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Abstract

The paper presents an Agent-Based extension of Nelson-Winter
model of schumpeterian competition. The original version did not pro-
vide any insight about the direction of firms’ innovative activities and
of technological change as a whole. As a result, it lacked an explicit
structure governing firms interaction and the shape of externalities.
We address these criticisms by taking explicitly into account the struc-
ture of technology in use in the industry, that we shape as a directed
network of nodes and links: nodes represent technological skills to be
learnt by firms looking for ’new combinations’ and links represent their
reciprocal interdependencies. The network is created in order to reflect
the defining properties of Technological Paradigms and Technological
Trajectories, as they emerge by evolutive-neoschumpeterian literature.
Firms’ ability to learn technological skills through imitation of com-
petitors generates spillover effects related to the process of diffusion
of innovation. The basic model presented here focuses on a particular
aspect of schumpeterian competition: the relationship between indus-
try initial concentration and its overall innovative performance and,
vice-versa, between innovation process and the evolution of industry
structure over time. In this same perspective we also analyze how
firms’ interactions and the structure of technology concur in determin-
ing the success or failure of an innovative strategy. Finally we argue
that the model presented here might constitute a flexible framework
worthy of further applications in the study of innovation process and
technological progress.

1 Introduction

Innovation and Technological progress is increasingly seen as one of the
driving forces of economic growth in industrialized economies ([Maddison
1991]). Based on a fast growing empirical literature on different aspect of
technological progress process the neoschumpeterian school of thought has
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highlighted the fact that technological change takes place along ordered and
selective patterns shaped by technological and scientific principles as well
as by economic and other societal factors (Verspagen [2007]). Concepts like
incremental and radical innovations, technological paradigms and techno-
logical trajectories ([Dosi 1982]), natural trajectories ([Nelson And Winter
1982]), techno-economic paradigms ([Perez 2009]) have been developed to
capture patterns holding across sectors ([Breschi, Malerba and Orsenigo
2000]). While recognizing the existence of an high degree of heterogeneity
in technologies employed and firm sizes among different industries, typical
patterns of industry evolution and the general importance and structure of
knowledge accumulation processes have been established ([Dawid 2006]).
Many attempts have been done to explore the ’black box’ of innovation
focusing primarily on the dynamic relationship between the process of gen-
eration of new knowledge and its diffusion in the socio-economic system.
Concepts like learning by doing ([Arrow 1962], [Romer 1986], [Romer 1990],
[Forey 2000])and learning by using ([Rosenberg 1982]) has become very pop-
ular also in mainstream theory of growth highlighting the positive feedback
effects and the increasing returns associated with innovation process. Many
scholars, at the same time, has stressed how firms’ learning processes cannot
be reduced to a simple by-product of ’doing’ since they represent a conscious
and expressly focus activity, relying on a variety of source of knowledge both
internal and external. Learning by firms is one of the most dynamic pro-
cesses taking place within industries, implying both a quantitative and a
qualitative change in the production process: indeed every learning process
yield enhancements in the stock of knowledge and technological capabilities
of firms, which in turn generate a whole range of trajectories of technologi-
cal advance ([Malerba 1992]). A growing attention was also put to the role
played by institutional variables and the socio-economic context in which
innovation takes place. Indeed notions such as learning by communicating
([Lundvall 1992]), collective learning ([Cassiers and Forey 2002]), national
systems of innovation ([Lundvall 1988], [Freeman 1995], [Lundvall 2010])
were mainly addressed to the analysis of learning processes resulting from
the interaction of different agents operating in a particular environment. At
the same time the study of spillover effects and network externalities have
been a central issue in the field of technological/innovation diffusion models1

Despite the huge variety of issues addressed, it is still possible to identify
a common thread among all the previous fields of research. Indeed they
all share a similar interpretation of the nature of technological change and

1Following [Geroski 2000] we can classify this set of models in epidemic models, Probit
models, legitimation and competition models and information cascaded models. How-
ever this classification is not exhaustive. In recent years other types of model have been
increasingly used to analyze innovation and technological diffusion such as percolation
models and models implying social networks analysis ([Silverberg and Verspagen 2005],
[Hohnisch, Pittnauer and Stauffer 2006], [Cantono and Silverberg 2008], [Goyal 2003])).
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of innovation process, that we can summarize as follows ([Dawid 2006]): i)
Technological change is a dynamic process intrinsically cumulative and path-
dependent. The success of innovative activities of a firm depends to a large
extent on the size and structure of the knowledge base the firm has accumu-
lated in the past. Innovation process cannot be understood without taking
into account the entire process of knowledge accumulation over time. ii)
Innovation is affected by fundamental uncertainty ([Dosi and Egidi 1991]).
Obviously different degrees of uncertainty are associated to innovation pro-
cesses depending both on the nature of innovation (for example radical or
incremental) and on the industry in which it is carried out. Nevertheless
uncertainty is always unavoidable. The success or failure of an innovative
process depends on a large extent on aspects that cannot be managed or
even foreseen by firms. These sources of uncertainty can be related both
to technical aspects regarding the implementation of an innovation and to
difficulties in foreseeing the reaction of markets. In turn this implies that
it is never possible to assess ex ante the superiority of a technological path
over another one with certainty. iii) Heterogeneity among agents perform-
ing innovative activity is a key feature of technological advance. From an
empirical point of view we observe that firms may have different strategies
towards innovation even in the same industry. On one hand heterogeneity
and complementarity of firms’ knowledge base trigger the generation of new
knowledge and facilitate the exploration of alternative technological lines of
development; on the other heterogeneity actually emerges as a consequence
of technological change. iv) Finally the effects of technological change are
not simply confined to the production process. Indeed innovation signifi-
cantly affects the evolution of industry and market structure through selec-
tion processes. But this causal link also works in the opposite direction since
firms’ innovative performance is considerably affected by a number of cir-
cumstances related to industry structure, such as firm size and firm’s market
power. This dynamic relationship between economic and technological evo-
lution has been central in particular inside the neoschumpeterian-evolutive
analysis.
The complexity of the arguments just proposed has proved to be difficult
to address using traditional analytical tools. This explains why economists,
in order to tackle this kind of issues, has largely exploited the opportuni-
ties offered by simulation approaches. The use of computer simulation is
well established within the neoschumpeterian tradition where phenomena of
qualitative change and development are at the front of the research program
([Windrum 1999], [Pyka and Fagiolo 2005]). Actually the very first compu-
tational exercises in economics dates back to the seminal work of Nelson and
Winter. The inspiring idea of Nelson and Winter’s models - developed in
the 1970s and then collected in their famous book An Evolutionary Theory
of Economic Change - was that the intrinsic dynamic process underlying
schumpeterian competition, never formalized by Schumpeter in an coherent
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analytical model, could naturally be translated into a computational pro-
cess in which firms not only make short-term production and investment
decisions but also performs a search for new technologies ([Andersen 1996]).
Their joint work led to the emergence of an evolutionary synthesis combin-
ing Schumpeter’s theory of economic development and business cycles with
the work of Simon ([Simon 1947]) on rules and satisficing behavior and the
work of Nelson and Alchian ([Alchian 1950])on natural selection. The core
of the emerging evolutionary approach was represented by the idea that the
properties of an economic systems could not be deduced by simply looking
at the properties of its constituent parts, taken alone. The whole was more
than the simple sum of its parts. Therefore not surprising that the evolution-
ary theory has developed over the years a fruitful dialogue with complexity
economics that, from a methodological point of view, resulted in increasing
adoption of the modeling approaches developed in this research field: based
on the concepts of adaptivity, local interaction in well-structured space, pro-
cedural rationality and heterogeneity (see [Epstein 1996] and [Epstein 2006])
the so-called Agent Based Models (ABM) have proven to be well suited to
the study of innovation processes2.
The aim of the paper is to contribute to this line of research by rearrang-
ing the Nelson and Winter’s depiction of Schumpeterian competition in the
context of agent-based models. Nelson and Winter wished to examine the
simultaneous existence of multiple firms and different innovative behaviors
by assuming that initial heterogeneities between firms with respect to their
innovation strategies. In particular, they considered an industry which was
a mix of imitators (investing only in imitative R&D) and innovators (invest-
ing in imitative and innovative R&D). According to their innovative strategy
choice firms experimented different innovative performance. Therefore the
different paces of capital accumulation led to selection effects of behavior on
the industry level. However, the computational model developed by Nelson
and Winter only provides a quantitative discussion of the effects of inno-
vation and does not consider the direction of technological advancement of
enterprises operating in the industry and the repercussions that this deter-
mines on the innovation process itself. Our goal is to show how even com-
panies that follow the same strategy towards innovation could experience
different economic performances as a result of their decision to specialize
along certain technological paths among all possible ones. In fact such a de-
cision, taken on the basis of simple procedural rules and dependent on their
past technological paths (i.e., on their previous accumulation of knowledge),

2ABM try to depict economies as complex systems whose aggregate properties (or
rather ’emergent’ properties) have to be inferred - in a bottom-up perspective - from
interactions and behaviors of decentralized micro entities. In turn the macro level can
affect significantly the behavior and the structure of the dynamic interactions of agents at
a micro level through feed-back effects. For this reason the ABM can rightly be considered
as a ’third way’ in the debate between micro and macro-foundation of economic theory.
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affects firms’ ability to perform successfully the imitative activity. In or-
der to learn and to implement in their production processes certain pieces
of technological knowledge, firms must first have acquired other pieces of
knowledge. This idea is implemented in the model by assuming that the
structure of the technology is given at the beginning of the simulation and
it can be represented by a network structure defining all the possible paths
of technological development that firms can explore.
The paper is organized as follows: Section 2 we present and discuss Nel-
son and Winter’s model of Schumpeterian Competition [Nelson and Winter
1982] which provides the basic structure for the model developed in the
present work. Particular attention will be given to the notions of Techno-
logical Paradigms and Technological Trajectories in order to highlight the
major limits of Nelson and Winter’s computational approach. In section 3
the main features of the technology network structure and a description of
the stochastic algorithm used to generate it are presented. Then, in the fol-
lowing 2 sections the behavioral rules of agents (with particular attention for
those referring to firms’ innovative strategies) are specified and the formal
structure of the model is defined. The set-up used to calibrate the model
under each simulation scenario and the results of the simulations are shown
in sections 6 and 7. Finally a brief discussion about some possible further
application of the present work is presented. In particular, even if the aim
of the present model is purely theoretical, the recent empirical work made
by some scholars on patent citation networks, could provide the opportunity
to apply the model for the study of specific technology sectors.

