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1 Introduction

Firms cut or raise their prices in response to not only the market demand and supply of their own

products but also the demand and supply of the products of the other �rms. But �rms rarely cut or

raise their prices once for all. Instead they often cut or raise their prices periodically. This type of

pricing behavior invites an interesting question: Does the price path in an economy eventually end

up with an equilibrium? This question is not so obvious when �rms' products are interdependent

with each other. On the other hand, an answer to the question has a fundamental implication

for equilibrium in Macroeconomics which requires that aggregate demand (AD) equal aggregate

supply (AS). The equilibrium condition in Macroeconomics implies that the demand and supply

for each product in an economy is balanced at the given equilibrium price level at the same time.

Macroeconomists often use the AD-AS analysis without doubts whether an equilibrium exists and

how such an equilibrium is achieved. If such an equilibrium does not exist, there always exists

some products that are overdemanded or supplied no matter what the price level is in an economy.

This existence issue may not be problematic when each product is assumed perfectly divisible

and all products are independent with each other. But the existence issue will pop up when a

product is indivisible and products in an economy are interdependent with each other in one way

or another. Moreover, even though an equilibrium exists for a production economy, not every price

path converges to an equilibrium. Some price paths may stalk with complex cycles. Therefore, how

should �rms cut or raise their prices such that their prices eventually end up with an equilibrium

price level that balances the aggregate demand and supply in an economy?

This paper considers a production economy with indivisibilities to provide some insights to

these questions. The production economy consists of a �nite number of consumers and �rms.

There are a �nite number of indivisible (di�erentiated) products in the economy. A commodity

bundle in the economy may consist of di�erent numbers of di�erent products with multiple units

of each product. A consumer or a �rm may consume or produce any commodity bundle as he or

she wishes. Therefore, a consumer is characterized by his (interdependent) utility function over all

possible commodity bundles in the economy and a �rm is characterized by its (interdependent) cost

function over all possible commodity bundles. A feasible allocation in the economy is a collection

of commodity bundles, one commodity bundle for each consumer or producer, such that aggregate

demand does not exceed aggregate supply. A feasible allocation leaves the possibility that some

units of a product may not be consumed; but what is consumed should be produced in the economy.

A Walrasian equilibrium in this economy consists of a price vector (over the products) and a feasible
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allocation such that each commodity bundle for each consumer gives him the greatest consumer

surplus and each commodity bundle for each �rm gives her the greatest pro�t, and the market

clearing condition is satis�ed in the sense that aggregate demand is precisely equal to aggregate

supply. Since all products are indivisible, the market clearing condition for the aggregate demand

and supply also implies that the demand and supply for each individual product is balanced.

Not all such production economies have an equilibrium. Indeed Section 4 uses an example,

adopted from Kelso and Crawford (1982), to show that a Walrasian equilibrium may not exist

for some production economies. Therefore we �rst provide a full characterization of all Walrasian

equilibria in Section 3 and derive a useful necessary and su�cient condition for the existence of

Walrasian equilibrium in Section 4. Our major concern is the condition such that certain price

processes converge to a Walrasian equilibrium. Precisely, we attempt to look for the conditions

for every descending or ascending price path to converge to a Walrasian equilibrium within �nite

periods of time.

We identify one su�cient condition for every descending price path to converge to an equilib-

rium. We say that a product is overdemanded (oversupplied) with respect to a collection of com-

modity bundles if the number of that product supplied is not greater (smaller) than the number

of the product demanded in that collection. A collection of commodity bundles has the aggre-

gate overdemanded (oversupplied) property if each product is overdemanded (oversupplied) with

respect to that collection. The condition for the descending price path says that each price vector

at each period of time induces at least one collection of commodity bundles with the aggregate

oversupplied property1; see Section 5 for the formal de�nition. Intuitively, �rms, starting with high

prices of their products that may well create oversupplies, should not cut their prices to the degree

that creates (strictly) overdemands for every product under any collection of commodity bundles

induced by the price vector. As long as �rms practice this way, our result shows that the price

paths in the economy eventually arrive at an equilibrium within �nite periods of time.

The su�cient condition for the ascending price path is the opposite to that for the descending

price path, as one may have expected. The condition says that the price vector at each period of

time should induce at least one collection of commodity bundles with the aggregate overdemanded

property. Under this condition, every ascending price path converges to a Walrasian equilibrium

within �nite periods of time. When prices are ascending, the condition excludes those price paths

that may well create oversupplies for every product under any circumstance at some periods. Many

dynamic auctions for the sale of single object are designed in such a way that in each intermediate

1Note that we are considering the descending price paths.
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period of the auction some overdemanded exists. Moreover the overdemanded situations are elim-

inated by increasing the price or prices gradually. Our condition captures some merits behind this

practice and it may provide some useful guidance in designing an auction for the sale of multiple

products with multiple units of each product, when consumers' utility functions and producers'

cost functions are both interdependent.

Our production economy is closely related to Kelso and Crawford (1982), Bikhchandani and

Mamer (1994), Gul and Stacchetti (1996a,b) and Ma (1997a,b). Kelso and Crawford (1982) general-

ized the job-matching market in Crawford and Knoer (1981) to allow a �rm to hire as many workers

as he wishes and to have more complex utility functions. As in Crawford and Knoer (1981), they

generalized the Gale and Shapley (1962) deferred proposal algorithm to their job-matching market.

