A Service of Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre Lehr, Ulrike et al. # **Working Paper** Renewable energy deployment - do the benefits outweigh the costs? GWS Discussion Paper, No. 2012/5 ## **Provided in Cooperation with:** GWS - Institute of Economic Structures Research, Osnabrück Suggested Citation: Lehr, Ulrike et al. (2012): Renewable energy deployment - do the benefits outweigh the costs?, GWS Discussion Paper, No. 2012/5, Gesellschaft für Wirtschaftliche Strukturforschung (GWS), Osnabrück This Version is available at: https://hdl.handle.net/10419/94390 #### Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. #### Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. # Renewable energy deployment – do the benefits outweigh the costs? Ulrike Lehr, Barbara Breitschopf, Jochen Diekmann, Juri Horst, Marian Klobasa, Frank Sensfuß, Jan Steinbach # Gesellschaft für Wirtschaftliche Strukturforschung mbH Heinrichstr. 30 D - 49080 Osnabrück # **Corresponding author**: Dr. Ulrike Lehr (lehr @gws-os.com) Tel.: +49 (541) 40933-280 Fax: +49 (541) 40933-110 Internet: www.gws-os.com GWS, Osnabrück Ulrike Lehr Fraunhofer ISI, Karlsruhe Barbara Breitschopf Marian Klobasa Frank Sensfuß Jan Steinbach German Institute for Economic Research (DIW Berlin) Jochen Diekmann IZES, Saarbrücken Juri Horst Osnabrück, August 2012 # TABLE OF CONTENTS | 1 IN | 5 | | | | | |---------------------------------------|---|----|--|--|--| | 2 M | ETHODS | 6 | | | | | OVERVIEW OF COSTS AND BENEFIT IN 2011 | | | | | | | 3 SY | YSTEM ANALYTIC COSTS AND BENEFITS | 9 | | | | | 3.1 | Additional costs of electricity and heat generation | 9 | | | | | 3. | 1.1 Additional costs of electricity generation | 9 | | | | | 3. | 1.2 Additional costs from heat generation | 10 | | | | | 3.2 | COSTS OF RES BALANCING | 11 | | | | | 3.3 | GRID COSTS | 12 | | | | | 3.4 | TRANSACTION COSTS (ELECTRICITY) | 13 | | | | | 3.5 | AVOIDED DAMAGES FROM NEGATIVE EXTERNAL EFFECTS | 13 | | | | | 4 DI | ISTRIBUTIONAL EFFECTS AND PRICE EFFECTS | 15 | | | | | 4.1 | Merit-Order-Effect | 15 | | | | | 4.2 | THE EEG SURCHARGE | 17 | | | | | 4.3 | SPECIAL EQUALIZATION SCHEME | 18 | | | | | 4.4 | PUBLIC FUNDING | 19 | | | | | 4.5 | TAXATION OF ELECTRICITY FROM RENEWABLE ENERGY | 20 | | | | | 5 M | ACROECONOMIC EFFECTS | 21 | | | | | 5.1 | Investment in renewable energy in 2011 | 21 | | | | | 5.2 | Industrial turnover | 22 | | | | | 5.3 | Employment | 23 | | | | | 5.4 | IMPORT REDUCTION | 24 | | | | | 6 C(| ONCLUSIONS AND OUTLOOK | 25 | | | | | REFER | RENCES | 27 | | | | #### 1 Introduction The increasing use of energy from renewable sources (RE) for the generation of heat and electricity in Germany has also led to an increasingly intensive debate on its advantages and disadvantages. Especially, effects on companies, households as well as overall economic effects are discussed in the scientific community and in the media. Criticism has recently been fuelled by the expected substantial increase in the EEG surcharge and indications of possible further drastic increases in the years to come. In contrast, any benefits associated with the expansion of energy from renewable sources have tended to take a back seat. What is more, until now, the diversity of the effects and their many dimensions have resulted in the lack of a comprehensive, scientifically based overall picture of the effects that an analysis on costs and benefits can provide. The discussion mostly centers on the cost effects, because beneficial effects often are harder to quantify. Benefits comprise indirect effects or effects which lie far in the future. Scientific studies also frequently focus on single aspects, which cannot be aggregated easily, because they occur in different sectors and comprise technology system-wide effects, distributional effects or overall macro-economic effects. Therefore, the Federal Ministry of the Environment, Nature Conservation and Nuclear Safety has commissioned a study on an overarching approach that helps to answer the following questions: - How can effects from the increase in renewable energy be defined more clearly and separated from other energy policy related effects (e.g. which part of the extension of the grid truly is caused by the increase of renewables?)? - How can effects be added and balanced? - Which methodological approach is suitable to evaluate these effects? - Which (support) mechanisms facilitate the RE increase? - What is a suitable time/ spatial system border? After a brief sketch of the basic methods applied, this contribution will present estimates for a wide range of effects. It closes with suggestions on possibilities how to add and balance the effects. #### 2 METHODS The questions of scale and of system boundaries have to be raised first. In the spatial dimension, the analysis can cover regions, the nation or also international partners. German RE policy can have effects on each of these levels. In our analysis we have focused on effects at the national level in most cases. The analysis of employment effects, however, also covers exports, which are can be considered a consequence of support from German energy policy as will be shown below. The <u>temporal dimension</u> sets the time period for which the effects will be calculated. In our analysis we have started with an extensive ex-post analysis, which is annually continued and meanwhile covers the time span 2008-2011. The third dimension adds a further category concerning the <u>focus of the analysis</u>. Are we interested in the effects of certain policy measures – for instance the Renewable Energy Sources Act (EEG – Erneuerbare Energien Gesetz) – or in the effects of RE deployment, regardless of the support mechanism? Renewable energy is supported in Germany by a variety of measures. The most prominent is the above mentioned EEG which has been "exported" to more than 20 countries in Europe and worldwide. The significant elements of the EEG are the priority access of electricity generated from renewable sources to the grid and the technology specific feed-in tariff, which allows for a diverse mix of sources and technologies. It also is designed as to spur innovation because it has built-in degression mechanisms with decreasing tariffs over the different generations of electricity generating technologies. The heat sector applications are supported by the market incentive program (MIP) and by regulation for the building sector which sets certain quota for the use of RE in heat generation (space and water heating, as well as cooling) respectively alternative measures to cover primary energy consumption. On top of these mechanisms, KfW gives soft loans