2 The Model

The model developed in the present paper is inspired by the work of Nelson
and Winter on schumpeterian competition. The authors began to work on
this issue by using a computational approach since 1977 [Nelson and Winter
1977 (1)]. Then this job came out into the model presented in Part V, Ch.12
of their 1982 book [Nelson and Winter 1982]. This is the formalization to
which we refer in order to develop the basic structure of our model3.
The model presents a single homogeneous product industry that faces a

3Indeed this version of model can be interpreted as representing the Nelson and Win-
ter’s fundamental framework for analyzing schumpeterian competition. Starting from this
point the author then provided further extensions: in ch.13 of their 1982 book, for ex-
ample, they modified the model to analyze the so-called schumpeterian trade-off between
static and dynamic efficiency. Particularly important is the extension provided by Winter
in his later work [Winter 1984]. In this paper the author analyzes the process of schum-
peterian competition under different technological regimes. This version of the model,
which includes a mechanism of entry and exit form the industry and introduces a degree
of adaptivity of the strategies followed by firms on the basis of the results achieved, it is
certainly closer to the logic of agent-based modeling.
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downward sloping demand curve with constant4 elasticity.
Following Nelson and Winter we begin by making some simplifying assump-
tions about the characteristics of technology and of the production processes
carried out by companies. Every firm is characterized by the use of a single
techniques, the best it knows. All techniques are characterized by constant
returns to scale and fixed input coefficients. Each firm uses in each period
its whole capacity to produce output. Firms’ capacity is constrained by
their stock of capital. Given the stock of capital, each firm then purchases
the quantity of complementary inputs required. For simplicity reason, the
model assumes that all factors supplies are perfectly elastic. Hence all fac-
tors prices constant.
Furthermore, since each techniques requires the same complementary inputs
per unit of capital, costs of production per unit of capital are constant both
across firms and over time. What differs is the output per unit of capital
implied by each technique that, given the stock of capital, determines the
level of production costs per unit of output (i.e., the unitary costs of pro-
duction).
Under these assumptions the state of the firm i in a particular period can
be characterized by the binary {Ki, Ai}, where Ki is the stock of capital
and Ai represents the productivity of capital. Productivity will vary across
firms and over time as ’new combinations’ are carried out, allowing firms to
implement better techniques with lower unit costs. These new combinations
can be interpreted both as organizational and technological innovations. In
any case, every innovation, regardless of type, require the generation of new
knowledge to be achieved by firms.

2.1 Technological paradigms and technological trajectories

The generation of knowledge is characterized by specific attributes: knowl-
edge is at the same time the output of a specific activity and the input for the
generation of new knowledge. In other words knowledge creation and innova-
tion are characterized by high cumulativity and path-dependency. The exist-
ing literature has identified at least two ways in which firms can enrich their
knowledge base: through the use of the internal resources as well as through
the use of resources located externally5. The first way is traditionally iden-
tified, on one hand with the activity carried out by specific units of the
enterprise explicitly addressed to innovation, such as R&D laboratories and,
on the other hand with ’internal’ learning economies such as learning by do-

4Actually we assume that the elasticity of prices to quantities is unitary. A more
detailed description fo the model will be presented in section 5.

5Indeed many scholars has stressed the fact that, more properly, the innovative activity
carried out by firms cannot be seen as a process relying only on internal resources. New
knowledge is always the product both private and public, codified and tacit knowledge
already accumulated in the past (see [Forey 2000]).
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ing ( [Arrow 1962], [Romer 1986]) and learning by using ([Rosenberg 1976],
[Rosenberg 1982]). The latter implies the mobilization of external resources,
derived from other economic actors. Examples are learning by communicat-
ing, learning by interacting ([Lundvall 1992], [Lundvall 1996]) and network
externalities. We do not go into details. What is relevant, for the aim of
this work, is that innovation is indeed the collective result of the interde-
pendent and interactive action of economic agents, involving the reciprocal
—sometimes unintentional— exchange of pieces of knowledge [Cassiers and
Forey 2002]. These kinds of interactions are fundamental in shaping the
direction of technological advance.
Following Dosi [Dosi 1982], we can interpret technology as ’a set of pieces of
knowledge, both directly practical (related to concrete problems and devices)
and ”theoretical”(but practically applicable although not necessary already
applied), know-how, methods, procedures, experience of successes and fail-
ures and also, of course, physical devices and equipment’. Pushing on a par-
allel with Khun’s scientific paradigms Dosi defined a technological paradigm
as ”model” and ”pattern” of solution of selected technological problems, based
on selected principles derived from natural sciences and on selected mate-
rial technologies. Roughly speaking a technological paradigm is defined by
the generic task to which it is applied, the material it selects, the chemical-
physical properties it exploits and the technological and economic dimen-
sions of the trade-offs it focuses upon. Hence technological paradigms shape
the basic structure of the technology at stake, delimiting the boundaries in
which the different possible technological trajectories will develop. Therefore
technological trajectories are clusters of possible technological directions in-
side the boundaries of a technological paradigm.
The notions of technological paradigms and technological trajectories play a
central role in our model of schumpeterian competition. The original model
by Nelson-Winter did not really provide any insight of the way through
which an innovation is carried out. Firms could increase their productivity
by investing either on innovative R&D activity, targeted to the development
of new techniques, or on imitative R&D activity, the latter allowing to copy
the ’best practice’ (i.e. the one characterized by the highest level of capital
productivity) of the industry. Both processes were modelized as a two-stage
random process. In every period firms could obtain with a certain prob-
ability (depending on their expenditure on the related R&D activity) an
innovative and/or imitative draw. Then, in the case of a successful innova-
tive draw, they just sampled from a probability distribution of technological
alternatives (i.e. allowing different levels of productivity gains). A successful
imitative draw, on the other hand, enable a firm to automatically implement
the best practice of the industry.
This approach however relies on a number of implicit assumptions. First of
all it assumes that each firm has got perfect knowledge about the techniques
in use among all other firms of the industry. Then they are always able to
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rank them according to the productivity levels they allowed and to identify
the best practice of the industry. Finally firms are always allowed - in case
of a successful imitative draw - to copy the best practice of the industry,
regardless the existent gap between their own level of productivity and the
level implied by the best practice and, even more important, regardless their
past technological path. In reality firms are not able to know exactly all the
possible production techniques in use in the industry. For sure they can
improve their knowledge of the feasible techniques by looking at what other
firms are doing but this ’scanning’ activity generally imply a cost both in
terms of financial resource and time. In any case it’s difficult to imagine
that such efforts can lead them to acquire a perfect knowledge of all indus-
try production techniques.
But, even if this were the case, it does not seem reasonable to assume that
knowing which is the best practice is sufficient to ensure that they will be
always and immediately able to implement it. Indeed the technological evo-
lution of a firm is always and deeply characterized by path-dependency. To-
day innovative choices of a firm not only affect their performance but also
’constrain’ their future innovative possibilities. Indeed even if firms’ tech-
nologies, within a particular industry, were rooted in the same technological
paradigm, each one of them would probably experience different techno-
logical trajectories according to their original endowment of technological
competences, their past technological paths, the technological possibilities
offered by their environment, the set of opportunities and constraints defined
by the legal, institutional and social context. These trajectories have a pow-
erful exclusion effect in the sense that they tend to restrict the innovative
efforts in rather precise directions while they appear blind to other techno-
logical possibilities. The generality and the strength of trajectories can vary
and it seem reasonable to think that there could be complementarities be-
tween the different trajectories. However, switching from one trajectory to
an alternative one is usually difficult and costly. Hence the ability of an im-
itative firm to adopt the best practice of the industry is not automatically
guaranteed since it depends crucially on the technological distance — or
rather, technological consistency — between its current technological skills
— determined by its past experience — and the ones required to implement
the best practice.
Following the same line of reasoning we can go further in considering the
way Nelson-Winter model approach innovative activity. As mentioned ear-
lier, once a firm get an innovative draw, it can sample from a probability
distribution of technological alternatives6, each one allowing a different level
of productivity gain. This distribution admits two different specifications,

6A log-normal distribution of values of the average productivity of capital. Remember
that this is the only relevant productivity since all other production factors are propor-
tional to capital in all feasible techniques.
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being its mean allowed to increase over time exogenously at a fixed rate —
situation they refer to as ’the science-based regime’ — or being centered on
the ’prevailing productivity of a firm (the ’cumulative technology’ case). In
both cases, the final result of this process is simply to provide the firm a
’number’ that adds up to its current level of productivity. Again, no insight
of the direction of technological change is given. Technology is depicted as
something neutral, a flat space in which all that matters is the absolute value
of the productivity gains that an innovation generates. In such a way we
are excluding a priori from the model the possibility to analyze particular
aspects of the activity dedicated by firms to innovation that can be rich of
implications in the context of schumpeterian competition.
These arguments seem to be consistent with the critical review of Dawid
[Dawid 2006] who, while recognizing the pioneering role played by Nelson
and Winter’s 1982 work, points up three major limits affecting their model:

1 The assumption that firms never adapt their decision rule7

2 The lack of any explicit structure governing interactions between firms
and the shape of externalities

3 Innovation possibilities only rely on current R&D spending. There is
no accumulation of R&D and no role for a firm’s accumulation of
knowledge. The mechanistic nature of the innovation process leaves no
room for considering the directions both of individual firm’s innovative
activity and of technological change as a whole.

The definition of an adaptive mechanism depends fundamentally on the kind
and degree of rationality with whom agents are endowed. In order to be ’ac-
tivated’ this mechanism also required the prior definition of a ’satisficing’
level of some target variable that the agents use as benchmark to evaluate
the opportunity of changing their behavior. Adaptivity of behavioral rules is
for sure a key feature of many Agent-Based models. A variety of techniques
has been developed in the literature to modelize this phenomena. These
techniques range from simple fixed algorithm to more complex evolutive
tools such as Artificial Neural Networks, Genetic Algorithms and Classifier
Systems. However, in the model presented here, we decided — mainly for
simplicity reason — to leave apart this kind of criticism while focusing on
limits 2 and 3. What we argue is that not only the direct improvement
of productivity but also the direction of technological advance is relevant
to determine the future performance of a firm. While the former affects
directly the profitability of the firm, the latter puts the basis for further
innovative developments in the future. In Nelson-Winter model the results