Under their gross substitutes condition, they showed that their generalized algorithm must stop

within �nite periods of time with a core outcome (thus a Walrasian equilibrium). Bikhchandani

and Mamer (1994) considered an exchange economy without production and provided a necessary

and su�cient condition for the existence of Walrasian equilibrium. Our characterization theorem

in Section 3 and the necessary and su�cient condition for the existence of Walrasian equilibrium

for the production economy are related to their condition in spirit. G�ul and Stacchetti (1996a,b)

studied the exchange economy as in Bikhchandani and Mamer (1994) and designed an English

auction by a generalization of the Hall Theorem (Hall (1935), Gale (1962)). They provided two

new su�cient conditions, the no complementarities and the single improvement property, for the

existence of Walrasian equilibrium. They showed that the set of Walrasian prices forms a lattice

under the common interests of sellers and the gross substitutes condition is equivalent to their

two new conditions. Moreover their auction converges to the minimum Walrasian price vector

within �nite periods of time. Note that not all exchange economies have the minimum Walrasian

equilibrium. Ma (1997a) studied the existence of Walrasian equilibrium in an exchange economy

with personalized initial endowments by means of a coalitional form game and showed that the

balancedness of the game may be a useful condition for the existence of Walrasian equilibrium. Ma

(1997b) studied the conditions under which the English auction converges to a Walrasian equilib-

rium within �nite periods of time. Meanwhile, Gul and Stacchetti (1996a,b) also considered the

production economy and designed a double auction that eventually converges to the minimumWal-

rasian equilibrium when the utility and cost functions satisfy their no complementarity condition

(or the gross substitutes condition in Kelso and Crawford (1982)).

These papers studied economies with �xed numbers of objects or workers. The total number

of objects consumed or produced is exogenously given. We �x the number of products in the
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production economy in this paper. But how many units of each product that will be produced

or consumed in the economy are endogenously determined. The underlying commodity bundles

consumed and produced along each equilibrium price path are path-dependent, though the set of

products is the same along the path. Kelso and Crawford (1982) and Gul and Stacchetti (1996b)

are interested in �nding one equilibrium price path by designing a dynamic auction procedure.

This paper is searching for the conditions such that every ascending or descending price process

converges to a Walrasian equilibrium. Typically there are in�nite numbers of price paths (if any)

that satisfy our conditions in this paper.

The rest of the paper is organized as follows. Section 2 introduces the model and some de�ni-

tions. Section 3 provides some preliminary results. Section 4 provides a necessary and su�cient

condition for the existence of Walrasian equilibrium. Section 5 proves the convergence theorems.

Section 6 presents an oligopoly economy with constant marginal costs in which there exists a unique

Walrasian price vector. Section 7 concludes the paper with some unanswered issues.

2 The Model

Let N = f1; 2; � � � ; i; � � � ; ng denote the set of consumers and F = f1; 2; � � � ; j; � � � ; mg the set of

�rms in the economy. The set of all possible di�erentiated products in the economy is described by


 = f!1; � � � ; !lg. Consumers or producers may consume or produce any combinations of products

with any number of each product. To capture this idea, we need some de�nitions. For any set X ,

de�ne an unordered family of elements of X to be a collection of elements, not necessarily distinct,

in which the order is immaterial (Roth and Sotomayor (1990)). Denote the set of all unordered

families of elements of 
 by 3
, which distinguishes it from the set of all subsets of 
, 2
, by the

fact that an unordered family of elements of 
 may contain several copies of the same element. For

example, f!1; !1; !2g is an unordered family of elements of 
 that contains two copies of the same

product !1. Note that an unordered family of elements of a set X may contain an in�nite number

of the same element. An unordered family of elements of 
 is called a commodity bundle. Given a

commodity bundle A 2 3
, each element in A is called an object. Given two commodity bundles

A;B 2 3
, the union of A[B consists of all objects in A and B. A � B is understood as usual as

that every object in A can be found in B. Whenever we write a 2 A, it means any copy of a that

is in A. #A denotes the number of objects in A.

For i 2 N , consumer i is characterized by his utility function ui : 3

 ! R, satisfying ui(;) = 0.
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For j 2 F , �rm j is characterized by her cost function cj : 3
 ! R. cj(f;g) � 0 is identi�ed

as the �xed cost of �rm j. We assume that cj is strictly monotone in the sense that for any two

commodity bundles A and B such that B � A, cj(A) � cj(B) and cj(A) > cj(B) whenever B � A

and A 6= B. Consumers' utility functions are bounded above in the sense that u(A) � M for

all A 2 3
, where M is a �nite number that may be quite large. A production economy with

indivisibilities is described by

E = ((N; u); (F; c); (
; 3
)):

We borrow some de�nitions from Gul and Stacchetti (1996a). Let p 2 Rl
+ be a price vector and

A 2 3
 be a commodity bundle, de�ne

< p;A >=
X

a2A

pa:

De�nition: Consumer i's consumer surplus function vi : 3

�Rl

+ ! R and demand correspon-

dence Di : R
l
+ ! 3
 are de�ned by

vi(A; p) = ui(A)� < p;A >; A 2 3
; p 2 Rl
+

Di(p) = fA 2 3
 j vi(A; p) � vi(B; p) for all B 2 3
g; p 2 Rl
+:

De�nition: Firm j's pro�t function �j : 3

�Rl

+ ! R and supply correspondence Sj : R
l
+ ! 3


are de�ned by

�j(A; p) =< p;A > �cj(A); A 2 3
; p 2 Rl
+

Sj(p) = fA 2 3
 j �j(A; p) � �j(B; p) for all B 2 3
g; p 2 Rl
+:

De�nition: A feasible allocation (X ; Y ) = (X1; � � � ; Xi; � � � ; Xn; Y1; � � � ; Yj ; � � � ; Ym) is such that

(a) Xi; Yj 2 3
 for all i 2 N and j 2 F and (b) [i2NXi � [j2F Yj :

Given a feasible allocation (X ; Y ), we de�ne [i2NXi and [j2FYj to be the aggregate demand

and supply respectively in the economy.