at below market rates. This contribution focuses on the three regulatory mechanisms. Further, our analysis distinguishes the different players and different economic perspectives. From an overall economic approach, three important questions must be asked: - How efficient are the resources allocated? - Which distributional effects are triggered by the measures? - What are the effects on growth and stability? From these central questions we have derived a scheme for our analysis. In the following we will be looking separately at macroeconomic effects, distributional effects and system-related (or system-analytic) effects. #### System -related costs and benefits System-related or -analytic costs and benefits comprise all direct or indirect costs of the RE increase, which are connected with a direct or indirect use of resources. Direct costs include the costs of installation and operation and maintenance of a RE technology, while indirect costs are induced by RE deployment, e.g. transactions costs or costs of grid operation. System analytic costs do not take distributional effects into account. Thus, they can be aggregated and compared to system analytic benefits. System analytic benefits originate in the protection of resources by the use of RE. A typical benefit is the mitigation of climate change effects. # Distribution effects and price effects Distributional effects are not coming with resource consumption in an economic sense. They are a mere reallocation for instance of funds, often as a consequence of political measures. The feed-in tariff with its mechanism, that all customers bear the costs of RE via a surcharge on their electricity bill is a classical example. The surcharge is the reallocation of the additional costs of the RE technologies. The latter, by itself is an example for the former category, the system analytical costs. Distribution effects cannot easily be added up and aggregated, because they add up to zero. ## Macroeconomic effects Macro effects comprise all macro indicators such as investment, imports, employment, GDP and exports. To analyze macroeconomic effects such as impacts on GDP or employment, we apply a macroeconometric model (PANTA RHEI), because thus the interdependence of the economy can be modeled and simulated.
Some effects are additionally derived from official statistics and industry surveys. To derive results for the GDP impacts of RE increases, we compare two simulation runs: one serves as a reference and consists of a world without any RE expansion and a second simulation, or scenario, includes the respective RE increase. The simulations lead to different development paths for the economic indicators and the difference show the macroeconomic costs and benefits of an RE increase scenario compared to the reference case. These effects have been quantified in the analysis. Additionally, the discussion on cost and benefits of renewable energy deployment suggests effects on energy supply security, reduced risks of nuclear accidents, technological changes, spill-over of R&D, values and attitudes in society and politics, external security, etc., which have not been systematically quantified thus far. ## Which effects can be added? One important condition for comparing and adding effects is that they are all measured in the same unit. Before any balance can be approached, all costs and benefits have to be assessed in monetary terms. Moreover, it is important to check, whether and to what extent external effects have been at least partially taken into account (internalized) within the economic system by other environmental or energy policy instruments. Both steps in the analysis are very demanding from a methodological point of view. Generally speaking, effects from the same category and the same unit of measurement or reference may be added. # Overview of costs and benefit in 2011 The following table provides an overall picture of the most important cost and benefit factors of renewable energy expansion that have so far been quantified. The table shows results for 2011 (in current prices). Table 1: The results at a glance: Effects in Germany 2011 (preliminary data) | Category | Topic | Electricity | Heat | Total | |------------------------|-----------------------------------|-------------|--------------|---------| | | | ir | n billion Eu | ro | | | Direct additional costs | 9.3 | 1.4 | 10.6 | | | of installations from MIP | - | | | | System valeted | Balancing costs | 0.16 | | 0.2 | | System-related effects | Grid costs | 0.13 | | 0.1 | | Circuis | Transaction costs* | 0.03 | | 0.03 | | | Additional costs, total | 9.6 | 1.4 | 10.9 | | | Avoided environmental costs | 8.0 | 2.1 | 10.1 | | | EEG-surcharge | 13.5 | 1.2 | 14.7 | | | Annuity of funds from MIP | - | 0.2 | | | | Special equalization scheme (EEG) | 2.2 | | 2.2 | | Distribution | Merit-Order-Effect* | 2.8 | | 2.8 | | effects | Public budget | | | 0.6 | | | Deployment | | | 0.3 | | | R&D | | | 0.3 | | | Taxation of RE Electricity** | 1.6 | | 1.6 | | | Import reduction | 2.9 | 3.4 | 6.02*** | | Macroeconomic | Investment | 20.0 | 2.9 | 22.9 | | effects | Turnover | | | 24.9 | | | Employment (jobs) | | | 381,600 | ^{*} Estimate from previous years: 2010 MIP: Market incentive program *** net of imports price base 2011 except avoided damages (price base 2010) In the following, each the applied methodology and the results for each of these categories will be explained in more detail. For a deeper analysis the reader is referred to ISI et al. (2010a) and the literature therein. ^{**} Mean ### 3 SYSTEM ANALYTIC COSTS AND BENEFITS This section gives a brief overview of methods and results to quantify system-related costs and benefits of the RE increase. The analysis is an ex-post evaluation. The database for RE deployment relies on the annually published data on renewable energy in Germany (BMU 2012). #### 3.1 ADDITIONAL COSTS OF ELECTRICITY AND HEAT GENERATION #### 3.1.1 Additional costs of electricity generation The system-oriented analysis of additional costs of electricity generation from renewable energy (Nitsch et al. 2010) compares levelized costs of electricity (LCOE) for different energy sources. For all fuels, LCOE include the annuity on investment, operation and maintenance costs and fuel costs. Wind, water, solar and geothermal energy, obviously, has zero fuel costs. However, though the necessary statistical data for this comparison exist on the renewable energy side of the equation, they are not available for fossil fuel based generation. Therefore, an alternative calculation scheme has been developed, which defines the additional costs as follows Additional costs = (levelized costs (RE) - "applicable price") * RE electricity amount The applicable prices are defined technology specific and basically reflect the market price of electricity at different voltage levels and from different fossil fuels. Intermittent renewable energy plants thus are compared with the prices for electricity from gas fired plants. The largest advantage of this calculation scheme is that it is capable of capturing also "negative additional costs". Electricity from hydropower, e.g., already is less costly than fossil fuel based electricity generation. Therefore, hydropower decreases the overall economic costs of electricity generation. All other RE based technologies are thus far more expensive than fossil fuel generation, though the priority of access and the large amount of PV and wind energy on quite a few days during the year decrease the electricity prices at the spot market. Figure 1: Additional costs of RE electricity generation, in billion Euro Additional costs, electricity Source: GWS, own calculation; current prices #### 3.1.2 ADDITIONAL COSTS FROM HEAT GENERATION The system-oriented analysis of additional costs of heat generation from renewable energy sources (RES-H) compares generation costs of RES-H with fossil fuel based heat generation. The generation costs include the annuity on investment, operation and maintenance costs and fuel costs. The calculation is based on different RES-H reference technologies (wood pellet boilers, wood log boilers, heat pumps air/water, heat pumps brine/waster, solar thermal collectors) as well as fossil fuel based reference technologies (gas boilers, heating oil boilers). Since the level of generation cost is decisively determined by the thermal energy demand of the individual building, technologies are combined with reference buildings representing the German building stock. The additional costs of RES deployment for heating are reflected by the difference between the generation costs of RES-H technologies and the substituted fossil fuel based energy systems. In 2011 they are estimated to range around 1.4 billion Euro (current prices). However, it should be noted that higher needs for thermal heat due to cold winter as for example in the previous year influence the additional costs considerably (figure 2). © GWS mbH 2012 Figure 2: Additional generation costs of RES-H, in billion Euro (current prices) Source: Fh- ISI, own calculation; current prices #### 3.2 COSTS OF RES BALANCING The integration of RES generation causes additional costs mainly for balancing forecast errors of wind and PV generators. The methodology to integrate RES electricity into the German electricity market has been improved since 2007. Until 2010 the RES generation was physically sold by the TSOs to all utilities that provide electricity to end customers. This was done via a constant profile that had to be provided by the TSOs. As real RES generation deviates substantially from a constant profile additional or missing energy had to be bought or sold by the TSOs on the electricity market. Any integration costs were compensated via the grid tariffs. Since 2010 all RES generation has to be sold at the spot market by the TSOs and the physical distribution is not in place any more. The main cost factors relevant for RES integration are therefore: - Costs related to intra-day's trading by the TSOs to adapt to forecast errors of RES generation - Costs for balancing energy to compensate forecast errors that could not be compensated in intra-day markets - Costs for the preparation of wind and PV power forecast on a day-ahead in intraday time scale - Costs related to the participation at the spot market and costs related to the trading infrastructure The costs for RES integration in Germany are estimated to amount to about 156 million Euro in 2011 (see Figure 3). They decreased especially in 2010 from 460 million Euro to 127 million Euro due the above mentioned new approach that was implemented in 2010. Because the amount of RES generation from wind and PV generators increased, the specific costs have dropped to less than 3 Euro/MWh integration costs for each MWh of wind or PV generation. © GWS mbH 2012 **RES** integration costs RES generation (Wind/PV) Costs for RES integration RES generation in TWh 300 2011** Figure 3: Development of RES integration costs from 2008 until 2011 Source: BNetzA 2012; current prices ** preliminary figures. #### 3.3 GRID COSTS RES deployment has a major impact on the necessary grid infrastructure because the distance between the location of generation and demand increases. In the case of offshore wind generators, also the costs for grid connection are relevant. Therefore the analysis of grid costs comprises the costs related to the transmission grid extensions and to offshore wind grid connections. So far, the costs related to distribution grids are not considered in the given figures. For the future development additional costs in the distribution grid are expected to be of the same relevance as for the transmission grid and should be considered as well. Main sources for the assessment of grid costs are studies (DENA I 2005, DENA II 2010) provided by a consortium led by the German Energy Agency (DENA) in cooperation with the 4 German transmission system operators. The extension of the transmission grid is in many cases beneficial to all grid users, namely for electricity suppliers with RE and fossil sources. Therefore it is difficult to identify which costs are related to the extension of renewable generators and how these additional costs should
be allocated to the various users in the grid. Therefore the given figures are only partly related to the extension of renewable generators. The first DENA study identified the need for additional grid capacity of 850 km of new lines. The investment needs for the new capacity was estimated to 1.1 billion Euro until 2015 without costs for offshore grid connections. However, until the end of 2011 little more than 210 km have been built. The overall investment is estimated to be around 400 million Euro for the onshore grid extensions until 2011. Furthermore the first offshore grid connections have been implemented, e.g. Alpha Ventus in the North Sea and Baltic 1 in the Baltic Sea. The construction of several offshore grid connections has started in 2011 as for Baltic 2, BorWin 2 or Riffgat. A total of 2 billion Euro is estimated for investments in offshore grid connections until the end of 2011. The annuity of these investments is calculated with an interest rate of 6.5 % and a lifetime of 40 years. The annuity indicates annual costs for grid exten- © GWS mbH 2012 sions