N(0,σt
2). We call {ut} an ARMA(p,q)-GARCH(r,s)

(1)

process, and {εt} a GARCH(r,s) process. Let y≡[y1,…,yT]', x≡[x1,…,xT]', δ≡(γ,φ,θ,ω,α,β).

In the maximum likelihood estimation (MLE) of the ARMA-GARCH model, the estimator

of δ is obtained by solving

where f(y x,δ) is the likelihood function of the ARMA-GARCH Model:

(2)

and Sδ is the parameter space ofδ. In most practices, Sδ is a subset of k+p+q+r+s+1. Thus we need

(3)

to solve a constrained maximum likelihood problem to obtain the the estimator ofδ. In the Bayes

estimation, we consider the posterior density:
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whereπ(δ) is the prior density. The posterior mean ofδ1, which is one of parameters inδ, is

(4)

obtained by

whereπ(δ1 y,x) is the marginal posterior density ofδ1, δ-1 is parameters exceptδ1, Sδ1 and Sδ-1

(5)

are the parameter spaces ofδ1 and δ-1 respectively, and∫( )dδ-1 is the multiple integral with

respect toδ-1.

2. Monte Carlo Experiments: Bayes vs. MLE

In this section, we compare the Bayes estimation and the MLE of the ARMA-GARCH model

by Monte Carlo experiments. In the Monte Carlo experiments, we use the following data

generating process:

We setγ0 = 1, θ1 = .1, andω = 1. Values of the other parameters are listed in Table 1. The

(6)
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sample size is 200 in Case 1-6, and 400 in Case 7. For each case, we generate {yt} from the data

generating process (6) given values of parameters shown above.

Let us explain properties of the ARMA(1,1)-GARCH(1,1) process in each case in Table

1. In Case 1, 2, 3, and 7, the GARCH(1,1) process is integrated,i.e., it is an IGARCH(1,1)

process. (See Engle and Bollerslev (1986).) The values ofα1 andβ1 are ones used in Lumsdaine

(1995). In Case 3,φ1 is .99 and this is a near unit root situation. In Case 4, the conditional

variance is strictly stationary and ergodic but unconditional moments of the GARCH(1,1) process

are all infinite. (See Figure 2.) In Case 5, the conditional variance is non-stationary. (See also

Figure 2.) Finally, in Case 6, the conditional variance is stationary and all unconditional moments

of the GARCH(1,1) process is finite.

By using data simulated from the data generating process, we estimate the same model

as the data generating process. Thus there is no misspecification. We impose the following

constraints on parameters:

Under constraints in (7), {yt} is invertible, and the conditional variance is positive for all t. In

(7)

the MLE, we solve the constrained maximum likelihood problem (2) by a quasi-Newton method.

In the Bayes estimation, we use a Gaussian quadrature method to calculate posterior means. For

dimensions of 6 or less, a Gaussian quadrature formula with Simpson's rule yields good results.

We calculate root relative mean squared errors (RRMSE) of posterior means and MLE's to

compare the Bayes estimation and the MLE. The obtained RRMSE's are listed in Table 2.

For all cases exceptα1 and β 1 in Case 7, the Bayesian estimation produces smaller

RRMSE than the MLE. In Case 3 in whichφ1 is .99, and in Case 5 in which the conditional
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variance in the GARCH(1,1) process is non-stationary, the RRMSE's of the MLE ofγ0 andω are

much larger than those of the Bayesian estimation. Interestingly, the magnitude of the RRMSE's

in Case 4, in which the conditional variance is strictly stationary and ergodic but the

GARCH(1,1) process has no finite unconditional moments, is comparable to that in Case 6 in

which all unconditional moments are finite. In Case 7 in which the sample size is twice as many

but the values of parameters are the same as in Case 1, the RRMSE's become smaller than in

Case 1 as we expect from the consistency of the MLE.