Given a feasible allocation, a consumer i may consume a commodity bundle that contains sev-

eral copies of the same product and a �rm may produce a commodity bundle that contains many
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copies of the same product. In fact Xi or Yj may well contain an in�nite number of the same

product. Nevertheless what is consumed should not be beyond what is produced in the economy.

This does not mean that the model excludes trade because foreign countries can be seen as �rms

in F .

De�nition: A feasible allocation (X ; Y ) is optimal if it is a solution of the following problem

V = maxf
X

i2N

ui(Xi)�
X

j2F

cj(Yj) j (X ; Y ) is a feasible allocationg:

V is the total social surplus of an economy. Note that given the assumptions on consumers'

utility functions and �rms' cost functions, V is a �nite number. But two optimal allocations may

be quite di�erent from each other.

De�nition: (p;X ; Y ) is a Walrasian equilibrium if (a) (optimality) Xi 2 Di(p) for all i 2 N

and Yj 2 Sj(p) for all j 2 F and (b) (market clearing condition) [i2NXi = [j2FYj , aggregate

demand equals aggregate supply.

Remark: In the de�nition of a Walrasian equilibrium in Gul and Stacchetti (1996b) with pro-

duction, aggregate supply may exceed aggregate demand. Our de�nition excludes this possibility.

Example 1: Consider a simple economy with 
 = (a; b), N = (1; 2) and F = (�; �). The

utility functions are as follows:

u1(fag) = 2; u1(fa; ag) = 8; u1(fa; a; ag) = 9;

u1(fbg) = 3; u1(fb; bg) = 6;

u1(fa; bg) = 9; u1(fAg) = 10 for any other A 2 3


u2(fag) = 1; u2(fa; ag) = 3; u2(fa; a; ag) = 5; u2(fa; a; a; ag) = 7;

u2(fbg) = 3; u2(fb; bg) = 7; u2(fb; b; bg) = 9;

u2(fa; bg) = 4; u2(fa; a; bg) = 9; u2(A) = 10 for any other A 2 3
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The cost functions are \additive" 2:

c�(;) = 0; c�(A) = 2#A for all A 2 3fag

c�(A) =1 for all A such that b 2 A:

c�(;) = 0; c�(B) = 3#B for all B 2 3fbg

c�(B) =1 for all B such that a 2 B:

(X ; Y ) = (fa; ag; fa; a; bg; fa; a; a; ag; fbg)

and

( �X; �Y ) = (fa; bg; fa; a; bg; fa; a; ag; fb; bg)

are the two optimal allocations in this economy. The unique Walrasian price vector is p = (2; 3).

pa and pb are the marginal costs of �rms � and � respectively. (p;X ; Y ) and (p; �X; �Y ) are the two

Walrasian equilibria in this economy. For a general result, see Section 6. 2

3 Some Preliminary Results

This section provides a characterization of all Walrasian equilibria by a hyperplane. Given any

price vector p 2 Rl
+, Lemma 1 shows that the sum of total consumer surpluses and total pro�ts is

no less than the total social surplus V . Denote vi(p) = vi(A; p) for A 2 Di(p) and �j(p) = �j(A; p)

for A 2 Sj(p), p 2 Rl
+.

Lemma 1: For any p 2 Rl
+,

X

i2N

vi(p) +
X

j2F

�j(p) � V:

Proof: For all feasible allocations (X ; Y ), we have that

vi(p) � vi(Xi; p); for all i 2 N

and

�j(p) � vi(Yj ; p); for all j 2 F:

2This makes the computation of the optimal allocations much easier.
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Therefore,

X

i2N

vi(p) +
X

j2F

�j(p) �
X

i2N

ui(Xi)�
X

j2F

cj(Yj) + [
X

j2F

< Yj ; p > �
X

i2N

< Xi; p >]

�
X

i2N

ui(Xi)�
X

j2F

cj(Yj);

since the term [
P

j2F < Yj ; p > �
P

i2N < Xi; p >] is nonnegative for a feasible allocation (X ; Y ).

It follows that
X

i2N

vi(p) +
X

j2F

�j(p) �
X

i2N

ui(Xi)�
X

j2F

cj(Yj)

for all feasible allocations (X ; Y ). The lemma follows since an optimal allocation is feasible. 2

Lemma 2 provides a characterization for all Walrasian equilibria.

Lemma 2: For p 2 Rl
+, p is Walrasian if and only if

X

i2N

vi(p) +
X

j2F

�j(p) = V:

Proof: Let (p�;X�; Y �) be a Walrasian equilibrium. Then

X

i2N

vi(p
�) +
X

j2F

�j(p
�) =

X

i2N

ui(X
�
i )�
X

j2F

cj(Y
�
j )

� V by Lemma 1

�
X

i2N

ui(X
�
i )�
X

j2F

cj(Y
�
j ) by the de�nition of V :

To show the other side. We need to show that there exists an optimal feasible allocation

(X�; Y �) such that (p�;X�; Y �) is Walrasian whenever

X

i2N

vi(p
�) +
X

j2F

�j(p
�) = V:

Suppose there does not exist any optimal feasible allocation (X1; � � � ; Xn; Y1; � � � ; Ym) such that

Xi 2 Di(p
�) and Yj 2 Sj(p

�). Then there exists at least one consumer i or one �rm j such that

vi(p
�) > vi(Xi; p

�) or �j(p
�) > �j(Yj ; p

�) for any optimal feasible allocation (X ; Y ). Then

V =
X

i2N

vi(p
�) +
X

j2F

�j(p
�)

>
X

i2N

ui(Xi)�
X

j2F

cj(Yj) + [
X

j2F

< Yj ; p
� > �

X

i2N

< Xi; p
� >]

�
X

i2N

ui(Xi)�
X

j2F

cj(Yj) since (X ; Y ) is feasible and optimal

= V;
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a contradiction.