7Actually this point is approached in Winter’s later work [Winter 1984]. Here innova-
tion strategies are adaptive and firms change the composition of their R&D expenditure
between imitation and innovation according their past performance.
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of innovative activity can affect future innovative developments only by the
measure in which they affect — today — the profitability of the firm (and
then the future resources devoted to R&D). In our model, on the contrary, it
is important to consider — beside the current improvement of productivity
allowed by innovation — also the direction, inside a technological paradigm,
in which the firm is moving, since this circumscribes the field for future in-
novative and imitative activity.
In our simulations every firm tends to specialize along a particular tech-
nological trajectory through a search process which goes from less to more
specialized technological skills (an in-depth search process). The choice of
the trajectory tends to privilege the cumulative, path-dependent aspect of
technological innovation process, being fundamentally based on the the set
of technological competences already owned by each individual firm. In-
deed, it is impossible, a priori, to compare and asses the superiority of one
technological path over another8 [Dosi 1982]. What we are arguing is that
technological progress and innovation process are affected by strong sub-
stantive uncertainty [Dosi and Egidi 1991]. Hence firms are characterized
by bounded rationality [Simon 1947]. That is firms are not able to evaluate
in a precise way the complete set of technological opportunities (i.e. the
complete sequence of productivity gains) enabled by each possible trajec-
tory. Since firms are not able to identify the best feasible trajectory they
tend to follow some simple behavioral rules (i.e., heuristics) to face uncer-
tainty. This is the reason why, in order to choose the direction of their tech-
nological efforts, they first look at their past technological experience. This
behavior characterizing enterprises’ search process is an example of proce-
dural rationality in Herbert Simon’s sense ([Simon 1955] and [Simon 1976]).
This fact has relevant consequences that affect the innovative process. Given
the impossibility of defining ex ante — in a static perspective — an opti-
mal technological path, the success (or failure) of an innovative strategy —
leading a particular firm to specialize in-depth along a definite trajectory —
depend not only on the intrinsic ’goodness’ of the trajectory chosen but also
on the dynamic of the whole system. In particular, the possibility of acquir-
ing technological skills (i.e. adopting new and more productive techniques),
through imitation of competitors, generates spillover effects9. The dimen-
sion of these knowledge spillovers is related to the way firms in the industry
specialize along the different technological trajectories. Then the ability of
each firm to exploit this spillover effects through imitation of competitors
is affected not only by its own decisions but also by other firms innovative
strategies. The corollary of this observation is that the sole superiority —
from a pure technological point of view— of a trajectory does not necessary
imply that this will be the most widespread in the industry nor that firms

8Yet it is possible to find some objective criteria to compare them, but only ex post.
9

10



specializing in it will outperform competitors specialized in ’less efficient’
trajectories10. Interesting, for its consistency with our arguments, is the
comment of Howitt [Howitt 2006, p.1615] about Brian Arthur’s work on the
nature of technological progress:

”(...) because of this fundamental uncertainty, the pace and di-
rection of innovation are necessarily guided by short-term con-
siderations, even though they can lead society down irreversible
paths whose long-run consequences are of great import, especially
when there are ’network externalities’ involved. That is, the
course of technological progress, rather than reflecting the inten-
tions of those individuals that create it, is a social process driven
by the largely unforseen consequences of individual decisions.”

3 Modelling a technological paradigm as a net-

work structure

Trying to translate in a formal model the complex structure of the previ-
ous arguments is one of most challenging aims of the present work. The
way we found to address this issue starts taking explicitly into account the
structure of the technology in use in the industry. We assume that the in-
dustry is initially endowed with a Technological Paradigm (TP) containing
all the possible innovations that can be achieved by firms. Each innovation
refers to the discovery of a new and more productive technique, allowing
a certain gain in terms of capital productivity. The TP is represented by
a network of nodes and links generated in the initialization phase of the
simulation: nodes can be thought of as the set of knowledge and techno-
logical skills required to implement a particular innovation (i.e., to adopt a
new technique of production that rise productivity) and links between nodes
define the requirements for implementing each node. That is, links define
the way the acquisition of the knowledge-competences required to carry out
an innovation (i.e. to ’learn a node’) depends on the prior acquisition of
other knowledge-competences (i.e. of other nodes, we call them its ’parents
nodes’).
The TP is generated at the initialization phase of the simulation through
a complex stochastic algorithm. This algorithm is inspired by Morone and
Taylor’s agent-based model of knowledge diffusion and innovation ([Morone

10This issue has already been studied in a number of works. See for example
([Arthur 1988 (1)], [Arthur 1988 (2)] and [Arthur 1989]) where the process of adop-
tion of competing technologies is described as a self-organizing, non-ergodic process
[Silverberg, Dosi and Orsenigo 1988] leading to multiple equilibria (due to the presence
of increasing return to adoption), generating lock-in phenomena and characterized by
potential inefficiencies (an inherently better technology with ’bad luck’ in gaining early
adherents can be driven out by less efficient one)

11



and Taylor 2005] and [Morone and Taylor 2010]), conveniently modified in
order to create a network capable of reflecting some general features of tech-
nological paradigms and technological trajectories.
We first set the dimension of the network equal to an exogenously given num-
ber N . Thus the network will be constituted of N nodes: N0, N1, ..., NN−1.
Then the TP generation process start by setting a list of n initial nodes N1

to Nn (n is exogenously given too) that are themselves directly linked to the
root node N0. The root node represents the origin of the network and can
be thought of as the set of technological knowledge and skills that constitute
the basis of the TP 11. Accordingly we can look at the set of the n initial
nodes — the ones directly connected to the root node — as the first set of
technological applications to productive process of the knowledge contained
in the root node. The remaining nodes (Nn+1 to NN−1) are embedded into
the TP network by the following procedure:

Point 1 The number of parents for each node is randomly determined as
an integer between 1 and the dimension of its List of Potential Parents
(LPP). The LPP for a node is chosen randomly among all the possible
ones. We will show in Point 2 how the Lists of Potential Parents are
constructed. Once chosen (randomly) a particular LPP and extracted
the number of parents each node sample its actual parents from its
PPL. A directed link going from each parent to the ’child’ node is
drawn. The parents are collected in the Parents List of the node.
Once inserted in the network each node is also characterized by a
Genealogy List (GL), the list of nodes representing the entire genealogy
of the node under consideration, from the root nodes to its ’direct’
parents (i.e., the nodes it has just sampled from the LPP). The GL of
a given node provides the complete list of nodes (we can call them the
’ancestors’) that is necessary to learn before being able to access the
node under consideration.

Point 2 The first set of Potential Parent Lists is obtained by splitting the
list of the n initial nodes in j parts. The number j is determined as
a draw from a Binomial Distribution with parameters (n, PSplit), with
Psplit exogenously given. As explained in Point 1 each node Nn+1 to
NN−1 will first sample a LPP and then sample its parents. However,
as soon as it is embedded in the network, it is also added to the
List of Potential Parents from which it has sampled, thus becoming
itself a potential parent for the following nodes (still to embed in the
network). So each List of Potential Parents changes during the network
generating procedure as new ’child’ nodes are added to it. However

11Following Dosi’s definition [Dosi 1982] we can interpret these basis as ’ ”model” and
a ”pattern” of solution of selected technological problems, based on selected principles
derived from natural sciences and on selected material technologies.’
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the possibility of splitting the Potential Parents Lists is not confined
to the initial stage of the network construction. In fact, before adding
each node to the network, a split in a randomly chosen List of Potential
Parents may occur with probability Psplit

12.

Point 3 Finally for each node just embedded in the network we make a
further procedure just to avoid having redundancies in its genealogy
list: if it comes out that a node in its Parents List is already an ancestor
of another parent (i.e. it already appears in the GL of another parent),
we delete it form the Parents List13.

Through the splitting procedure of the Lists of Potential Parents ex-
plained in Point 2 we are introducing the possibility of branching the network
representing the TP. This is maybe the most important feature of the TP
network generating algorithm. In our interpretation the different branches of
the network represent the possible technological trajectories that firms can
try to explore through their search activity. In other words we are introduc-
ing the possibility of having — inside the same technological paradigm —
different and relatively independent technological trajectories.

Figure 1 shows an example of PT network generated using the just de-
scribed procedure. The network presented is the first one used for our sim-
ulation experiments. The set-up used for the algorithm will be explained
in section 6. By looking at the figure we can easily identify the root node
(marked by index one), with the initial nodes arranged radially around it.
Branching of the network divide it into different independent area, repre-
senting different technological clusters of innovations.

4 Firms’ innovative behavior

4.1 Firms’ Skill Profile and the direction of innovation

Once the network of nodes and links representing the PT is defined, each
nodes is endowed with a certain level of productivity gain, i.e. the gain in
terms of productivity that firms can obtain by learning the technological

12Roughly speaking this means that, before adding each one of the n+ 1-N nodes, we
make a bernoullian trial with probability of success equal to Psplit. In case of success,
a List of Potential Parents is drawn at random and divided randomly in two parts. In
this way the number of List of Potential Parents will generally increase as the nodes
are progressively embedded in the network. Hence the total number of splits during the
network generating procedure can be interpreted as a draw from a Binomial Distribution
with parameters (N − 1, PSplit).

13Indeed, the fact that a node Ni appears in the genealogy of the node Nj (with j >
i) means that all the requirements in terms of technological skills and knowledge that
are needed to implement Ni are already implied by the requirements of the Nj node.
Consequently the addition of Ni to a PL that already include Nj turns out to be useless
and logically redundant.
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Figure 1: PT Network: Nnodes = 100, InitialNodes = 10, P split = 25%

skills implied by the node. In a similar way each firm, in the initialization
phase, is endowed with an initial Skill Profile(SP), representing the set of
nodes the firm already owns at the beginning of the simulation. These ’skill-
nodes’ are randomly chosen among the n initial nodes of the TP network,
their numberNskill being exogenously determined. Therefore the initial Skill
Profile of each firm constitutes its initial base of technological knowledge and
skills. Also these aspects will be treated in more detail in section 6, dedicated
to the set-up of the simulations runs14.
Firms in the industry compete with each other by trying to lower their
unitary production costs, i.e. by increasing their capital productivity. This
means that firms try to enhance their technological base by implementing
new innovation-nodes. Once a node is learned, it is added to the firm’s Skill
Profile. However firms can learn a node only after having already acquired all
the nodes that constitute its genealogy. We assume that, due to substantive
uncertainty affecting technological progress, firms cannot know — ex ante
— the gain in productivity enabled by each innovation node15. Therefore

14Indeed it should be quite intuitive that both the logic followed to distribute produc-
tivity gains among the nodes of the TP network and the way initial skills are distributed
among depends in a certain measure on the nature of the phenomena under study and
the objectives of the research work.

15This is obviously a strong assumption, motivated by our will to focus on the path
dependent nature of technological progress and on the role of technology structure in
shaping network externalities. Nevertheless it would be possible to modify the model
by assuming that firms are able, at least, to have some expectation about the increase
of productivity allowed by ’next-to-them’ nodes. Although this assumption appears more
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the distribution of productivity gains across nodes does not affect the way
firms choose which nodes trying to discover and in which order. Hence, what
are the determinants of the decision by firms of specializing in a particular
technological area? To manage substantive uncertainty firms tend to follow
some heuristics, based on their past experience. That is, firms follow simple
behavioral rules whose output depend on their own past technological path.
generally speaking each firm will choose — in each period — the direction of
its technological advance by choosing a ’target’ node (i.e. the node towards
which it will try to move). The choice of the target will be done by looking
at its current Skill Profile: each firm then compares the set of nodes already
in his possession with the list of nodes required to adopt each reachable
node.
More formally, in each period firms decide the target nodes according to the
following method:

Step 1 Firms first look at the children of each nodes in their SP. These nodes
are the ’candidates’ to be chosen as ’target’16.

Step 2 To choose the target each firm considers, for each candidate, the list of
nodes required to implement it (expressed by the candidate Genealogy
List) and then check how many of them are already in its possession
(i.e. in the firm’s current Skill Profile). The difference between the
two list provides the set of nodes that a firm should learn before being
able to implement the candidate node. Hence it can be interpreted as
a rough measure of the distance between the candidate node and the
current technological endowment of the firm, represented by its SP.