over the lifetime. They are estimated to range around 125 million Euro in 2011 (see Figure 4), while for 2008 the annual costs were estimated to be 40 million Euro only. Figure 4: Development of grid extension costs from 2008 until 2011 #### 140 120 100 80 125 60 40 60 50 20 40 0 2008 2009 2010 2011** **Grid Extension** Source: calculations of Fh-ISI, ** preliminary figures; current prices # 3.4 TRANSACTION COSTS (ELECTRICITY) The transaction costs are caused by the implementation of the Renewable Energy Sources Act and comprise - additional costs for staff of the power transmission & distribution grid operators as well as of the energy suppliers - additional costs of government or sovereign institutions involved in the funding of RE or the implementation and monitoring of the acts So far a rough estimate is available for 2010 that is based on public statistics about expenditures of the electricity industry for staff that is involved in the bureaucracy and implementation of the EEG. The transaction costs for the power sector are estimated at about 27 million Euro in 2010. #### 3.5 AVOIDED DAMAGES FROM NEGATIVE EXTERNAL EFFECTS Avoided environmental costs, also often called avoided social costs, are so far the only quantified significant benefits of the RE deployment. They comprise avoided costs of damages from green house gas emissions (GHG) as well as from other airborne pollutants (AP) like SO₂, particular matter (PM), NO_x, etc.. The largest negative impact is caused by climate change (loss of land and resources, health impacts, etc.) due to GHG emissions but damages from other AP, such as health effects, material damages, losses of biodiversity and yields are included. The calculation of the avoided environmental costs relies on four main inputs: © GWS mbH 2012 - final energy consumption from RE - emission factors for each GHG and AP in g per kWh based on life cycle emissions - substitution factors (in %) that indicate to what extent each RE source replaces fossil energy sources - damage costs of emissions, per t emitted GHG or AP (in Euro/t) Much work has been done on each of these inputs but still there prevails uncertainty about their final impact or size. For example the emission factors represent average values that are based on a currently applied mix of generation technologies, which, however, changes over time. The substitution factors refer to a counterfactual scenario – a hypothetical situation, namely a hypothetical power generation without RE policy or deployment. However, the wide range of feasible damage cost assessments of GHG and AP exerts the largest impact on avoided environmental costs and rises uncertainty about the actual value of avoided environmental costs. For GHG, the damage costs are assessed by means of integrated assessment models that are based on several assumptions e.g. on emissions scenarios, environmental effects, technology costs etc. and integrate the complete causal chain of the climate change (man-made emissions, changes in climate, effects on the environment and society). Next to the different causal relations the monetary quantification of future effects in combination with their probability of occurrence is difficult. Therefore, as a result, the applied assessment models based on differing assumptions e.g. for CO₂ emissions, come up with a rather broad range of damage costs (alone the FUND model gives a range between 20 and 410 Euro/t (see UBA 2012 and NEEDS 2009)). In this paper, the damage costs for 2011 rely on results of a methodological analysis published by the German Federal Environment Agency (UBA 2012), that is 80 Euro / t CO₂ while for the previous years a damage cost of 70 Euro/t CO₂ according to Krewitt et al. (2006) and adapted according to NEEDS (2009) has been applied. For AP, the damage cost assessments of the EU project NEEDS (2009) adapted to prices in 2010 have been applied. The calculations (Figure 5) show that due to the RE deployment about 8.1 billion Euro avoided environmental costs accrue in 2011. Further, when taking into account the partial internalization of external effects through the CO₂ certificate prices (in the framework of the ETS) the avoided costs range around 9 billion Euro. However, due to the large bandwidth of damage costs assessed with different models, the depicted avoided environmental costs in Figure 5 should be considered as a feasible value within a given damage range. © GWS mbH 2012 electricity ■ heat 12,0 10,0 2,1 8,0 in billion € 2,6 2,0 2,3 6,0 4,0 8,0 5,9 5,7 5,8 2,0 2008 2009 2010 2011 Figure 5: Avoided environmental costs due to RE deployment, in billion Euro Source: calculations of Fh-ISI; price basis 2010 # 4 DISTRIBUTIONAL EFFECTS AND PRICE EFFECTS ## 4.1 MERIT-ORDER-EFFECT The development of renewable electricity generation in Germany has been characterized by considerable growth rates throughout the past 15 years. This development is mainly driven by a guaranteed feed-in-tariff which has been in place since 1991. The additional costs for the feed-in-tariff have to be paid by the consumers via the EEG surcharge described in the next section. However, the electricity generated by renewable energy sources also has an impact on the market prices itself and hence influences the market value. A stylized overview of the discussed effects of renewable electricity generation for a single hour is given in Figure 6. The additional electricity generated by renewable energy sources shifts the electricity supply curve (A1) to the right (A2). Thereby it is assumed that the electricity demand (N) is inelastic in the short-term perspective of a day-ahead market. The supply curve represents the merit-order-curve. It is a step function of single plant units in the real world. It is simplified as a linear supply-curve in the figure below. As long as this supply curve has a positive slope the shift to the right leads to lower prices (from P1 to P2) in the power market. As this effect shifts market prices along the German merit-order of power plants this effect is called merit-order-effect. © GWS mbH 2012 price $[\in /MWh]$ $P_1 - P_2 = merit - order effect$ P_1 P_2 Figure 6: The merit-order effect of renewable energy generation Source: Fh-ISI Since electricity demand and renewable electricity generation vary on an hourly basis, an estimation of the actual value of the merit-order effect is far more complex than the estimation of the market value. Therefore the analysis is carried out using the PowerACE Cluster System which is able to simulate hourly spot market prices. A detailed description of the PowerACE model can be found in (Sensfuß 2007, Genoese et al. 2007). The model