Therefore an optimal feasible allocation (X�; Y �) exists such that X�
i 2 Di(p

�) and Y �
j 2 Sj(p

�)

for all i 2 N and j 2 F . We need to show that the market clearing condition

[i2NX
�
i = [j2FY

�
j

is satis�ed. To see this, note that

V =
X

i2N

vi(p
�) +
X

j2F

�j(p
�)

=
X

i2N

ui(X
�
i )�
X

j2F

cj(Y
�
j ) + [

X

j2F

< Y �
j ; p

� > �
X

i2N

< X�
i ; p

� >]

= V + [
X

j2F

< Y �
j ; p

� > �
X

i2N

< X�
i ; p

� >]:

Therefore,
P

j2F < Y �
j ; p

� >=
P

i2N < X�
i ; p

� >. Since (X�; Y �) is feasible, we always have that

[i2NX
�
i � [j2FY

�
j . If pa > 0 for all a 2 [j2FY

�
j , then

P
j2F < Y �

j ; p
� >=

P
i2N < X�

i ; p
� >

implies that [i2NX
�
i = [j2F Y

�
j . On the other hand, if there exists some a� 2 [j2FY

�
j and

a� 62 [i2NX
�
i such that p�a� = 0, then de�ne ~Yj = Y �

j n fa
�g, where j is chosen such that a� 2 Y �

j .

It follows that

�j( ~Yj ; p
�) > �j(Y

�
j ; p

�);

by the strictly monotone cost functions. This is a contradiction, since Y �
j 2 Sj(p

�). This shows

that

[i2NX
�
i = [j2FY

�
j :

Therefore the market clearing condition is satis�ed and this completes the proof of the lemma. 2

From Lemma 2, we can derive the �rst and second theorems of welfare economics; also see Gul

and Stacchetti (1996a).

Theorem 1 (First Theorem of Welfare Economics): Every Walrasian equilibrium allocation is

optimal.

Proof: It directly follows from Lemma 2. 2

Theorem 2 (Second Theorem of Welfare Economics): Let (p;X ; Y ) be a Walrasian equilibrium

and ( �X; �Y ) be an optimal allocation. Then (p; �X; �Y ) is a Walrasian equilibrium.
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Proof: Use the same argument in the proof of Lemma 2 to show that the market clearing

condition is satis�ed at (p; �X; �Y ). 2

Note that [i2NXi may be quite di�erent from [i2N �Xi in Theorem 2. Nonetheless, both (X ; Y )

and ( �X; �Y ) are Walrasian. A useful corollary of Theorem 2 is as follows:

Corollary 1: Let p� be a Walrasian price vector. Then for all optimal allocations (X ; Y ), we

have that

Xi 2 Di(p
�); 8i 2 N

and

Yj 2 Sj(p
�); 8j 2 F:

4 Existence: A Necessary and Su�cient Condition

The following example is �rst used by Kelso and Crawford (1982) to show that a Walrasian equi-

librium may not exist in some job-matching markets. We adopt it to our production economy to

show that a Walrasian equilibrium may not exist for some production economies.

Example 2: Consider the following economy with two consumers, j and k. There are three

di�erentiated products, 
 = f1; 2; 3g, in the economy. Consumers j and k have utility functions as

follows (see Kelso and Crawford (1982)):

uj(f1g) = 4; uj(f2g) = 4; uj(f3g) = 4 + �1

uj(f1; 2g) = 7 + �; uj(f1; 3g) = 7; uj(f2; 3g) = 7

uj(f1; 2; 3g) = 9;

uj(A) = 0 for any others ; 6= A 2 3


uk(f1g) = 4 + �2; uk(f2g) = 4; uk(f3g) = 4

uk(f1; 2g) = 7; uk(f1; 3g) = 7; uk(f2; 3g) = 7 + �

uk(f1; 2; 3g) = 9;

uk(A) = 0 for any others ; 6= A 2 3
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where � 2 [0; 1] and �1; �2 2 [0; 3].

There are three producers, �, � and 
, each specializes only in producing one unit of their own

product. Their cost functions are as follows:

c�(;) = 0; c�(f1g) = 1; u�(A) =1 for all others ; 6= A 2 3


c�(;) = 0; c�(f2g) = 1; c�(A) =1 for all others ; 6= A 2 3


c
(;) = 0; c
(f3g) = 1; c
(A) =1 for all others ; 6= A 2 3


Consider an economy with �1 = �2 =
1
4
and � = 1

2
. There are two optimal allocations

(Xj; Xk; Y�; Y�; Y
) = (f1g; f2; 3g; f1g; f2g; f3g)

and

( �Xj ; �Xk; Y�; Y�; Y
) = (f1; 2g; f3g; f1g; f2g; f3g):

By Corollary 1, a Walrasian equilibrium price vector p must satisfy the following

Xj ; �Xj 2 Dj(p); Xk; �Xk 2 Dk(p)

and

Y� 2 S�(p); where � = �; �; 
:

By f1g 2 Dj(p), we have that

uj(f1g)� p1 � uj(f3g)� p3

which implies that

p3 � p1 �
1

4
:

By f3g 2 Dk(p), we have that

uk(f3g)� p3 � uk(f1g)� p1

which implies that

p1 � p3 �
1

4
:

These two inequalities contradict with each others. Therefore, no Walrasian equilibria exist in the

economy with �1 = �2 =
1
4
and � = 1

2
. 2

We now consider a production economy such that both consumers and producers are rationed

to some degree. Let �
 � 3
, which is typically a much smaller set in 3
. We suppose that both

consumers and producers can only make their choices of consumption and production in �
. We
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can carry all our de�nitions and results in Sections 2 and 3 over the economy with �
. Note that

both Lemmas 1 and 2 are still true when �V is de�ned under the restrained �
. But if �
 includes all

elements under an optimal allocation of the economy E , then �V = V . Based on this idea, we now

obtain a necessary and su�cient condition for the existence of Walrasian equilibrium.