Step 3 Then they rank the candidate nodes according to this distance, fol-
lowing a ’first the nearest nodes’ rule, In this way they restrict the
set of candidates to the nodes with the minimum distance from their
current SP.

Step 4 If the previous step is not sufficient to identify a unique target node
— i.e. there are more than one nodes with the same minimum dis-
tance — they rank the survived candidates looking at the subtrahend
of the previous difference. In other words they look again, for each

realistic we do not think this is going to undermine the fundamental logic of our arguments.
Indeed, being able to know the gains allowed by nearest innovation-nodes is not sufficient
to evaluate, ex ante, the ’efficiency’ of the whole trajectory to which nodes belong. See
[Arthur 1988 (2)]. Furthermore for reasons explained in section 6 and related to the aim
of the present work, we set the productivity gains implied by each each node equal to a
constant parameter. Hence, even knowing exactly the productivity gains allowed by the
nearest nodes, firms would not be able to determine ex ante the superiority of a feasible
trajectory over another one.

16This means that firms can set as target a node only if they already possess at least one
of the nodes required for its implementation (the root node being not taken into account).
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survived candidate, to the number of nodes in its Genealogy List that
appear also in the current Skill Profile of the firm. Then they choose
the candidate for which this number is higher. The intuition is that
firms tend to privilege nodes for which they have already accumulated
more knowledge. This behavioral specification helps to increase the
consistency of the innovative choices made by firms step by step, as-
suring that — in general — once the firms have chosen a target, they
will pursue it until they will have successfully implement it. 17

Step 5 If still there are more than one node on a par, firms choose randomly
among them.

Step 6 Then firms, once chosen a target, must choose the order through which
they will try to learn nodes required to implement it. This implies the
choice of a sub-target. For simplicity reasons we assume that firms
start from the nodes with the lower index number18.

Note that, since we assumed that each nodes provide a productivity gain,
both the targets and the sub-targets represent ’innovations’. However, while
the sub-target is the node that the company will actually try to achieve in
the current period, the target provides the overall direction towards which
the company will focus its innovation efforts. The procedure by which the
target is chosen allows the firm to move forward in the exploration of the
network structure that represents the Technological Paradigm. Given these
simple behavioral rules, developed in order to highlight the path-dependent
nature of the search process carried out by firms, we expect that each firm
will tend to specialize along a particular trajectory. Which one depends
fundamentally on firm’s initial set of technological competences but, if more
than one possibility are still open, it may be determined also by chance.
This implies that even firms with similar initial technological competences
and identical innovative strategies 19 may experiment different technological
paths, different sizes of network economies and, therefore, different economic
performances.

4.2 Innovative and imitative activities

Like in Nelson-Winter model firms can discover more productive techniques
by either two methods: by doing R&D aimed at developing an innovation in-

17Actually, a replacement of the target node originally chosen is possible only if, while
firms are moving towards their target (i.e. while they are learning the nodes in its ge-
nealogy), new and more convenient — according to the method of evaluation described in
the second and third steps above— technological opportunities (i.e. candidate nodes) are
discovered.

18This simple rule automatically assures that firms will always choose nodes of the
genealogy that they are immediately able to learn, given their current SP.

19Following [Nelson and Winter 1982] we distinguish between ’pure imitative’ and ’both
imitative and innovative’.
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ternally (’local search’ or ’purely innovative’ strategy) or by imitating other
firms. Firms may differ in their policies towards innovation and imitation.
Following Nelson and Winter’s original model we distinguish between firms
pursuing a pure imitative policy and firms carrying on both imitative and
innovative R&D policies. Each policy is defined in terms of spending per
unit of capital, devoted to the respective innovative or imitative R&D ac-
tivities. Therefore the expenditure on innovation and imitation grows or
declines according to the size of the firm: large firms spend more on R&D
than do small firms. At the same time this greater spending provides them
a greater chance to obtain in each period an innovative or imitative draw.
Furthermore, like in Nelson-Winter model there are also ’appropriability ad-
vantages’ of large size firms, since everyone is always able to immediately
apply an innovation to its entire stock of capital without further costs.

Innovative activity is shaped so that, in each period, the probability of
success by a firm (i.e. the probability of being actually able to learn the de-
sired innovation node) is proportional to its current spending on innovative
R&D. This formulation is very closed to the first-stage innovative activity in
Nelson-Winter 1982 model (already described in section 3). However there
is a fundamental difference between the two approach. In our model, every
innovation produces two effects: on one hand it raises firm’s productivity20.
This was the only effect taken into account in Nelson-Winter specification.
On the other every innovation concurs in defining the direction in which
the firm is moving within the technological network, prompting the firm to
specialize along a particular technological path, thereby constraining also
the direction of future technological advance by the firm.
Alternatively a firm can try to learn a node through imitation by observing
the technology in use among its competitors. In this case it first selects a
number of firms to ’imitate’ and then looks at their Skill Profiles. If the node
it is looking for belongs to the SP of anyone among them, it can successfully
implement it. Otherwise, in the next period, it tries again, looking at a
different group of competitors. In each period, the number of competitors
that the company tries to imitate is defined as a draw from a Binomial Dis-
tribution in which the parameter defining the probability of success of the
underlying bernoullian experiment is proportional to firm’s current spend-
ing on imitative R&D activity. Needless to say, the higher this number the
greater should be the chance that the imitator finds the desired node. How
to choose the competitors to imitate? Imitators, at the initial period of each
simulation run, choose the firms to imitate randomly. In fact they don’t
have any information about other firms’ technological skills. However let’s
consider what happens when a firm succeeds in imitating a competitor. This

20The increased productivity, in turn, can increases future R&D outlays via profit,
investment and capital accumulation.
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fact should be interpreted by the firm as a clue about the possibility that the
imitated competitor is specializing in a similar technological area. In this
case, the imitative firm should be induced to believe that already successfully
imitated firm can provide further imitative draws also in the future. Hence
it is reasonable to introduce an additional behavioral specification for firms
according to which, when a firm gets a successful imitative draw by looking
at the SP of some competitors, it assigns them a priority (to be imitated)
for the next periods. This means that, in its subsequent attempts to acquire
new nodes through imitation, the firm will first look at the competitors that
have already yielded a successful imitative draw in the past21. If imitation
does not lead to desired results (that is, none of the imitated firms had got
in their Skill Profiles what the imitator was seeking) the firm, in the next
period, will choose randomly a different set of competitors to look at. The
priority recognized to a firm by an imitator is lost if the imitated firm does
not yield any further imitative draw for a number of subsequent attempts.
We must stress the fact that the presence of firms that follow an imitative
policy introduces in the model spillover effects related to the process of dif-
fusion of technological innovation that were totally absent in Nelson and
Winter’s original model. Indeed the probability of being successful in ob-
taining an imitative draw, while looking for a node located on a particular
trajectory of the PT network, is positively affected by the number of firms
that are specializing on that same trajectory. Roughly speaking for an imita-
tor, its probability of finding a competitor in possess of the node It is looking
for is higher the higher is the number of firms that specialize in the techno-
logical area in which the desired node is located. This means that firms that
follow an imitative strategy and are specializing along a densely populated
trajectory may have a relative advantage with respect to firms specializing
along less densely populated trajectories. This aspect explicitly shows how
the success or failure of firms innovative efforts relies not only on their own
strategies towards innovation but also on what other firms do. This gives us
the opportunity to highlight an important feature of the model: even firms
with identical strategies towards innovation, identical initial endowments
of capital, identical initial level of productivity, but different initial sets of
technological skills, may experiment different technological paths. Given the
fact that spillover effects are characterized by different strength along the
different feasible technological trajectories — depending on the number of
firms specializing on each one of them — this implies that similar firms may
experiments radically different economic performances. Evaluating ex ante
the goodness of an innovative strategy is then something problematic.

21If the total number of firms it can look at (that is a function of its expenditure
on imitative R&D) is higher than the number of firms ’with priority’, it will sample the
remaining firms to imitate by randomly choosing among other competitors. In the opposite
case the firm will have to extract randomly the firms to imitate among the ones with a
priority.
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5 The formal model

In this section we translate into a formal structure the model already present
in the previous part of the paper. Except for what concerns the representa-
tion of the search process by firms and the depiction of technology through
a network structure, the model is kept relatively close to the original version
by Nelson and Winter.
In each period, given the capital stocks and the productivities levels of each
firm, both the production of each firm and the total output are determined:

Qit = Ait ·Kit (1)

Qt =
∑

i

Qit =
∑

i

Ait ·Kit (2)

The price is then determined through the product demand-price func-
tion:

Pt = D (Qt) (3)

The profit on capital of firm i equals product price multiplied by output
per unit of capital (i.e., the productivity of capital, Ait), minus production
costs per unit of capital (c)22, minus R&D costs. For a firm following both
an imitative and innovative strategy R&D costs per unit of capital are given
by (rin,rim) and its rate of profit is given by:

πit = Pt ·Ait − c− rin − rim (4)

Similarly a firm spending only on imitative R&D, will have a profit function:

πit = Pt ·Ait − c− rim (5)

Innovative research activity is characterized by a random variable din
which takes values 0 or 1 according to whether firm does or does not get an
innovative draw in period t. The probability of success is defined according
the following function:

Pr {din = 1} = α · rin ·Kit (6)

The number of competitors that an imitative firm can look at in each
period is a random variable defined as the maximum value between one
and the result of a draw from a binomial distribution with parameter (n, p)
where n is equal to the total number of firms in the current period and p (the
probability of success of the Bernoulli experiment) is an increasing function

22Remember that, since the price of inputs are constant and all inputs coefficients are
fixed c is constant both across firms and over periods.
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of firm’s current expenditure on imitative search activity. Formally Nim is
a draw from:

Binomial
(

Nfirms
t − 1 , β · rim ·Kit

)

(7)

For each firm the ’price-cost’ ratio is determined as Pt/(c/Ait). We as-
sume that a firm’s desired expansion or contraction is a function of its price-
cost ratio and its market share and that its ability to finance investment is
constrained by its profitability. In other words the greater the price-cost
ratio the greater the firm’s ability to persuade capital market to provide the
required finance. But then the amount of R&D outlays, reduce the funds
received to finance investment. Since firms produce an homogeneous prod-
uct it is reasonable to have firms that follow a ’quantity policy’ rather than
a ’price policy’. This is implemented through their investment decision23.
Market share enters in the investment function since firms may have some
degree of awareness of the effect that an increase in their own output will
have on industry price. Hence firms may recognize that by increasing over a
certain level their production they risk to ’spoil’ their own market. Hence,
the higher their current market share, the higher the price-cost ratio shall
be in order to induce a certain level of expansion. Different investment be-
haviors could be studied by reshaping the investment function in order to
account for different level of wariness about spoiling the market [see again
[Nelson and Winter 1982] in the last chapters of part V). However, for sim-
plicity reason, we assume that firms have a correct perception of the industry
demand curve elasticity. More formally the first order differential equation
describing the dynamic of a firm’s capital stock can be expressed as:

Ki(t+1) = I

(

Pt·Ait

c
,
Qit

Qt
, πit

)

·Kit + (1− δ) ·Kit (8)

with δ being the physical depreciation rate, and with I(·) nonnegative given
by:

I (ρ, s, π) =Max

{

0,Min

[

(1 + δ)−
2− s

ρ · (2− 2 · s)
, f (π)

]}

(9)

where ρ = Pt·Ait

c
and f (π) is the finance constraint given by:

f (π) =

{

(δ + π) , if π ≤ 0
(

δ +Bregime · π
)

, if π > 0
(10)

with Bregime > 1 being a parameter defining the financial regime. A more
detailed explanation of the logic underlying the definition of the investment
function can be found in Appendix A1.