provides a detailed representation of the German electricity sector. The model simulates reserve markets and the spot market. The spot market prices are calculated on hourly level for an entire year. Based on a price prognosis power plants and pump storage plants place their bids on the reserve markets and the spot market. For the given simulation the bid price for power plants is based on variable cost and start up cost. Demand and renewable load place inelastic bids on the market. Thereby it is assumed that the entire electricity demand is traded at the simulated spot market while in the real world situation only a share of it is traded at the spot market and an important amount of electricity is traded in bilateral contracts which are likely to be less volatile than the spot market. Further, the simulated spot market prices are based on fundamental data and are therefore less volatile than real world market prices In a first scenario a time series of hourly prices for the target year is calculated where all data, such as prices and renewable generation, is taken from the historic data for the given year. In a second step the same procedure is applied to a simulation without renewable electricity production called counterfactual scenario). Since the development of large hydro plants has not yet been affected by the renewable support scheme, electricity production of large hydro plants is taken into account in both simulation settings. The total volume of the merit-order effect is calculated by taking the difference of the electricity prices between the two scenarios multiplied by the demand for electricity (on hourly basis) and adding up the products over the corresponding year. The calculation is depicted in the following equation. © GWS mbH 2012 Equation 1: Calculation of the annual volume of the "merit-order effect", in Euro $v = \sum_{h=1}^{h=8760} (x_h - p_h) \cdot d_h$ **Legend: Variables** $d = \text{Total electricity demand} \qquad [MWh] \qquad h = \text{Hour}$ $p = \text{Price including renewable generation} \qquad [Euro/MWh]$ $x = \text{Price excluding renewable generation} \qquad [Euro/MWh]$ $v = \text{Total volume of the merit-order effect} \qquad [Euro]$ The results for the
years 2007, 2008, 2009 and 2010 are presented in Table 2. The results indicate a considerable reduction of the market price by about 5.27 Euro/MWh in the year 2010. In total the volume of the merit-order effect reaches about 2.8 billion Euro in 2010. Table 2: Merit-order effect and reduction of spot market price (Phelix Day Base) | | merit-order
effect | reduction of phelix day base | add. power generation due to EEG | |------|-----------------------|------------------------------|----------------------------------| | | billion € | €/MWh | TWh | | 2007 | 3.71 | 8.82 | 62.5 | | 2008 | 3.58 | 5.83 | 69.3 | | 2009 | 3.1 | 6.09 | 76.1 | | 2010 | 2.8 | 5.27 | 83.5 | Source: Fh-ISI, own calculation #### 4.2 THE EEG SURCHARGE The German Renewable Energy Sources Act – EEG (2012) defines the tariffs at which RE electricity generation is sold to grid operators. Grid operators have to sell the electricity on the markets and pay the tariffs for electricity fed into the grid. The surcharge is defined as the total amount of money paid to RE system owners for RE electricity minus the revenue from sales at the electricity market. The system provides allowances for large consumers (industries) to maintain their international competitiveness. Expected additional costs have to be published by grid operators 3 months ahead of the start of the year and the final calculation for the past year is then published during the second half of the consecutive year. The balance sheet is published at the beginning of the new year, but during the course of the year, multiple correction, transactions from earlier years and other balances are added. © GWS mbH 2012 Table 3: EEG surcharge in billion Euro | Euro | EEG-surcharge | |------|---------------| | 2008 | 4.7 | | 2009 | 5.3 | | 2010 | 9.4 | | 2011 | 13.5** | Source: GWS; **preliminary estimation ## 4.3 SPECIAL EQUALIZATION SCHEME The special equalization scheme is designed not to put the international or intermodal competitiveness of electricity-intensive manufacturing enterprises with high electricity consumption or rail operators at risk. Therefore, 2011 the EEG surcharge was limited for some 600 of consumers to 0.05 cent/kWh or 0.4 cent/kWh. For all other consumers, the surcharge has been 3.53 cent/kWh in 2011. The identification of potentially risked enterprises is mainly based on electricity consumption per year and ratio of the electricity cost at gross value. Furthermore the use of an energy-management-system for consumers with more than ten GWh per year is a pre-condition. The additional cost between the limited and full EEG surcharge has to be reallocated to all other not-privileged end-consumers such as all other manufacturing industries, commerce, trade and services as well as private and public consumers. With increasing difference between the fixed limited and the full EEG-surcharge as well as the extension of privileged electricity consumption within the amendments to the act, the burden of these reallocated costs is also increasing. The burden is shifted only within the both groups - privileged and non-privileged consumers. In total, the policy costs are unchanged. Based on the TSO published data (approved by an auditor) the privileged companies saved around Euro 1,200 million Euro in 2010. Based on the predictions of the transmission system operators a reallocation of more than 2,200 million Euro is to expect in 2011 and around 2,500 million Euro for 2012. All calculations are based on the assumption that – from the economic point of view – the difference between the limited average EEG surcharge and an EEG surcharge, that would be exist without the special equalization scheme, describes the real costs of the special equalization scheme. © GWS mbH 2012 Figure 7: Savings for privileged industries and rail operators through the special equalization scheme for electricity-intensive manufacturing enterprises with high electricity consumption or rail operators, in million Euro Source: IZES, own calculation, 2008 to 2010 on base of the results of a financial audit of the EG-surcharge, 2011 on base of an estimation of TSO; current prices ## 4.4 Public funding In Germany renewable energy is financially promoted by different programs of public and other funds. In 2011, the federal government has spent 266 million Euro to support research and development in this area (excluding project funding with only partial reference to renewable energy of about 