Let (X�; Y �) be any optimal allocation in the production economy E and �
 = [j2F Y
�
j . We

consider the following linear programming

� = min
p2Rl

+

min
x;y

i=nX

i=1

xi +
mX

j=1

yj

s:t: xi+ < A; p > � ui(A); 8A 2 2
�
; 8i 2 N

yj� < A; p > � �cj(A); 8A 2 2
�
; 8j 2 F

xi; yj � 0; 8i; j:

The linear programming � may be solved with computers.

Theorem 3: A Walrasian equilibrium exists in the production economy E if and only if � = V .

Proof: Let (p�;X�; Y �) be aWalrasian equilibrium. Since (X�; Y �) is optimal by Theorem 1, let

�
 = [j2F Y
�
j in �. This is without loss of generality by Theorem 2. We show that (p�; v(p�); �(p�))

is a solution to � and � = V . Let x�i = vi(p
�) and y�j = �j(p

�). By the equilibrium conditions, both

x� and y� satisfy the constrains in � for p�. And then, � � V . But Lemma 1 shows that � � V .

This shows that (p�; x�; y�) is a solution to � and � = V .

Let (p; x; y) be a solution to � such that � = V . We show that (X�; Y �) is a collection such

that

xi = ui(X
�
i )� < X�

i ; p >; 8i 2 N;

and

yj =< Y �
j ; p > �cj(Y

�
j ); 8j 2 F:

Suppose on the contrary that this is not true. Then,

V = �

=
i=nX

i=1

xi +
mX

j=1

yj

>
X

i2N

ui(X
�
i )�
X

j2F

cj(Y
�
j ) + [

X

j2F

< Y �
j ; p > �

X

i2N

< X�
i ; p >]

13



�
X

i2N

ui(X
�
i )�
X

j2F

cj(Y
�
j )

= V;

a contradiction. What left is to show that the market clearing condition

[i2NX
�
i = [j2FY

�
j

is satis�ed. But this can be shown in the same manner as in the proof of Lemma 2. Therefore

(p;X�; Y �) is a Walrasian equilibrium in E . 2

In the production economy there may exist many optimal allocations that may be di�erent from

each others in terms of the numbers of copies of each product; see Example 1. But Theorem 3 only

needs to check one among all optimal allocations. This simpli�es the task in a great manner in

comparison with Lemma 2, since 3
 contains members with in�nite numbers of copies of products.

But in the linear programming �, �
 is a relatively smaller set and we only need to work with all

subsets of �
 rather than all unordered families of elements of 
.

5 Convergence Theorems

In what follows we �rst develop some intuitions of the results in this section. Let us consider

an economy with a single �rm that produces only one product. Firm starts with a very high

introductory price of her product that may well create oversupplies of that product. Firm cuts its

price as long as oversupplies exist. But �rm may cut too much its price that creates overdemands

of its product. When there exist overdemands, �rm has to raise its price in order to get to the

equilibrium. But �rm may raise her price that creates oversupplies of her product. Firm may stalk

with some cycles. How should �rm cut its price such that it eventually arrives at the equilibrium

price without cycles? There are many answers to the question. One answer among them that seems

natural is that �rm should cut its price gradually such that no overdemands are created at each

price cut. Since the initial price set by the �rm is bounded above and the distance of this price to

the equilibrium price is a �nite number. It will not take the �rm in�nitely many price cuts to reach

the equilibrium price no matter how small each price cut is. In practice �rm may cut its price that

is indeed below the equilibrium price. But as long as �rm does not cut its price that is below the

equilibrium in�nitely many times, �rm is still able to reach the equilibrium price.

14



This example with a single �rm is the basic intuition behind the convergence result presented

in Theorem 4 below. The question is how to formalize the above idea when there are many �rms in

an economy and their products are interdependent. In what follows we suggest one way how this

may be done.

Let T = f0; 1; 2; 3; � � � ; g represent the in�nite time horizon. Each t represents a period of time.

E(t) = ((N(t); u(t)); (F (t); c(t)); (
(t); 3
(t))) is a sequence of economies along the time horizon.

Let pt 2 R
j
(t)j
+ be a price vector at time t and fptgt2T be a price process. A stationary economy

is such that E(t) = E for some E for all t. In what follows we only consider a stationary economy.

Our concern is the su�cient conditions under which certain price process fptgt2T converges to a

Walrasian equilibrium within �nite periods of time for a stationary economy. First for x; y 2 Rl,

x < y means that xi � yi for all i and xi < yi for some i. A price process fptg is ascending

(descending) if pt+1 > pt (pt+1 < pt) for each t.

De�ne

O(p) = f(A1; � � � ; An;B1; � � � ; Bm) j Ai 2 Di(p); Bj 2 Dj(p)g; p 2 Rl
+:

Given A 2 3
, denote #A! the number of copies of product ! in A. We say that a product ! 2 


is (weakly) oversupplied with respect to a collection (A;B) 2 O(p) if

X

i2N

#A!
i �
X

j2F

#B!
j :

A price vector p has the aggregate oversupplied property if it induces at least one collection (A;B) 2

O(p) such that every product is oversupplied with respect to (A;B). A price process fptg has the

aggregate oversupplied property if pt has the aggregate oversupplied property for each t.