23Remember that in our model firms exploit their whole productive capacity. Thus,
given their productivity, the only way they can determine the level of production is through
their capital stock, i.e. by expanding or reducing their capital stock through investment.
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6 The setting

In the present work we use the model to analyze the connections between
market structure and innovation within an industry characterized by the
presence of firms with differentiated strategies towards innovation. This is-
sue was central in Schumpeter’s analysis, in particular the one presented
in Capitalism, Socialism, and Democracy [Schumpeter 1950] where the au-
thor stressed the importance of large firms in pushing the dynamic process
of innovation. As Nelson-Winter [Nelson and Winter 1982] noted market
structure is endogenous to an analysis of schumpeterian competition, with
the causal link going both directions. Large firms may have innovative ad-
vantages with respect to small firms due, for example, to managerial and
R&D economies of scale and to higher capabilities in obtaining finance. In
our model large firms spend more on R&D and hence have an higher proba-
bility of carrying out an innovation. Another important source of a relative
advantage with respect to small firms is represented by appropriability ad-
vantages related to the possibility of exploiting an innovation on a greater
scale of production. In a context — like the one describe here — where
there are no Intellectual Property Rights and imitative firms can easily copy
an innovation, the payoff of the innovator depends crucially on its ability to
exploit innovation in a short period of time and on the highest possible scale
of production. In the model we assume that firms can immediately apply an
innovation to their whole stock of capital. Actually, as Nelson and Winter
point out, these advantages are related more to firms’ dimension than to
market structure. However market structure may influence the capability of
innovators to exploit an innovation by affecting the speed at which imitators
are able to erode innovators’ advantage. If there are a few competitors it is
more likely that an innovator can keep its advantage for a longer period than
it would be in a market characterized a great number of firms. At the same
time successful innovators and imitators may invest their higher profits in
order to increase their dimension and thereby dominate the market.
In a schumpeterian perspective, the study of the connections between market
structure and innovative performance of an industry is primarily concerned
with the analysis of evolutionary struggle between innovative and imitative
strategies. Firms compete in the market and, according to the success of
their policy towards innovation, they grow or decline pushing the market
towards a more or less concentrated structure. In particular the probability
for a firm following an imitative strategy to result successful depend on its
ability to exploit spillover effects. In turn, the dimension of these spillovers
is influenced by the number of firms specializing in each feasible trajectory,
and hence by initial market structure. hence, while the original version of
the model, with a science-based technological regime, depicted a regime in
which innovative R&D activities were always somewhat unprofitable (on av-
erage), here different initial market structure may determine a context more
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or less favorable for either innovative or imitative policies.
For this reason we run several experiments with different initial industry
structures: four structures are examined, with respectively four, eight, six-
teen and thirty-two firms at the initial period. In order to provide the
clearest possible explanation of the mechanisms underlying schumpeterian
competition and industry evolution we choose initial conditions and param-
eters looking for some kind of symmetry among firms. For the same reason
we also rule out entry and we assume that in each simulation half firms fol-
low a pure imitative strategy while the other half spend both on innovative
and imitative R&D activities. In order to give an account of the role played
by the spillover effects generated along each branch of the TP network, we
assign to every innovation node the same productivity gain24. The initial
stock of capital is the same for all firms. Each firm is also given the same
number of initial skills, chosen randomly among the initial nodes of the PT
network. Furthermore we assume that each firm has got the same initial
level of capital productivity. Hence, at the first period of the simulation,
the levels of production, the market shares, the mark-up ratios and the de-
sired net investment will be the same for all firms.
The initial firm’s capital stock is chosen so that, for each initial structure, the
firm’s desired net-investment for the first period is equal to zero25. Then rin
and rim are adjusted to compensate the differences in initial levels of capital
so that the initial total expenditure on imitative and innovative R&D is the
same in all runs. In particular, following Nelson and Winter rin is chosen
in order to maintain constant the ratio between R&D spending and sales
at a level of 0, 1226. Then the coefficient α is set so that the probability
of obtaining a successful innovative draw gives on average two innovative
findings for the whole system every four periods (i.e. a year), at initial con-
dition. Then in Nelson-Winter model the coefficient rim and the parameter
β, defining imitative R&D policy were set in order to give an expected num-
ber of draws equal to the innovative ones. In order to highlight the cost
of doing innovative R&D they chose a value for rim approximately equal to
1
20rin and a value of β equal to 10α27. In this way they ensured that the
model shows the same ’initial progressiveness’ among all simulation runs.
However in our model things are quite different. In Nelson-Winter model
rim and β were parameters defining the probability of obtaining an imitative

24In this way we are avoiding any disturbing elements that an asymmetric distribution
of gains among the different branches could generate.

25This implies that the initial stock of capital is lower the higher is the initial number
of firms.

26

27Remember that while all spend on imitative R&D only an half spend on innovative
R&D. In this way the total expenditure on imitation is 1/10 of the total expenditure on
internal innovation. However given the above specified relation between the coefficient
α and β the expected number of imitative draws per period are equal to the expected
number of innovative draws, at initial conditions.

22



draw, that allowed a firm to automatically adopt the best techniques of the
industry. Here, on the contrary, they simply concur in defining a parameter
of the Binomial distribution from which firms sample the number of firms
they will try to imitate in order to get the desired node. Hence, while leav-
ing the same characterization for rin we choose α so that the probability of
obtaining a successful innovative draw gives, on average, only one innova-
tive findings for the whole system every four periods. At the same time, in
order to ensure the symmetry between initial conditions for all simulation
runs, we set rim = 1

10rin and then we choose β so that, in the first period of
each run, the expected value of the Binomial distribution for each imitative
firm (i.e. the expected number of competitors they can look at) is equal to
one in all the different scenarios. The coefficient β is then a function of the
number of firms: β = 1/(rim ·Ki0). This specification provides the model
the same degree of ’progressiveness’ under each scenario28. Finally demand
elasticity is set equal to one, formally: Pt = 67/Qt, unitary costs per unit
of capital c are set equal to initial capital productivity and the parameter
bregime defining the finance regime is set equal to 2,5.
The basic set-up for the PT network generating algorithm is the following:
the network is made up of 100 nodes, with 10 initial nodes beside the root
one. In each stage of network creation the probability of splitting one of the
original Potential Parent Lists is set at 25%.
The complete quantitative statement of the model under different scenarios
is shown in Table 1.
Each run lasts 100 periods, each period representing a quarter of year, hence
for a total of 25 years. Given a particular PT network structure, we run 100
simulations for each scenario. The average results of this simulations, with
their standard deviations are presented in the following section. Then we re-
peat all the previous simulations under four different PT network structures
— all generated with the same characterization of the network generating
stochastic algorithm — in order to check the robustness of our results under
different realizations of the same network generating stochastic algorithm.
The average results and the standard deviations for these simulations are
shown in the first table in appendix 2. Finally, in order to analyze the effects
on simulations results of a change in the parameters used to build the net-
work, we re-execute the simulations using 2 different set-ups of the network
generating algorithm, by assuming a probability Psplit respectively equal to
10% and 40%.

28Indeed, once given the number of competitors the imitative firm can try to imitate,
its probability of success, in the first period, is not a function of the number of firms.
Actually this probability depends on the structure of the network and on of the number
of skills distributed to each firm in the initialization phase.
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Table 1: Initial values under four different initial market structure

Number of Firms
4 8 16 32

K 89,73214 48,85417 25, 32762 12,87822
rin 0,0224 0,0206 0,01984 0,01951
rim 0,00224 0,00206 0,001984 0, 001951
α 0,06219 ” ” ”
β 1,6584 1,4216 1,3267 1,2839
c 0,16 ” ” ”
δ 0,03 ” ” ”

7 Results of the simulations

As explained in the previous section our analysis starts by considering 5
Technological Paradigm networks with ten initial nodes (beside the root
one) obtained by setting Psplit = 25%. However, to clarify our statement of
the results, we will focus only on one of them (specifically the one marked
by the index 1 in the first Table in Appendix 2). Indeed it is easy to show
the fundamental properties of the model seem to holds also under the other
4 network structures used in this first stage of our discussion 29.
In order to analyze how industry initial concentration affects industry inno-
vative performance we compare the results of the simulation under the four
different experimental scenarios, each one being characterized by a certain
number of firms initially in business. The data used to plot the graphs are
the averages and the standard deviations of the final results of the 100 sim-
ulations run under each scenario. Figure 2 shows the means of best-practice
and average productivity in the last period of the simulations. Both best
practice and average productivity decrease as we move from a more concen-
trated to a less concentrated industry. This means that, given the fact that
firms’ initial productivity is the same under all initial conditions, both best
practice and average productivity rise more rapidly under the small-number
case. This result is consistent with the famous Schumpeter Mark II argu-
ment according to which a more concentrated market structure is ’the price
we have to pay’ for a better innovative performance.