45 million Euro). This federal government support is dominated by 137 million Euro BMU (Federal Ministry for the Environment, Nature Conservation and Nuclear Safety of Germany) project funding (excluding research funding within the program "Specific Measures", which is here quoted under market development). Research funding will strongly increase in the future. In 2011, the grants of BMU increased to 245 million Euro, growing by 75% compared to the previous year. According to the 6th Energy Research Program, adopted in August 2011, the federal budget and the special asset of the Energy and Climate Fund will provide approximately 3.3 billion Euro in the years 2011-2014 for research and development of sustainable energy technologies. Renewable energy will receive 1.05 billion Euro of this amount, including 0.2 billion Euro for institutional support (BMU 2012). Additionally, federal states provided about 61 million Euro of research spending (2008, PTJ 2010) and the proportional expenditures of the EU accumulated to about 16 million © GWS mbH 2012 Euro (2007). Expenditures for R&D promote future innovations and thus cannot be attributed to the current use of renewable energy in Germany. The federal government has provided 304 million Euro in 2011 for market development in the heating and electricity sector. This includes 287 million Euro for the promotion of specific measures regarding the utilisation of renewable energy sources with a focus on the heating sector. The expenses of the Market Incentive Program (MIP) were 229.4 million Euro (including administrative cost of BAFA - Federal Office of Economics and Export Control). In 2012, the BMU program "Specific measures for the utilisation of renewable energy" provides a total of 317.8 million Euro, of which 249.8 million Euro are dedicated to the MIP and 68 million Euro are spent for programs and projects of the National Climate Initiative. For the year 2012 an additional 116 million Euro from previous years are available. The market development of renewable energy is not only supported by the federal government but also by federal states (with about 20 to 30 million Euro per year) and numerous foundations (estimated at around 10 million Euro per year). The loan commitments of KfW (German Reconstruction Loan Corporation Bank) for renewable energy decreased significantly in 2011 compared to 2010. In total, 37,742 loans with an amount of 7.559 billion Euro were approved. The most important program, called "Standard", mainly addresses roof-top photovoltaic and wind power plant development. Loans under the KfW program "Premium" (Market Incentive Program) have increased to 0.5 billion Euro in 2011. Furthermore, the program "off-shore wind energy" approved up to 0.542 billion Euro of loans in 2011. The interest advantage of accumulated loans by funds of the KfW (without "Premium" and corresponding predecessor programs) is estimated at approximately 0.3 billion Euro for 2011. #### 4.5 TAXATION OF ELECTRICITY FROM RENEWABLE ENERGY The ecological tax reform in 1999 introduced an electricity tax with a standard rate of 2.05 ct/kWh since 2003. Hence, electricity from renewable energy sources is essentially taxed as electricity from fossil and nuclear energy. In return, the Market Incentive Program, promoting renewable energy sources in the heat sector, is partly financed from electricity tax revenues. In 2011 the electricity tax revenue amounted to 7.247 billion Euro. Exempts especially for the manufacturing industry caused deficiency in tax receipts of 3.535 billion Euro per year, which cannot clearly be assigned to the energy sources used. Using two different approaches, the amount of the current electricity tax which can be assigned to renewable energy is estimated to 1.452 billion Euro and 1.68 billion Euro respectively. Subsequently, the price adjusted total for the years from 1999 to 2011 is estimated at be 9.188 billion Euro or 10.862 billion Euro (2011). As part of balancing the costs and benefits of renewable energy it should be noted that the electricity tax does not contribute to a differentiated internalization of external effects of electricity generation. An exemption for renewable energy from the electricity tax would in principle be justified on terms of energy and environmental policy and, above all, © GWS mbH 2012 should be examined carefully when discussing future development of renewable energy support policy. #### 5 MACROECONOMIC EFFECTS The category of macroeconomic effects also comprises effects, which cannot be easily added or included in the "net" balancing sheet of a cost-benefit analysis. Partly, these effects are included in other categories e.g. the system analytic approach, but still are of interest also as a single category. Partly, they are not easily added because of different units of measurement; the best example is employment. In this section we report the finding for investment in renewable energy, turnover of the German industry and employment in the production of systems and components (manufacturing), the operation and maintenance and in fuel production. Further, we conclude this section with an estimate for import reduction, an issue related to energy security. Germany is poor in own resources and most fossil fuels are imported. #### 5.1 INVESTMENT IN RENEWABLE ENERGY IN 2011 Investment in renewable energy in Germany leads to the capacities installed and is directly related to the respective contribution possibilities of renewables to the energy mix. While
investment has been rising steadily over the last 5 years, 2011 showed a turning point: For the first time, investment fell, from 26.6 billion Euro in 2010 to 22.9 billion Euro 2011. Capacity installed, however, again was higher than the year before. The main driver behind this development is the tremendous price decrease in the photovoltaic industry. While in 2010 investment needed for the installation of 7.4 GW exceeded 19 billion Euro, total installation of 7.5 GW in 2011 only cost 15 billion Euro. Investment in all other technologies rose. Especially the wind industry has seen remarkable increases in investment. Solar water heater 30,000 Geothermal energy 25,000 1,550 ■ Biomass,heat 20,000 generation 2,000 Biomass. 