The aggregate oversupplied property is necessary for a price vector p to be Walrasian. Other-

wise, we have
X

i2N

#A!
i >
X

j2F

#B!
j

for every (A;B) 2 O(p) and every !. Such a price vector does not admit any Walrasian equilibrium.

But the aggregate oversupplied property is not su�cient for p to be Walrasian. It is of interest that

this property is su�cient for a descending price process to converge to a Walrasian equilibrium; as

shown in Theorem 4.

We start with p0 that are bounded from above but far higher than the equilibrium prices. For

example, we may choose p0 such that p0 = (M + 1;M + 1; � � � ;M + 1) at which each consumer is

unwilling to buy any commodity bundle. We now consider all possible descending price processes
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that converge to Walrasian equilibria within �nite periods of time under the aggregate oversupplied

property.

Theorem 4: Let fptgt2T be any descending price process that has the aggregate oversupplied

property. Then (a) a Walrasian equilibrium exists; (b) there exists a �nite time T � 2 T such that

pT � is Walrasian.

Proof : Fix any t such that ps is not Walrasian for any time period s � t. Otherwise, there is

nothing to prove. Let s 2 ft; t+ 1; � � �g. De�ne

F(s) = f(A;B) 2 O(s) j
X

i2N

#A!
i �
X

j2F

#B!
j g:

Also de�ne

G(s) =
X

i2N

vi(ps) +
X

j2F

�j(ps):

First we show that

G(s) � G(s+ 1)

for any s. (Note that if there is some �nite s such that ps is Walrasian, then the proof of the

theorem is completed. Therefore, the above inequality applies to those time periods s such that ps

is not Walrasian.)

Since fptg satis�es the aggregate oversupplied property, F(s + 1) is nonempty. Let (A(s +

1);B(s+ 1)) 2 F(s+ 1): It follows that

X

j2F

< Bj(s+ 1); ps � ps+1 > �
X

i2N

< Ai(s+ 1); ps � ps+1 > � 0;

since fpsg is descending and

X

i2N

#A!
i (s+ 1) �

X

j2F

#B!
j (s+ 1)

for each ! 2 
. Then, we have that

G(s)� G(s+ 1) = [
X

i2N

vi(ps)�
X

i2N

vi(ps+1)] + [
X

j2F

�j(ps)�
X

j2F

�j(ps+1)]

= [
X

i2N

vi(ps)�
X

i2N

vi(Ai(s+ 1); ps) +
X

i2N

< Ai(s+ 1); ps+1 � ps >]

+[
X

j2F

�j(ps)�
X

j2F

�j(Bj(s+ 1); ps) +
X

j2F

< Bj(s+ 1); ps � ps+1 >]
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= f[
X

i2N

vi(ps)�
X

i2N

vi(Ai(s+ 1); ps)] + [
X

j2F

�j(ps)�
X

j2F

�j(Bj(s+ 1); ps)]g

+[
X

i2N

< Ai(s+ 1); ps+1 � ps >] +
X

j2F

< Bj(s+ 1); ps � ps+1 >]

� [
X

j2F

< Bj(s+ 1); ps � ps+1 > �
X

i2N

< Ai(s+ 1); ps � ps+1 >]

� 0:

Now de�ne

H1(s) = f(A(s);B(s)) 2 O(s) j Ai(s) 62 Di(pt) for some i 2 Ng;

H2(s) = f(A(s);B(s)) 2 O(s) j Bj(s) 62 Sj(pt) for some j 2 Fg

and

H(s) = H1(s) [H2(s):

H(s) contains all collections (A(s);B(s)) 2 O(s) such that Ai(s) 62 Di(pt) for some customer

i 2 N or Bj(s) 62 Sj(pt) for some �rm j 2 F .

We show that there exists a �nite s 2 ft+ 1; t+ 2; � � �g such that

H(s) \ F(s) 6= ;:

Suppose on the contrary thatH(s)\F(s) = ; for every s 2 ft+1; t+2; � � �g. Then Ai(s) 2 Di(pt)

for all i 2 N and Bj(s) 2 Sj(pt) for all j 2 F for every (A(s);B(s)) 2 F(s) for every s. Pick up

any (A(s);B(s)) 2 F(s) and any j such that Bj(t) = Bj(s) 6= ;. If ps is Walrasian for some �nite

s, there is nothing to prove. Suppose that ps is not Walrasian for every s. Then let q 2 Rl
+ be a

price vector such that

< Bj(t); q > �cj(Bj(t)) < �cj(f;g); 8Bj(t) 2 Sj(pt):

q � 0 since cj is strictly monotone. Thus Bj(t) 62 Sj(q) for all Bj(t) 2 Sj(pt). Since fptg is

descending and ps is not Walrasian for every s, there exists a �nite s� such that ps� � q and then

Bj(t) 62 Sj(ps�) for all Bj(pt) 2 Sj(pt). This is a contradiction.

We now show that there exist a �nite T and � > 0 such that

G(t) � � � � � G(t+ T ) + �:

We know from above that

G(t) � � � � � G(t+ T ):
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Note that there exists some � > 0 such that �j(p) � �j(B; p) + � for any B 62 Sj(p) and

vi(p) � vi(A; p) + � for any A 62 Di(p).

Since there exists a �nite T such that H(t + T ) \ F(t + T ) 6= ;, let (A;B) be a collection in

H(t + T ) \ F(t+ T ). Then,

X

j2F

< Bj ; pt � pt+T > �
X

i2N

< Ai; pt � pt+T > � 0;

and there exists � > 0 such that (see G(s)� G(s+ 1) above)

G(t)� G(t+ T ) = f[
X

i2N

vi(pt)�
X

i2N

vi(Ai; pt)] + [
X

j2F

�j(pt)�
X

j2F

�j(Bj ; pt)]g

+[
X

i2N

< Ai; pt+T � pt >] +
X

j2F

< Bj ; pt � pt+T >]

� � + [
X

j2F

< Bj ; pt � pt+T > �
X

i2N

< Ai; pt � pt+T >]

� �:

In summary, as the price process fptg continues and no Walrasian equilibrium appears, there

exist some �nites T1; T2; � � � and �1 > 0; �2 > 0; � � � such that

G(t) � � � � � �1 + G(t+ T1) � � � � � �1 + �2 + G(t+ T1 + T2) � � � � :

Since G(s) is bounded below by V according to Lemma 1, the above process cannot last forever.