Best practice productivity depends crucially on innovative R%D activ-
ity. Indeed imitation actually allows to implement only nodes that have
been already dicovered by some firm in the industry. So imitation cannot
push ahead the knowledge frontier of the technology structure. Only inno-

29Table 1 in appendix 2 shows that the results are robust under the different realizations
of the network generating algorithm obtained with the previous setting
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Figure 2: Average and best practice productivity

vative activity allows to move towards technological paths not yet explored,
thus pushing on also the boundary of what can be learnt through imitation.
Hence, when the network presents a significant number of independent tra-
jectories (this number depending on the value of Psplit), the role of imitation
in determining the level of best practice productivity is narrow30. It is the
success of innovative activity of firms specializing along different trajecto-
ries to determine the boundary up to which the exploration of each possibile
technological path of the TP network will come. Therefore the best practice
productivity level is strongly affected by the number of innovations draws
obtained by innovative firms. Not surprising that the decline in best prac-
tice productivity — while moving towards less concentreted industry initial
structures — is accompanied by a fall both in the average number of in-
novations obtained by innovative firms as a whole and in the mean of the
maximum number of innovations obtained by a single firm in each simulation
(see Figure 3). This is primarily due to the fact that the coefficient rin and
α governing firms’ innovative activity were set so that, at initial conditions,
the industry as a whole obtains — on average — the same number of inno-
vative draws in each periods under the four scenarios. But this implies that,
as the number of firms initially in the industry increases, their individual
probability of obtaining an innovative draw declines. This determines the
drop of the number of innovative draws achieved by each innovative firm —
taken individually — which in turn determines the observed fall of best prac-
tice productivity. However, given the previous assumption, we would also
expect the average number of innovative draws of the industry not to change

30On the contrary we’ll wee that imitation plays a central role when the network is
poorly branched and its nodes are more interrelated
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Figure 3: Total number of innovations achieved in the industry and maximum
number of innovative draws achieved by a single firm

significantly among the different scenarios. On the contrary, the data show
that industry average number of innovation slightly decreases as the num-
ber of initial firms increases, suggesting that something more is happening.
The reason explaining this observation lies in the role played by spillover
effects in our model. Moving towards less concentrated industry structures,
innovative firms suffer more the competition of imitative firms and this, in
turn, causes a slowdown of their performances: for reason that we are going
to explain the imitators, under less concentrated initial structures, can imi-
tate innovators more easily. This in turn reduces, on average, the length of
the periods for which innovators can take advantage of the quasi-rents de-
riving from achieved innovations (thus recovering the higher costs incurred
for doing innovative R&D). The lower profitability of innovative firms has
a negative effect on their capital accumulation, thus reducing the resources
directed to innovation and, consequently, the number of innovation actually
realized.
In order to better understand what is going on we must put our attention
to the the evolution of firms’ performances among the different scenarios,
by comparing innovative and pure imitative firms’ performances. In Figure
4 we plot the mean ratios between imitative and innovative firms’ average
productivity at the end of the simulations. The graph shows that moving
towards less concentrated industries imitative firms are able ’to track’ inno-
vative firms’ productivity more and more closely. As explained in section
4 a firm’s probability to obtain an imitative draw while looking for a node
located on a certain trajectory depends crucially on the number of firms
specializing on it: the more ’densely populated’ a technological trajectory,
the higher the probability for a firm specializing along that trajectory to find

26



Figure 4: Ratio between imitators’ and innovators’ average productivities

a competitor to imitate successfully. In each period of the simulation firms
choose the direction of their technological advance (i.e. the target node)
on the base of the technological skills already in their possession. Hence
the decision of a firm to specialize along a particular trajectory of the TP
network is fundamentally related to its initial skills, randomly assigned in
the initialization phase. The higher the number of firms in the industry
at the beginning, the higher the probability that the initial skills will be
distributed in a way such that each area of the TP network will find some
firm that, given their initial Skill Profile, have decided to specialize on it31.
Hence the probability of success for an imitative firm is positively affected
by the number of firms initially in business. Roughly speaking this means
that, when the number of firms is low, it is less likely that an imitator will
find someone specializing along its same trajectory. Consequently, on aver-
age, imitative firms will find more problematic to carry out imitation draws
and, in turn, they will not be able to track closely the dynamic of innovative
firm’s productivity. On the contrary when the number of firms is high, it
should be easier for imitators to find someone to copy. Thus, on average,
the dynamic of their productivity — compared to that of innovative firms
— will improve. Figure 4 shows that in the 32 firms case the ratio between
imitative and innovative average productivity is actually near to one.
The fall in average productivity can be explained primarily as a result of
the fall in the level of best practices. However this result is also a conse-

31In particular the higher the number of firms, the higher the probability that each
trajectory will be crossed by at least one innovative firm, whose R%D activity defines —
as already said — the frontier of what can be discovered through imitation along each
trajectory of the TP network.
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quence of the particular view of firms’ nature underlying the model. Indeed
we assumed that, within the boundaries of a firm, technological knowledge
is equally and costlessly applicable to all units of capital. That is, the in-
creased level of productivity implied by an innovation applies automatically
to the whole stock of capital. Hence the larger the capital share of the firm
which enhances its technological base by learning a node of the TP network
(either through innovation or imitation), the larger will be the effect on in-
dustry average productivity. So, even leaving aside any consideration about
the shape and the role played by the dynamic competition between innova-
tors and imitators under the different scenarios, we should expect average
productivity to decrease as a consequence of the smaller amount of capital
affected by each innovation when the number of firm is higher32.
The improved performance of imitative firms is also reflected by the ob-
served inverse relationship between their average capital share and industry
initial concentration. Figure 5 shows that imitative firms’ capital share con-
siderably increases as the number of initial firms increases. In the latter

Figure 5: Capital and market shares of imitative firms

two scenarios, with 16 and 32 firms, it is respectively almost equal and even
higher that innovative firm’s capital share, despite the fact that imitative
firm’s productivity is still lower than innovators’ one. According to the de-
sired investment function defined in the previous section, for two firms with
the same market share, the firm with the lower production costs (i.e. higher
productivity) will have a higher target output and, in turn, an higher target
investment. Nevertheless we must also consider the different structure of

32Actually, in Nelson and Winter’s model, this was the only way by which the average
productivity drop arose. On the contrary best practice dynamic was unrelated to indus-
try’s structure due to the adoption of an exogenous ’science-based’ technological regime
governing the growth of ’latent productivity’.

28



costs affecting imitative and innovative firms. While the former spend only
on imitative activity, the latter have to face both innovative and imitative
R&D costs33. If we take two firms, one imitative and one innovative, with
the same market share, the same productivity level and hence the same
price-to-unitary costs ratio, the firm following a pure imitative strategy will
result more profitable. When the level of profit is sufficiently high the fi-
nancial constraint is not binding, and the firm with lower unitary costs of
production will invest more than the firm with higher costs, even though by
including R%D expenditure the former may have higher total costs per unit
of output than the latter. This seems to be the situation depicted in the first
two case of our simulations (4 and 8 firms). The gap in productivity lev-
els between innovative and imitative firms seems sufficiently remarkable to
compensate for the higher R&D costs associated to an innovative strategy.
But moving towards less concentrated initial structure the performance of
imitative firms improves and they appear more and more capable of plugging
the gap in productivity. An increased portion of innovative firms is run out
the business (i.e. their market share becomes negligible) and even for those
who remain in the market, the rate of profit significantly decreases due to
the increased competition so that their financial constraint becomes more
and more binding. On the contrary imitative firms unitary costs of produc-
tion are now closer to innovators’ regardelss the fact that they spend less
on total R&D. Therefore their profitability constraint to finance investment,
expressed by equation (9), will be less binding and the resulted investment
on capital accumulation higher. This reversed situation is depicted by the
two latter scenarios: when the ratio between imitative and innovative firms’
productivity is close to 90% or higher imitative firms’ capital share balances
or even exceeds innovatives’ on average.
Finally it should not be surprising that also average market shares evolu-
tion across the different scenarios shows the same tendency of the previous
graphs. As moving towards less concentrated initial structures, the relative
position of imitative and innovative firms changes in favor of imitators. In
the fourth scenario, on average, they actually outperform innovative ones.
This result is obviously a direct implication of the evolution of firms’ pro-
ductivities and capital shares.
The results presented in the above discussion were aimed to highlights the
relationship between industry initial concentration and innovative perfor-
mance. But what can we say about the reverse effect of schumpeterian
competition on the evolution of market structure? Figure 6 displays the
averages of the end-of-simulation values of the Herfindahl Numbers Equiv-
alent34. This constitutes a common measure of output concentration in an

33Moreover remember that, following Nelson and Winter, we set rim = 1/10rim in order
to highlight the cost of doing innovative R&D.

34The Herfindahl Numbers Equivalent is formally defined as the inverse of the
Herfindahl-Hirschman Index: HHI =

∑

i
s2i
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industry. When all firms have equal market shares, the Herfindahl Numbers
Equivalent is simply equal to the number of firms in the industry. Instead,
when firms have unequal shares, it gives the number of equal-sized firm in
an industry characterized by the same degree of concentration as the actual
industry, according to the Herfindahl-Hirschman Index. In all cases we see
a clear tendency towards higher concentration throughout the simulations.
This tendency is even more clear if we look at the average % decrease of the

Figure 6: Herfindahl Numbers Equivalent end-of-simulations values and % reduc-
tions

Numbers Equivalent from the beginning to the end of the runs35. Figure
6 clearly shows that the tendency towards higher concentration is strong
under each scenario but becomes particularly pronunced when the initial
structure of firms is less concentrated. In the last two cases, with 16 and 32
firms, the process of schumpeterian competition among firms results in an
end-of-simulation market structure characterized, on average, by a degree
of concentration comparable with a market in which more than 70% of the
firms have disappeared and the remainder are equally sized.
Finally we must deserve particular attention to the standard deviations of
the results, displayed in the tables in appendix 2. Although the analysis
based on average results is sufficient to highlight a clear tendency, moving
from more to less concentrated initial industries, for each considered vari-
able, we also observe significantly high values of the standard deviations
of the results in all the scenarios36. This particular feature of the model

35Note that at the beginning of the simulation total output is equally distributed among
firms. Hence the Herfindahl Numbers Equivalent in the first period of each run simply
equals the number of firms initially in business.

36These values, displayed between brackets in tables in appendix 2, are calculated as
the standard deviations of the final values of the 100 simulations run under each scenario,
for each TP network
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is again related to the role played by spillover effects. What the standard
deviations tell us is that different distributions of initial skills among firms
may significantly affect the final results of the simulations. Hence, even if
on average different initial market structures determine a situation more or
less favorable for the two types of firms, the final results of each simulation
run under each scenario are not obvious. Even in the less favorable case
for imitative firms (the one with the lower initial degree of concentration),
if the initial distribution is such that imitative firms are induced to spe-
cialize on the same technological trajectories of innovative ones, they may
have the chance to follow innovators technological advance very closely if
they are sufficiently rapid in recognizing which is the right competitor to
imitate. In this cases, the final values of best practice productivity and av-
erage productivity will be relatively low, for the reasons explained above.
On the other hand the ratio between the final values of imitative and inno-
vative firms’ averages productivities will be higher. Consequently imitators’
capital and market shares will tend to rise and the final structure of the
industry will tends to remain less concentrated37. On the contrary, even in
the large number cases (generally more favorable for imitators), if the initial
distribution of skills among firms is such that imitative and innovative firms
decide to specialize in technological areas significantly different, imitators
will face more difficulties in obtaining imitative draws and a greater number
of them will be pushed out of the market. The resulting lessening of the
competitive pressure coming from imitators will boost innovators’ growth.
A greater amount of resources will be dedicated to innovative R&D, leading
to a relative improvement in best practice and average productivity38. This
aspect of the model seem to suggest that, despite the fact — highlighted
by our previous arguments based on average results — that different initial
structures create more or less favorable conditions for either innovative or
imitative strategies, the inherent cumulative nature of firms’ technological
advance makes it difficult to determine ex ante an optimal strategy from the
perspective of individual firms. Even firms with identical initial conditions
regarding capital stock and its productivity, and the same strategy towards
innovation, may experiment radically different technological paths (as a re-
sult of the characteristics of the technological knowledge base inherited from
their past, embedded in their initial Skill Profiles) and then, radically dif-
ferent economic performances.