In figure 1, we show kernel-smoothed densities of replicated posterior means and MLE's

of β1 for Case 1. The mode of the MLE is nearer to the true value than that of the posterior

mean, but the spread of the distribution is wider in the MLE than in the posterior mean. Thus

the RRMSE of the posterior mean is smaller than that of the MLE as shown in Table 2. This is

a typical result of a “shrinkage” estimator.

In summary, the Bayes estimation is better than the MLE in small sample in terms of

smaller mean square errors. In both Bayes estimation and MLE, IGARCH(1,1) process and

GARCH(1,1) process with the non-stationary conditional variance tend to yield instable estimates

when β1 is large and near 1. Infinite unconditional moments in the GARCH(1,1) process,

however, do not seem to affect the stability of estimates when the conditional variance is strictly

stationary and ergodic, andα1, instead ofβ1, is large.
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3. Testing Stationarity and Other Properties of the GARCH(1,1) Process

In this section, we present some important properties of the GARCH(1,1) process and how to test

these properties. Hansen (1991) showed that the GARCH(1,1) process is L2-near epoch dependent

(L2-NED) if

whenεt/σt (≡zt) is i.i.d. normal. From Corollary in Nelson (1990), the unconditional variance of

(8)

the GARCH(1,1) process is finite if

if zt is i.i.d. normal, and the unconditional standard deviation of the GARCH(1,1) process is finite

(9)

if

Nelson (1990) showed that the conditional variance of the GARCH(1,1) process is strictly

(10)

stationary and ergodic if

The regions of (α1,β1) satisfying (8)-(11) are shown in Figure 2.

(11)

We test these properties by estimating the posterior probabilities of inequalities (8)-(11).

We estimate the posterior probabilities by a Monte Carlo method with a kernel estimation. For
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example, for the NED condition (8), we calculate

whereα1
(j) andβ 1

(j) (j=1,…,M) are realized values in a Monte Carlo simulation, K( ) is a kernel

(12)

for the distribution function, and hj is the window width. We choose the standard normal

distribution function as K( ), and hj is decided by a local smoothing method. For the condition

of finite unconditional variance, we also use the same method. However, for conditions of finite

unconditional standard deviation and of strict stationarity and ergodicity, we need to calculate the

expectation of non-linear functions. To do so, we approximate the expectation by a Monte Carlo

method. For example, E[ln(β1
(j) +α1

(j) z2)] is approximated by

where z(h) is generated from N(0,1). Once we have the expectation corresponding to each pair of

(13)

(α1
(j),β1

(j) ), we can apply the same kernel estimation method as in (12) to estimate the posterior

probabilities of finite standard deviation and of strict stationarity and ergodicity.

Finally, we need the Monte Carlo sample ofα1 andβ1. Kleinbergen and Van Dijk (1993)

used an importance sampling method to estimate the posterior probabilities of the stationarity

condition of the conditional variance and the finite unconditional variance condition. In our study,

we apply a Markov chain sampling method to generateα1 and β1 to estimate the posterior

9



probabilities. The Markov chain sampling scheme we use in this paper is explained in Nakatsuma

(1996). To construct the Markov chain sampling scheme for the ARMA-GARCH model, we

consider the following auxiliary ARMA models:

AM1: regression model with an ARMA(p,q) error:

AM2: ARMA(l,s) model of the squared errorsεt
2:

(14)

where l≡max{r,s}, αj=0 for j>r, andβj=0 for j>s. The outline of our Markov chain sampling

(15)

scheme is as follows:

a) Generate (γ,φ,θ) from AM1 given {σt
2} and the rest of parameters.

b) Generate (ω,α,β) from AM2 given {εt
2}, { σt

2}, and the rest of parameters.

c) Apply the Metropolis-Hastings algorithm after each parameter is generated. The

Metropolis-Hastings algorithm is given as follows:

I) Generate a candidate ofδ from the proposal distribution givenδ(j).

II) Accept or reject this candidate by
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where

(16)

andπ(δ) is the density of the target distribution and g(δ(j),δ) is the density of the

(17)

proposal distribution.

d) Repeat a) - c) until the sequences become stable.