Therefore, there must exist a �nite T � such that

G(T �) = V:

Then, by Lemma 2, pT � must be Walrasian. 2

We say that a product ! 2 
 is (weakly) overdemanded with respect to a collection (A;B) 2

O(p) if
X

i2N

#A!
i �
X

j2F

#B!
j :

A price vector p has the aggregate overdemanded property if it induces at least one collection

(A;B) 2 O(p) such that every product is overdemanded with respect to (A;B). A price process

fptg has the aggregate overdemanded property if pt has the aggregate overdemanded property for

each t.
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It is necessary for a price vector p to satisfy the aggregate overdemanded property in order for

p to be Walrasian. Otherwise, we have

X

i2N

#A!
i <
X

j2F

#B!
j

for all (A;B) 2 O(p) and all ! 2 
. Such a price vector p cannot be Walrasian. Again, the aggre-

gate overdemanded property is not a su�cient condition for p to be Walrasian. But this property

is a su�cient condition for an ascending price process to converge to a Walrasian equilibrium; as

shown in Theorem 5 below. The proof of Theorem 5 is immediate by following that of Theorem 4

in a symmetric manner and is thus omitted.

Theorem 5: Let p0 = 0 2 Rl
+ and fptgt2T be any ascending price process that has the ag-

gregate overdemanded property. Then (a) a Walrasian equilibrium exists; (b) there exists a �nite

time T � 2 T such that pT � is Walrasian.

Two useful corollaries of Theorems 4 and 5 are as follows:

Corollary 2: Let fptgt2T be any descending price process and fqtg be a subsequence of fptg

that has the aggregate oversupplied property. Then (a) a Walrasian equilibrium exists; (b) there

exists a �nite time T � 2 T such that qT � is Walrasian.

Corollary 3: Let fptgt2T be any ascending price process and fqtg be a subsequence of fptg

that has the aggregate overdemanded property. Then (a) a Walrasian equilibrium exists; (b) there

exists a �nite time T � 2 T such that qT � is Walrasian.

One may think that the conditions in Theorems 4 and 5 are strong. In fact once an economy

has a Walrasian equilibrium, there exist at least one descending price process that satis�es the

condition in Theorem 4 and one ascending price process that satis�es the condition in Theorem 5.

The following example shows that there may exist many price processes that satisfy the condition

in Theorem 4 for an economy with a Walrasian equilibrium. Our results in Theorems 4 and 5 show

more than this. Once an economy has such a price process that satis�es the condition in Theorem

4 or 5, it must have a Walrasian equilibrium.

Consider the economy in Example 1 with parameters, �1 = 1:75 and �2 = � = :5. Thus,
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V = 9:75. The price vector (3; 2:5; 3:5) is Walrasian, at which

Dj(p) = (f3g); Dk(p) = (f1g; f2g; f1; 2g; f2; 3g)

S�(p) = (f1g); S�(p) = (f2g); S
(p) = (f3g):

We start with a price vector p0 = (5; 5; 5).

t pt Dj Dk G(t)

0 (5; 5; 5) (f3g) (f;g) 12:75

1 (4; 4; 5) (f3g) (f1g) 11:25

2 (4; 3; 4) (f3g) (f2g) 10:75

3 (3; 3; 4) (f3g) (f1g) 10:25

4 (3; 2:75; 4) (f3g; f1; 2g) (f1g) 10

5 (3; 2:75; 3:5) (f3g) (f1g) 10

6 (3; 2:5; 3:5) (f3g) (f1g; f2g; f1; 2g; f2; 3g) 9:75

In the price process fptg above,

S�(pt) = (f1g); S�(pt) = (f2g); S
(pt) = (f3g)

for each t. The price process fptg satis�es the conditions in Theorem 4 and it converges to a

Walrasian equilibrium. The price process fptg seems reasonable. Once a �rm �nds out that her

product is not demanded at a period of time, she cuts her price next period while those �rms

whose products are demanded in the prior period will stay put. Note that the price of product

3 from t = 4 to t = 5 is lower because �rm 
 directly competes with � and �. Of course this

price process is quite arti�cial because we know where a Walrasian equilibrium is. One can design

many \meaningful" price processes that satisfy the conditions in Theorems 4 and 5 without any

di�culties.

6 An Oligopoly Economy with Constant Marginal Costs

This section presents a special economy in which each product is produced by a monopoly with

constant marginal costs. Precisely we identify 
 = F . For each j 2 F , cj(f;g) = 0; cj(J) = mcj#J

for all J 2 3fjg and cj(J) = 1 for any other J 2 3F . Denote MC = (mc1; mc2; � � � ; mcm). In the

economy ~E there exists a unique Walrasian equilibrium price vector p = MC, i.e., each Walrasian

price pj equals the marginal cost mcj of �rm j.
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Observation: Let (X ; Y ) be an optimal allocation in the economy ~E . Then each Xi is a

solution to the problem

maxfui(A)� < A;MC >j A 2 3
g:

Proof: Suppose on the contrary that there exists some i such that Xi is not a solution to the

problem. Let A� be a solution to the problem

maxfui(A)� < A;MC >j A 2 3
g:

Then we have

ui(A
�)� < A�;MC > > ui(Xi)� < Xi;MC > :

Let (Y �
1 ; � � � ; Y

�
m) be a collection such that

[j2F Y
�
j = [[j2FYj ] [A

� nXi

and Y �
j 2 3fjg for each j 2 F . Then (X1; � � � ; Xi�1; A

�; Xi+1; � � � ; Xn; Y
�
1 ; � � � ; Y

�
m) is an allocation.