37It must be noted that even slight differences in the ratio between imitators’ and
innovators’ averages productivities may have a great impact on their capital and market
shares. If we compare the mean results of the two extreme scenarios (4 and 32 firms), we
notice that an increase of about 0.2 points of the previous ratio roughly triples both the
capital share and the market share of imitators. This explains the amplified magnitude
of the standard deviations of the latter two variables, compared to those refferring to
productivities measures.

38As the capital share of imitators becomes more and more negligible their impact on
average productivity becomes narrow.
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As already mentioned, the data used to plot the previous graphs refer to the
network marked by index 1 in table 2 of appendix 2. The same set of sim-
ulations have been run under 4 other different TP networks, all generated
with a probability of branching the network equal to 25% in each stage of
their generation procedure. Also these data are shown in table 2. Although
some minor differences exist, as a consequence of the stochastic character
of the algorithm used to build the networks, both the average results and
their standard deviations are substantially in line with the results shown
for network 1. Therefore, this seems to confirm that the trends highlighted
for all the variables of interest are robust under different realizations of the
same network generating algorithm.
In the last part of our computational experiment, we will briefly consider
how different set-ups of the algorithm used to construct the networks repre-
senting Technological Paradigms affect the results of the simulations. To do
this we re-executed the simulations using 10 different networks, 5 obtained
by setting the probability of branching Psplit at 10% and 5 obtained by set-
ting the probability of branching at 40%. The outputs of the simulations
are shown in table 3 and 4 in appendix 2. Data again seem to confirm the
same trends discussed earlier in this section. The reduction in the number
of firms initially in business generates, on average, a drop of average and
best practice productivity at the end of the simulations. At the same time,
the situation in the industry gradually changes in favor of imitative firms, as
shown by the rise in the ratio between the average productivities of the two
types of firms and by the dynamic of the capital and output shares held by
imitators. Then we take the averages of the results obtained with the 5 net-
works considered for each of the 3 set-ups used for the network-generating
algorithm. In this way we can make a comparison between the outputs ob-
tained under the 3 different types of network. Note that an higher (lower)
value of Psplit determines a more (less) branched structure of the network
representing the technological paradigm. Thus the higher Psplit, the greater
will be the number of possible technological trajectories on which firms can
specialize. In turn the less branched the network, the greater will be the
probability that firms will specialize in similar technological areas (and vice-
versa). So it is not surprising that networks built with Psplit = 10% depict a
situation relatively more favorable for imitators while the opposite happens
for networks obtained by setting Psplit = 25%. This appears evident by
looking again at the graphs on the ratio between the average productivities
of imitators and innovators and those refferring to the capital shares and the
market shares. More complicated is the analysis of the dynamic of best
practice and average productivities across the different types of network.
Indeed the results concerning these two variables are not obvious and seem
to be at odds with our previous arguments. In fact, following our previous
arguments we should expect both best practice and average productivity
to decrease as the ease to imitate increases. In order to understand what
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Figure 7: Best practice and average productivity with different TP network struc-
tures

Figure 8: Ratio between imitators’ and innovators’ average productivities with
different TP network structures

Figure 9: Total number of innovations achieved in the industry and maximum
number of innovative draws achieved by a single firm with different network struc-
tures
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Figure 10: Capital and market shares with different network structures

Figure 11: Herfindahl Numbers Equivalent end-of-simulations values and % re-
ductions with different network structures
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is going on we have to focus again on the determinants of best practice
productivity. As already told, when the network structure used to repre-
sent the technological paradigm is highly branched, the dynamic of best
practice fundamentally relies on innovative R&D activity. In this cases the
structure of the network will show an high number of feasible technological
trajectories. Each firm will tend to specialize upon one of them. Since each
trajectory is essentially independent from the others, innovators, in order
to explore deeper and deeper the trajectory they have chosen, must rely
on their innovative activity. Indeed, as firms are moving in depth along
different trajectories their skill profiles becomes more and more heteroge-
neous and this prevents innovative firms from exploiting imitation in order
to achieve the sought nodes. This situation significantly changes when the
network structure considered is poorly branched. In this case the structure
of the network appears much more interrelated and the number of indepen-
dent areas significantly reduces. You can get an impression of this fact by
comparing Figure 12 which displays an example of the networks obtained
by setting Psplit = 10%, with Figure 1 and Figure 13 where the networks
diplayed have been obtained with Psplit equal to 25% and 40% respectively.

Figure 12: PT Network: Nnodes = 100, InitialNodes = 10, P split = 10%

In this case the degree of specialization of firms is significantly lower and
the skill profiles among firms will be characterized by greater homogene-
ity. As already seen this facilitates imitators and generates a reduction in
innovators’ capital share and innovative R%D spending (thus leading to a
reduction, on average, of both the mean and the maximum number of inno-
vations carried out during each simulation, as shown by Figure 9). But this
is not the only effect: indeed, the greater complementarity between firms’
skill profiles (a consequence of the fact that the nodes are more interrelated)
implies that innovators will not have to rely only on their innovative activity
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Figure 13: PT Network: Nnodes = 100, InitialNodes = 10, P split = 40%

in order to achieve each subsequent target node. Innovators can now exploit
also imitation in order to enhance the overall number of nodes achieved.
The results of the simulations regarding best practice and average produc-
tivity, clearly show that this possibility overcompensates the slowdown of
innovator’s innovative R&D performance.
The explanation for the Psplit = 40% case results is almost specular. How-
ever, taking as benchmark the Psplit = 25% case, we shall stress the fact
that, although the direction of the changes in results in the other two cases
is symmetric, the dimension of these changes is not equal. Actually the
difference in the mean results of the simulations — compared to the ben-
chamark — is much slighter in the ’more branched network’ than in the ’less
branched’ case, so suggesting —as a first approximation— that the impact
of using different network structures — on the analyzed process of schum-
peterian competition — tends to decrease as the degree of branching of the
network increases.
Hence, to summarize, the role played by spillovers in our model is twofold:
on one side, given the technological structure, they concur to determine the
transition dynamic from more to less concentrated initial industry struc-
tures; on the other side, for each industry initial structure, they affects the
overall industry performance in different ways according to the shape of
the network representing the Technological Paradigm. More generally, the
results of the simulated model confirm that — if one takes explicitly into ac-
count the inherent cumulative nature characterizing technological progress
— the analysis of the structure of technology, and in particular the analysis
of the directions of technological advances undertaken by firms, are crucial
for the understanding of industries evolution. Obviously in real economies,
the paths of technology development can only be observed ex post. From
an empirical point of view, much has been done in recent years. In the last
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section we will briefly show how the work done in this field of research can
stimulate further developments of the present work.

8 Concluding remarks

Although in this paper we chose to focus on the relationship between market
structure and innovation in the context of schumpeterian competition, we
argue that the framework developed here might be worthy of applications
to a number of other issues related to innovation and technological process.
Some of them have been already handled through the original model by
Nelson and Winter. In chapter fourteen of their book, for example, the
authors re-elaborate the basic model in order to address what has become
known in the literature as the Schumpeterian Trade-off between static and
dynamic efficiency in innovative activity. This theme, nowadays, has become
central in the debate about the opportunity and the optimal regulation of
Intellectual Property Rights. On one hand the possibility of protecting an
innovation through patents39 increases the quasi-rents of innovative firms by
stretching the period of time through which they can exploit an innovation.
In this sense it creates an appropriability incentive that spurs innovation.
On the other hand patents protection, since it ensures a monopoly on the
use of a new technology, weakens the incentive of competition and reduces
the strength of network economies (by constraining knowledge diffusion)40.
Our model, since it provides an explicit structure to network externalities,
seems to be particularly adequate to study this kind of trade-off.
Another interesting application of the present framework is represented by
the study of competition between alternative technologies. This issue has
been largely studied by Brian Arthur (see again [Arthur 1988(2)] and [Arthur
1989]) who has shown how the competitive process underlying this struggle
for a market of adopters may lead to multiple equilibria, i.e. to a variety of
possible outcomes. Where increasing returns and network externalities are
involved, the process under consideration is intrinsically non-ergodic: differ-
ent patterns of small events, determined by chance, can lead to a variety of
different outcomes (eventually non-predictable). This, in turn, constitutes
a source of ’potential inefficiencies’ in the sense that there is no automatic
mechanism implying that the technology which comes to dominate the mar-
ket is the one with the longer-term higher efficiency. Inflexibility or lock-in
effects may arise as well due to the fact that the ’left-behind technology

39However also with spotty patent protection, there are still other ’natural’ mechanism
for protecting innovation, such as ’imitation lags’, ’reputational advantages’ and ’cost ad-
vantages’ (see [Levine, Klevorick, Nelson and Winter 1987] on the role of these mechanisms
in preserving monopolistic quasi-rents of innovators).

40Actually it also implies a variety of indirect social costs, such as increasing duplicative
R&D efforts (which, in turn, reduce the efficiency of innovative research for a given amount
of cumulative R&D expenditure).
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would need to bridge a widening gap if it is to be chosen by adopters at

all’ (cit. [Arthur 1988 (2)], p.593). The basic version of the model de-
scribed in the previous sections rules out the possibility that such a kind
of inefficiencies arise, by assuming that each nodes provides the same level
of productivity gain. Hence it is simply meaningless to make a compar-
ison between more and less efficient trajectories (from a purely technical
point of view). In order to study, in the perspective of the generative
approach to simulation defined by Epstein [Epstein 2006], the conditions
under which such inefficiencies arise, we should abandon this assumption.
In particular we need to change the logic used in defining the set-up of
the simulation by relaxing the imposed symmetry in the initial conditions
characterizing firms. At the same time we would also need to differenti-
ate the productivity gains allowed by each trajectory in order to allow a
comparison between more and less efficient technological trajectories and
to identify under which conditions firms will either tend to specialize along
the most efficient ones or become locked in the less efficient technological
paths. Finally we would like to stress a suggestive opportunity provided by
recent empirical works on patent citation networks. In recent years some
scholars (see for example [Verspagen 2007], [Nomaler and Verspagen 2007],
[Fontana, Nuovolari and Verspagen 2009] and [Jaffe, Trajtenberg and Hen-
derson 1993]) have used patent citation data to put the idea of technological
trajectories to the test. Furthermore, by using the methodology of ’citation
networks’, they were able to identify the main paths of development of tech-
nology and hence to map technological trajectories in different sectors. This
might provide the chance to push our analysis from a pure theoretical per-
spective towards more realism: by replacing our theoretical PT network —
created ad hoc to reflect the properties of technological trajectories, as they
emerge from neoschumpeterian literature — with an empirically based one,
the model could become susceptible of empirical application to the inves-
tigation of innovation processes determinants, of knowledge spillovers, and
industry structure evolution within different real economy sectors.
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A Appendix

A.1 Investment

As explained in the text the function defining desired investment reflects the
idea that firm show some degree of awareness about the risk of spoiling the
market by increasing their output simply through capital accumulation, at a
certain level of productivity. In fact by increasing output they tend to lower
price and hence their realized mark-up. The magnitude of this effect obvi-
ously depends on two variable: firm’s market share and demand elasticity.
hence the desired investment of the firm is based on a comparison between
firm’s current mark-up and a target markup that depend on market share.
As shown in [Winter 1984] the first order condition for profit maximization
implies that each firm will chose, under the conjecture that its competitors
will not modify their level of output, a quantity such that:

ρ =
η

η − s
(11)

where η represents demand elasticity (constant) If firm’s conjecture is that
the rest of the industry consists of price-takers that respond along a supply
curve with constant elasticity ψ we obtain a more general results. The profit
maximizing equilibrium ratio of price to marginal cost is given by:

ρ =
η + (1− s) · ψ

η + (1− s) · ψ − s
(12)

Note that when Ψ = 0 we obtain again the previous equilibrium condition.
The right-hand side of the above equation can then be interpreted as the
target mark-up of a firm ρT (s), expressed as a function of firm’s market
share. Hence we can expressed desired investment as:

ID = δ + 1− ρT ·
c

Pt ·Ait
(13)

When the realized mark-up Pt ·Ait/c is exactly equal to the target mark-up
ρT (s) the firm considers itself to be in a profit maximizing equilibrium at
the current level of production. So its desired investment is simply equal
to the amount required to replace depreciated capital. On the contrary,
when the realized mark-up is greater (smaller) than the targeted, desired
net investment will be positive (negative). Equation (8) was obtained by
setting η = 1 and ψ = 1.