In this sampling scheme, we update {εt
2} and {σt

2} at every time corresponding parameters are

updated. See Chib and Greenberg (1994), Müller and Pole (1995) and Nakatsuma (1996) for

more details.

4. Examples: Weekly Foreign Exchange Rates

In this section, we estimate ARMA-GARCH models of weekly foreign exchange rates of five

currencies: British pound, Canadian dollar, Deutsche mark, Japanese yen, and Swiss franc against

U.S. dollar, and we test stationarity and other properties of the GARCH(1,1) process in the

estimated ARMA-GARCH models of the exchange rates.

The sample period is from the week of June 4th in 1974 to the week of May 18th in
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1987. The sample size is 729. We take the natural logarithm of the exchange rates, and subtract

the first period's value from the current values. Thus the first period's value of the log exchange

rate series is always 0. Using weekly exchange rates data, We estimate the same ARMA(1,1)-

GARCH(1,1) model specification as in (6) except omitting the constant termγ0. We also impose

the same constraints as in (7) on parameters. The Bayes estimation of the ARMA-GARCH model

is obtained by an MCMC method explained in Section 3. The number of iterations of the Markov

chain sampling is 11000, and we discard first 1000 as burn-in. Thus the size of the Monte Carlo

sample is 10000. Posterior means and standard deviations of parameters are listed in Table 3.

Posterior probabilities of near epoch dependence (NED), finite unconditional standard deviation

and variance, and strict stationarity and ergodicity of the GARCH(1,1) process are estimated by

a kernel smoothing method with the Gaussian kernel as explained in Section 3. To estimate

posterior probabilities of (10) and (11), we need to generate z∼N(0,1). The number of replications

of z is 10000. Estimated posterior probabilities are listed in Table 4. Estimated marginal posterior

densities of (8) - (11) for Swiss franc are plotted in Figure 3 and 4.

For Canadian dollar, all posterior probabilities in Table 4 is more than 99%. British pound

and Japanese yen also show a similar pattern to Canadian dollar, but their posterior probabilities

are a few points less than those of Canadian dollar. In particular, the probability of NED of

British pound and Japanese yen is about 90%. Deutsche mark and Swiss franc show a similar

pattern but different from the other three currencies. The posterior probability of NED is low for

both currencies, and it is unlikely that the NED condition holds. The posterior probabilities of

finite variance and standard deviation are less than 90%. Thus the GARCH(1,1) processes in

Deutsche mark and Swiss franc may not have finite unconditional moments. Finally, the posterior
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probability of strict stationarity and ergodicity is more than 90% but less than 95% for both

currencies. Hence there is a reasonable probability that the conditional variance in the

GARCH(1,1) processes in Deutsche mark and Swiss franc are not strictly stationary or ergodic.

We note that even though the posterior means and standard deviations ofα1 andβ1 seem

similar for British pound, Deutsche mark, and Swiss franc, the posterior probabilities of

stationarity and other properties of the GARCH(1,1) process for British pound are strikingly

different from Deutsche mark and Swiss franc. However, this may not be surprising. In Figure

2 for low α1 and highβ 1, the boundaries of NED, finite unconditional moments, and strict

stationarity and ergodicity are so close to each other that only a slight change inα1 and/orβ 1

may change the properties of the GARCH(1,1) process.