De�ne

V � =
X

i02Nnfig

ui0(Xi0) + ui(A
�)�
X

j2F

cj(Y
�
j ):

Then

V � � V = ui(A
�)� ui(Xi) +

X

j2F

cj(Yj)�
X

j2F

cj(Y
�
j )

= ui(A
�)� ui(Xi)+ < Xi;MC > � < A�;MC >

> 0:

Thus (X ; Y ) is not optimal, a contradiction. 2

It follows from the above observation that MC is a Walrasian price vector. Note that the

market clearing condition is satis�ed for all optimal allocations in the economy ~E . The fact that

MC is the unique Walrasian equilibrium price vector follows from that �rm j will supply in�nitely

many copies of her product whenever the price of her product exceeds mcj and she supplies zero

whenever the price of her product is below mcj . None of these cases has a Walrasian equilibrium.

In such an economy suppose that each �rm j starts with a price of her product that is higher

than the marginal cost mcj . Since as long as the price pj is higher than mcj, �rm j is willing

to produce in�nitely many copies of her product, the condition in Theorem 4 is always satis�ed

whenever pt �MC for each t. Thus any descending price process fptg such that pt �MC for each
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t will converge to the Walrasian equilibrium within �nite periods of time. Certainly, when the cost

functions are not so simple, things become more complicated; as shown in Section 5. This example

also shows that the Walrasian (competitive) equilibrium may be observed though each �rm is a

monopoly in her own product.

7 Some Discussions

The equilibria in a production economy will be disturbed if the changes in the underlying economy

change the balance of aggregate demand and supply. For example, an increase in the costs in

production may change the production plan of �rms and the \decrease" in the aggregate supply

may create overdemanded products for an economy. Overdemanded products may eventually bid

up the prices of products and induce in
ation. But if the increase in the costs in production is

not so dramatic to change the balance of aggregate demand and supply, then the price level in

an economy may stay the same. But how do we exactly know when the changes in the costs of

production are dramatic to change the equilibrium of an economy? The impact of the changes lies

on the social surplus function, V , and the total consumer surpluses and pro�ts. If the increases

in the costs of production do not change the equation in Lemma 2, then the equilibrium price

vector will be the same before and after the changes, though Walrasian allocations may be quite

di�erent. But if the changes in the costs change the equation in Lemma 2, the economy will

likely move to a new price level at which some products must experience higher prices. This price

adjustment process will not take in�nitely periods of time for those ascending price processes with

the aggregate overdemanded property. Similarly, if consumers have changes in their preferences,

then the equilibrium price level may or may not be disturbed. There are some others situations

such that the changes of the underlying economy may result in a situation without an equilibrium.

If such a situation happens, the adjustment of the prices in the economy is going to end up with

a situation in which there always exist some overdemanded or oversupplied products. The price

adjustment in the economy will likely experience a complex business cycle. The market system will

fail to allocate the resources e�ciently. How does an economy behave in such a nonequilibrium

situation is unknown at this point. The other untouched issue in this paper is how to embody the

uncertainty into the model. Such a model will be quite useful to capture some aspects of the stock

or bond market since all bonds and stocks are indivisible assets in nature. They are sold or bought

in units (one share of stocks or one $1000 face value of bonds).
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We follow the auction and the bargaining literature and the current literature with indivisible

commodities to assume that consumers' utility functions do not have income e�ects. This restrictive

feature of the model may make it less applicable in many situations of economic interests. An

interesting extension is how to embody the income e�ects into the model and study their impacts

on the existence and convergence results. Some of these issues are left for the future studies.

23



References

[1] Sushil Bikhchandani and John W. Mamer, Competitive Equilibrium in an Exchange Economy

with Indivisibilities, Anderson Graduate School of Management, UCLA, 1994. Mimeo. To

appear in Journal of Economic Theory.

[2] Crawford, Vincent P., and Elsie Marie Knoer (1981): \Job Matching with Heterogeneous

Firms and Workers," Econometrica 49, 106-9.

[3] Faruk G�ul and Ennio Stacchetti, Walrasian Equilibrium without Compementarities, Princeton

University, 1996. Mimeo.

[4] Faruk G�ul and Ennio Stacchetti, English and Double Auctions with Di�erentiated Commodi-

ties, Princeton University, 1996. Mimeo.

[5] Gale, David (1960): The Theory of Linear Economic Models. New York: McGraw Hill.

[6] David Gale and Lloyd Shapley, College Admissions and the Stability of Marriage, Amer. Math.

Monthly 69 (1962), 9-15.

[7] Hall, P. (1935): \On Representatives of Subsets," Journal of London Mathematical Society

10, 26-30.

[8] Alexander S. Kelso, Jr. and Vincent P. Crawford, Job Matching, Coalition Formation, and

Gross Substitutes, Econometrica 50 (1982), 1483-1504.

[9] Jinpeng Ma, Competitive Equilibrium with Indivisibilities, Rutgers University-Camden.

[10] Jinpeng Ma, English Auctions and Walrasian Equilibria with multiple Objects: a dynamic

approach, Working Paper # 9702, Rutgers University-New Brunswick.

[11] Alvin E. Roth and Marilda Sotomayor, Two-sided Matching: a Study in Game-theoretic

Modeling and Analysis, Cambridge: Cambridge University Press, 1990.

24