15,000 electricty 1,650 generation 19,500 1,100 ■ Hydro 15,000 10,000 9,600 6.200 5,000 PV 2,950 2,650 2,500 2,300 Wind 2008 2009 2010 2011 Figure 8: Investment in renewable energy – electricity and heat production (in million Euro) Source: O'Sullivan et al. 2010, 2011, 2012 ## 5.2 INDUSTRIAL TURNOVER To determine employment from renewable energy increases – one of the major cobenefits of renewable energy policies – turnover of German companies is the starting point. It can be deduced from investment knowing imports and exports. In 2011, turnover from systems and components of companies producing in Germany held the level of 2010. The largest increase exhibits the biogas sector. This reflects the changes in the German regulation and anticipation thereof among investors. Further positive development can be observed in the wind industry, for solar water heaters and for heat pumps. Each of the latter industries showed increasing turnover after two years of decrease. The drivers of this development are quite different: while the wind industry benefited from increasing exports, the residential heat applications seem to have recovered on the domestic market. Turnover in the photovoltaic industry fell, again, mostly driven by the massive price decreases on international market. © GWS mbH 2012 Figure 9: Turnover of German RE- industry (in million Euro) Source: O'Sullivan et al. 2010, 2011, 2012 ## 5.3 EMPLOYMENT As has been stated above, employment is the largest co-benefit of renewable energy policies. A study commissioned by the German Environmental Ministry analyses the employment effects from renewable energy (Lehr et al. 2011, 2012) comprehensively. Part of this analysis is an annual report on gross employment from new capacities, operation and maintenance and the provision of biofuels. Gross employment comprises direct effects in the respective RE industries and service sectors as well as indirect effects from multiple rounds of intermediary inputs from all economic sectors. Since the start of the above mentioned analysis (2004) a methodological framework has been established and improved. Annual data are published since 2006. Employment has increased since 2004 by almost 178%. In 2011, employment in production, operation and maintenance, fuel provision and research and administration with public funds has reached 381,600 jobs. Past analysis has shown that these jobs often require higher skills than the industrial average. For the first time in 2011, this analysis has been complemented by a regional analysis on the level of the German Bundesländer. Results can be found at Ulrich et al. (2012). On the regional level, it can be said that the recent estimate indicates that gross employment generated by use of wind energy in 2011 is characterized by a north-south divide. However, by comparison with this basic statement - which to a great degree will probably be seen as intuitive and no great surprise - geographical patterns can be identified that are clearly at odds with the obvious connection between the coast and wind power. © GWS mbH 2012 Figure 10: Employment from renewable energy in Germany Source: O'Sullivan et al. 2010, 2011, 2012 Thus we can see besides the relative high relevance of wind energy use for the regional labor market in those countries which are conventionally associated with the wind industry (Bremen, Lower Saxony, Schleswig-Holstein, Saxony-Anhalt, Mecklenburg-Western Pomerania) that in the states with strong economies - North Rhine-Westphalia, Baden-Württemberg and Bavaria – the relative importance of onshore wind power tends to be low. Nevertheless, these three states account for over a third of direct and indirect employment. #### 5.4 IMPORT REDUCTION Energy security also is an often mentioned co-benefit of renewable energy policies, especially for countries with few domestic fossil fuel energy resources such as Germany. Import dependence of fossil fuels in Germany is high and leaves the country vulnerable to the risks of sudden price changes or supply shortages worldwide. The switch to domestic sources increases energy security. To find a measure for the seemingly obvious facts, however, has proven difficult. Diversity measures help to show, that a more diverse portfolio serves as risk mitigation (Lehr 2009). A more simple approach, which is reported below, is to look at the reduction of fossil fuel imports in monetary terms. The approach is the following: Reductions in primary energy as given by the renewable energy statistics are multiplied with import shares and given a monetary value multiplying them with the respective import prices. The results are given in figure 11. Though more and more primary energy is substituted by renewable © GWS mbH 2012 energy, the monetary value of the import reduction reflects international fossil fuel prices. The 2009 values show the rather low oil price compared to 2008. 2011 values already reflect the changes on the gas market from unconventional gas. Figure 11: Development of import reduction, in billion Euro Source: GWS, own calculation. #### 6 CONCLUSIONS AND OUTLOOK Comprehensive cost benefit analysis of the transition to an energy mix with large shares of renewable energy is a challenge. This contribution summarizes the findings of a large study for Germany which created a systematic approach and attempted to give estimates – at least for the most important fields. It has been shown benefits more or less outweighed the costs, for the observed time span (2008 - 2011). This holds true for those categories, where the system boundaries coincide, the same units of measurement, time frame and region apply so that the results can actually be added. Other categories exceed the boundaries but still point to a beneficial development: additional employment has been created and in total the sector leads to employment of 381,600 people. Renewable energy lowers the power price during the middle of the day on a sunny day by significant amounts – but increases the households' electricity bills by the EEG-surcharge. Since both are distributional effects – and all non-privileged electricity customers pay for the additional cost - a simple cost-benefit analysis is not applicable. There are certain significant benefits of renewable energy expansion that cannot be recorded in the above category, or only to a limited extent. This applies particularly to the contribution of renewables to energy supply security and the associated issue of strategic security policy aspects. Another important aspect when assessing supports for renewable energy is their long-term dynamic impact on innovation. One task for the years ahead is to undertake a more detailed scientific analysis and, if possible, a quantification of these and other barely analyzed effects. At the same time, the analysis of known effects also needs to © GWS mbH 2012 be refined. In future, an overall view of the effects outlined will provide a sound basis for economic statements about the arguments for renewable energy. In view of the unresolved questions indicated, however, there is no sign yet of a final unequivocal judgment about the overall economic costs and benefits of renewable energy expansion. ## REFERENCES - BMU (2009): Marktanreizprogramm für Erneuerbare Energien. Bilanz für 2008: Investitionsförderung mit 236 Millionen Euro auf Rekordhöhe. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit Referat KI III 2. In: Umwelt 2/2009. S. 117-119. - BMU (2012): Trends in renewable energy in Germany in 2011 Data from the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). Based on information supplied by the Working Group on Renewable Energy Statistics (AGEE-Stat) 8 March 2012. - BNetzA (2012): Bundesnetzagentur ENLAG Monitoring Stand der vordringlichen Stromtrassen gemäß Energieleitungsausbaugesetz (EnLAG), Bonn 2012 online verfügbar unter: www.bundesnetzagentur.de/cln_1911/DE/Sachgebiete/ElektrizitaetGas/StromNet zEntwicklung/EnLAG/EnLAG node.html - Breitschopf, B. & Diekmann, J. (2010): Vermeidung externer Kosten durch Erneuerbare Energien Methodischer Ansatz und Schätzung für 2009 (MEEEK), Untersuchung im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Juni 2010. - DENA (2005): Netzstudie I Energiewirtschaftliche Planung für die Netzintegration von Windenergie in Deutschland - DENA (2010): dena-Netzstudie II. Integration erneuerbarer Energien in die deutsche Stromversorgung im Zeitraum 2015 2020 mit Ausblick 2025. - EEG (2012): Act on granting priority to renewable energy sources (Renewable Energy Sources Act EEG), Gesetz für den Vorrang Erneuerbarer Energien , ("Erneuerbare-Energien-Gesetz" EEG) Consolidated (non-binding) version of the Act in the version applicable as at 1 January 2012. - Genoese, M., Sensfuß, F., Möst, D. & Rentz, O. (2007): Agent-Based Analysis of the Impact of CO2 Emission Trading on Spot Market Prices for Electricity in Germany. In: Pacific Journal of Optimization, 3 (3), pp. 401-423. - ISI, GWS, IZES, DIW (2010a): Einzel- und gesamtwirtschaftliche Analyse der Kostenund Nutzenwirkungen des Ausbaus Erneuerbarer Energien im deutschen Strom- und Wärmemarkt. Barbara Breitschopf, Marian Klobasa, Frank
Sensfuß, Jan Steinbach, Mario Ragwitz, Ulrike Lehr, Juri Horst, Uwe Leprich, Eva Hauser, Jochen Diekmann, Frauke Braun, Manfred Horn. Studie im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Zwischenbericht, März 2010. - ISI, GWS, IZES, DIW (2010b): Einzel- und gesamtwirtschaftliche Analyse der Kostenund Nutzenwirkungen des Ausbaus Erneuerbarer Energien im deutschen Strom- und Wärmemarkt, Studie im Auftrag des Bundesministeriums für Umwelt, Natur-schutz und Reaktorsicherheit, Update für 2009, Mai 2010. © GWS mbH 2012 - ISI, GWS, IZES, DIW (2011): Methodische Ansätze zur Analyse der Kosten- und Nutzenwirkungen des Ausbaus Erneuerbarer Energien im Wärmebereich, Studie im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Nov. 2011. - Klobasa, M. & Sensfuß, F. (2011): CO₂-Minderung im Stromsektor durch den Einsatz Erneuerbarer Energien im Jahr 2008 und 2009. Bericht für die Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) im Auftrag des Zentrums für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), Stand Februar 2011. - Krewitt, W. & Schlomann, B. (2006): Externe Kosten der Stromerzeugung aus Erneuerbaren Energien im Vergleich zur Stromerzeugung aus fossilen Energieträgern. Im Auftrag des BMU. April, 2006,. - Lehr, U. (2009): More Baskets? Renewable Energy and Energy Security. <u>GWS Discussion Paper 2009/8</u>, Osnabrück. - Lehr, U., Lutz, C., Edler, D., O'Sullivan, M., Nienhaus, K., Nitsch, J., Breitschopf, B., Bickel, P. & Ottmüller, M. (2011): Kurz- und langfristige Auswirkungen des Ausbaus der Erneuerbaren Energien auf den deutschen Arbeitsmarkt. Untersuchung im Auftrag des BMU. Februar 2011. - NEEDS (2009): New Energy Externality Developments for Sustainability (04/09), Integrated Project, DG Research EC, 6th Framework Programm, Mai 2004 2009, http://www.needs-project.org/index.php?option=com_content&task=view&id=42&Itemid=66; download June 2009; Deliverable n° 6.1 RS1a, "External costs from emerging electricity generation technologies". - Nitsch, J., Pregger, T., Scholz, Y., Naegler, T., Sterner, M., von Oehsen, A., Pape, C., Saint-Drenan, Y. & Wenzel, B. (2010): Langfristszenarien und Strategien für den Ausbau der Erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und Global. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Stuttgart, Berlin. - O'Sullivan, M., Edler, D., van Mark, K., Nieder, T. & Lehr, U. (2010): Kurz- und langfristige Auswirkungen des Ausbaus der erneuerbaren Energien auf den deutschen Arbeitsmarkt, jährlicher Bericht zur Bruttobeschäftigung Bruttobeschäftigung durch erneuerbare Energien in Deutschland im Jahr 2009 Stand: 23. März 2010. - O'Sullivan, M., Edler, D., van Mark, K., Nieder, T. & Lehr, U. (2011): Kurz-und langfristige Auswirkungen des Ausbaus der erneuerbaren Energien auf den deutschen Arbeitsmarkt, jährlicher Bericht zur Bruttobeschäftigung Bruttobeschäftigung durch erneuerbare Energien in Deutschland im Jahr 2010 Stand: 18. März 2011. - O'Sullivan, M., Edler, D., van Mark, K., Nieder, T. & Lehr, U. (2012): Kurz-und langfristige Auswirkungen des Ausbaus der erneuerbaren Energien auf den deutschen Arbeitsmarkt, jährlicher Bericht zur Bruttobeschäftigung Bruttobeschäftigung durch erneuerbare Energien in Deutschland im Jahr 2011 Stand: 14. März 2012. © GWS mbH 2012 - PTJ (2010): Förderung der nichtnuklearen Energieforschung durch die Bundesländer (2008). Forschungszentrum Jülich GmbH, Projektträger Jülich (PtJ-ERG). Jülich, Juni 2010. - Sensfuß, F. (2011): Analysen zum Merit-Order-Effekt Erneuerbarer Energien. Fraunhofer ISI. Februar 2011. http://www.erneuerbare-energien.de/inhalt/47157/40870/. - Sensfuß, F. (2007): Assessment of the impact of renewable electricity generation on the German electricity sector An agent-based simulation approach, Dissertation, Universität Karlsruhe (TH), Karlsruhe 2007. - UBA (Umweltbundesamt Federal Environmental Agency) (2012): Aktualisierung der UBA-Methodenkonvention zur Schätzungen externer Umweltkosten: Best Practice Kostensätze für Luftschadstoffe und CO₂ zur Ermittlung energiebezogener Umweltkosten (Update of the methodological convention to assess external costs: best practice for damage costs of air polutant and CO₂ to assess environmental costs), UBA-Working Paper 2012, forthcoming. - Ulrich, P., Distelkamp, M., Lehr, U., Bickel, P. & Püttner, A. (2012): Erneuerbar beschäftigt in den Bundesländern! Bericht zur daten- und modellgestützten Abschätzung der aktuellen Bruttobeschäftigung in den Bundesländern. Studie im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Osnabrück, Stuttgart. © GWS mbH 2012