5. Conclusion Remarks

In this paper, we compare small-sample properties of the Bayes estimation and MLE of the

ARMA-GARCH model, and we find that the Bayes estimation is a better method than the MLE

in terms of smaller mean square errors in particular when the sample size is relatively small. We

also develop a method to test strict stationarity and ergodicity of the conditional variance, near

epoch dependence (NED), and finite unconditional variance and standard deviation in the

GARCH(1,1) process. We apply this method to weekly foreign exchange rates data, and we find

that even if the posterior means and standard deviations are similar, the posterior probabilities

of properties of the GARCH(1,1) process may not.
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TABLE 1. VALUES OF PARAMETERS IN MONTE CARLO EXPERIMENTS

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

φ1 .8 .8 .99 .8 .8 .8 .8

α1 .15 .05 .15 1.6 .25 .1 .15

β1 .85 .95 .85 .1 .85 .5 .85
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TABLE 2. RRMSEIN MONTE CARLO EXPERIMENTS

γ0 φ1 θ1 ω α1 β1

Case 1
MLE

Bayes

5.3811

1.4410

.0799

.0620

.8879

.5669

12.5389

2.8547

.5167

.5003

.1391

.1105

Case 2
MLE

Bayes

5.3591

1.4420

.0796

.0617

.8897

.5596

12.6988

3.1396

2.6501

.5266

.1954

.1123

Case 3
MLE

Bayes

66.9227

1.0449

0.230

.0170

.7593

.5567

16.095

2.8569

.5643

.5613

.1922

.1096

Case 4
MLE

Bayes

.8048

.6123

.0310

.0214

.7453

.5830

.6476

.4132

.2297

.1498

.8308

.3081

Case 5
MLE

Bayes

28.7341

1.2753

.1050

.0856

1.2289

.6396

97.7718

3.7631

3.1006

.5176

.4241

.3216

Case 6
MLE

Bayes

.7892

.4669

.0779

.0602

.9055

.5515

.6964

.4418

.9181

.8123

.6146

.3827

Case 7
MLE

Bayes

2.2573

1.5657

.0522

.0417

.6561

.5012

3.4636

.3966

.3333

.6725

.0628

.0992

Notes: the sample size is 200 in Case 1-6, and 400 in Case 7. The number of replications is 100 for the Bayes

estimation in Case 7. Otherwise, it is 500.
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TABLE 3.

POSTERIORMEANS AND STANDARD DEVIATIONS OF PARAMETERS

British

Pound

Canadian

Dollar

Deutsche

Mark

Japanese

Yen

Swiss

Franc

φ1 1.001

(0.00132)

1.001

(0.00105)

1.001

(0.00232)

1.003

(0.00269)

1.001

(0.00145)

θ1 0.05827

(0.0395)

0.08501

(0.0405)

0.08702

(0.0367)

0.08806

(0.0383)

0.07520

(0.0378)

ω 1.065×10-5

(3.78×10-6)

5.769×10-6

(2.20×10-6)

5.797×10-6

(3.54×10-6)

5.012×10-6

(1.41×10-6)

5.139×10-6

(2.93×10-6)

α1 0.1279

(0.0314)

0.2290

(0.0447)

0.1322

(0.0329)

0.08792

(0.0177)

0.1371

(0.0246)

β1 0.8231

(0.0406)

0.5887

(0.104)

0.8455

(0.0418)

0.8914

(0.0211)

0.8518

(0.0269)
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TABLE 4.

POSTERIORPROBABILITIES OF NED, FINITENESS OFUNCONDITIONAL MOMENTS,

AND STRICT STATIONARITY AND ERGODICITY

British

Pound

Canadian

Dollar

Deutsche

Mark

Japanese

Yen

Swiss

Franc

NED

β1
2+2α1β1+3α1

2<1
90.1% 99.0% 57.9% 89.3% 31.0%

Finite Variance

β1+α1<1
95.8% 99.7% 86.1% 94.4% 74.0%

Finite Std. Dev.

E[(β1+α1z
2)½]<1

95.3% 99.4% 85.8% 91.4% 79.9%

Strict Stationarity

E[ln(β1+α1z
2)]<0

97.9% 99.8% 94.0% 97.1% 92.0%
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Figure 1 Bayes Estimation versus MLE
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Figure 2 Regions of (α, β)
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Figure 3 Marginal Posterior Densities of Stationarity and NED Conditions (Swiss Franc)
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Figure 4 Marginal Posterior Densities of Finite Moments Conditions (Swiss Franc)
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