44



A.2 Tables of results

Table 2: Results of the simulations - 5 networks generated with PSplit =
25% & Initial parents number=10

Number of Firms

Network 4 8 16 32

Best Practice

1 0,386 0,347 0,290 0,235
(0,055) (0,054) (0,057) (0,035)

2 0,395 0,336 0,273 0,229
(0,059) (0,057) (0,049) (0,034)

3 0,385 0,337 0,276 0,233
(0,062) (0,052) (0,053) (0,040)

4 0,381 0,349 0,295 0,247
(0,050) (0,044) (0,043) (0,031)

5 0,386 0,338 0,281 0,224
(0,055) (0,054) (0,050) (0,040)

Average Productivity

1 0,355 0,317 0,262 0,213
(0,056) (0,049) (0,050) (0,026)

2 0,362 0,307 0,249 0,212
(0,058) (0,052) (0,043) (0,029)

3 0,349 0,309 0,252 0,214
(0,055) (0,048) (0,045) (0,033)

4 0,356 0,325 0,274 0,221
(0,052) (0,038) (0,039) (0,027)

5 0,350 0,306 0,249 0,203
(0,052) (0,052) (0,044) 0,031)

Ratio Average
Productivity:
Imitators/Innovators

1 0,742 0,891 0,899 0,976
(0,218) (0,181) (0,132) (0,068)

2 0,682 0,840 0,918 0,981
(0,234) (0,168) (0,120) (0,087)

3 0,677 0,829 0,903 0,975
(0,215) (0,186) (0,133) (0,085)

4 0,798 0,884 0,967 1,007
(0,224) (0,158) (0,080) (0,058)

5 0,646 0,723 0,829 0,966
(0,209) (0,199) (0,148) (0,085)

Industry Total Innovations
N#

1 29,80 26,10 20,55 13,65
(6,42) (6,71) (7,75) (4,38)

2 31,80 25,56 19,10 13,57
(6,83) (6,67) (6,65) (5,48)

3 31,12 26,52 19,11 13,48
(7,07) (6,53) (6,55) (6,38)

4 29,00 26,35 19,23 12,88
(6,33) (7,26) (6,20) (4,86)

5 31,33 27,78 21,60 13,61
(5,96) (6,90) (6,57) (5,18)
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Table 2: Continued

Max N# Innovation by a
single firm

1 18,51 13,44 8,53 4,19
(3,45) (4,03) (4,06) (2,61)

2 19,72 13,01 7,54 3,89
(4,07) (3,94) (3,40) (2,51)

3 19,03 13,42 7,84 4,16
(4,03) (3,64) (3,61) (3,28)

4 18,54 13,02 7,33 3,40
(3,84) (3,99) (3,48) (1,94)

5 19,25 13,88 9,00 4,17
(3,66) (3,74) (3,92) (2,97)

Imitators’ Capital Share

1 0,251 0,334 0,496 0,744
(0,172) (0,171) (0,206) (0,152)

2 0,217 0,339 0,549 0,783
(0,175) (0,165) (0,203) (0,163)

3 0,206 0,323 0,515 0,728
(0,172) (0,174) (0,208) (0,199)

4 0,304 0,387 0,590 0,839
(0,180) (0,191) (0,187) (0,139)

5 0,178 0,246 0,385 0,743
(0,168) (0,182) (0,188) (0,177)

Imitators’ Market Share

1 0,226 0,311 0,476 0,736
(0,176) (0,182) (0,223) (0,165)

2 0,190 0,316 0,532 0,777
(0,179) (0,174) (0,217) (0,176)

3 0,177 0,301 0,496 0,720
(0,177) (0,184) (0,224) (0,212)

4 0,284 0,372 0,582 0,839
(0,188) (0,202) (0,197) (0,134)

5 0,150 0,218 0,352 0,734
(0,171) (0,189) (0,202) (0,196)

Herfindahl Number
Equivalents

1 2,473 3,175 4,715 6,765
(0,427) (0,787) (1,445) (2,087)

2 2,326 3,353 5,194 7,261
(0,368) (0,872) (1,634) (2,145)

3 2,360 3,320 4,779 7,032
(0,453) (0,862) (1,455) (2,156)

4 2,615 3,810 5,446 7,434
(0,534) (0,933) (1,175) (1,49)

5 2,250 2,978 4,353 7,634
(0,336) (0,743) (1,558) (2,901)

Herfindahl % Decrease

1 38,2 60,3 70,5 78,9
2 41,9 58,1 67,5 77,3
3 40,1 58,5 70,1 78,0
4 34,6 52,4 66,0 76,8
5 43,8 62,8 72,8 76,1
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Table 3: Results of the simulations - 5 networks generated with PSplit =
10% & Initial parents number=10

Number of Firms

Network 4 8 16 32

Best Practice

1 0,403 0,377 0,320 0,285
(0,043) (0,040) (0,035) (0,027)

2 0,390 0,349 0,306 0,277
(0,056) (0,047) (0,035) (0,023)

3 0,397 0,360 0,309 0,250
(0,051) (0,052) (0,046) (0,035)

4 0,380 0,329 0,273 0,247
(0,056) (0,041) (0,029) (0,012)

5 0,380 0,351 0,295 0,265
(0,049) (0,042) (0,036) (0,022)

Average Productivity

1 0,392 0,366 0,308 0,275
(0,044) (0,038) (0,036) (0,027)

2 0,373 0,335 0,294 0,266
(0,057) (0,044) (0,033) (0,023)

3 0,370 0,338 0,290 0,237
(0,049) (0,051) (0,041) (0,031)

4 0,367 0,320 0,267 0,242
(0,056) (0,040) (0,027) (0,014)

5 0,360 0,334 0,280 0,254
(0,052) (0,043) (0,034) 0,022)

Ratio Average
Productivity:
Imitators/Innovators

1 0,941 0,963 1,010 1,037
(0,116) (0,073) (0,037) (0,034)

2 0,878 0,964 1,003 1,033
(0,200) (0,070) (0,035) (0,036)

3 0,805 0,878 0,972 1,047
(0,222) (0,166) (0,119) (0,064)

4 0,909 0,969 1,005 1,021
(0,189) (0,068) (0,018) (0,021)

5 0,817 0,905 0,984 1,031
(0,225) (0,155) (0,054) (0,044)

Industry Total Innovations
N#

1 27,08 24,75 16,35 12,76
(6,23) (6,70) (5,12) (3,52)

2 27,02 22,30 16,36 11,88
(6,73) (6,49) (5,52) (3,43)

3 28,87 25,44 19,07 11,96
(6,39) (7,15) (7,24) (4,18)

4 28,05 23,40 16,11 11,41
(6,69) (6,40) (4,20) (3,36)

5 28,34 25,35 17,11 12,45
(6,21) (6,81) (5,77) (4,12)
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Table 3: Continued

Max N# Innovation by a
single firm

1 17,21 11,90 5,55 3,18
(3,91) (3,61) (2,61) (1,25)

2 17,04 10,78 6,16 3,14
(3,94) (3,54) (3,16) (1,30)

3 18,03 12,43 6,90 3,13
(3,83) (3,68) (3,43) (1,66)

4 17,43 10,54 5,06 2,63
(3,85) (3,47) (2,02) (0,89)

5 17,90 12,02 6,42 3,16
(3,78) (3,09) (2,83) (1,50)

Imitators’ Capital Share

1 0,420 0,481 0,745 0,887
(0,151) (0,168) (0,135) (0,054)

2 0,391 0,497 0,718 0,870
(0,173) (0,158) (0,134) (0,078)

3 0,329 0,383 0,607 0,862
(0,195) (0,191) (0,231) (0,108)

4 0,405 0,484 0,764 0,900
(0,155) (0,165) (0,129) (0,037)

5 0,321 0,414 0,650 0,858
(0,186) (0,180) (0,166) (0,118)

Imitators’ Market Share

1 0,412 0,475 0,746 0,890
(0,160) (0,173) (0,140) (0,055)

2 0,377 0,490 0,717 0,873
(0,182) (0,164) (0,138) (0,081)

3 0,309 0,367 0,600 0,865
(0,204) (0,201) (0,245) (0,113)

4 0,395 0,479 0,764 0,902
(0,164) (0,170) (0,131) (0,037)

5 0,304 0,402 0,645 0,859
(0,196) (0,189) (0,174) (0,123)

Herfindahl Number
Equivalents

1 3,105 4,625 6,535 8,610
(0,554) (0,903) (0,999) (1,595)

2 2,998 4,577 6,131 8,134
(0,646) (0,972) (1,106) (1,690)

3 2,678 3,674 5,251 7,587
(0,571) (0,899) (1,193) (1,935)

4 3,001 4,686 6,881 10,171
(0,638) (1,009) (1,233) (2,342)

5 2,705 4,112 5,668 8,097
(0,570) (0,900) (1,089) (1,703)

Herfindahl % Decrease

1 22,4 42,2 59,2 73,1
2 25,0 42,1 61,7 74,5
3 33,1 54,1 67,2 76,3
4 25,0 41,4 57,0 68,2
5 32,4 48,6 64,6 74,7
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Table 4: Results of the simulations - 5 networks generated with PSplit =
40% & Initial parents number=10

Number of Firms

Network 4 8 16 32

Best Practice

1 0,389 0,342 0,286 0,224
(0,054) (0,055) (0,055) (0,034)

2 0,389 0,346 0,284 0,224
(0,058) (0,049) (0,051) (0,029)

3 0,391 0,336 0,273 0,222
(0,053) (0,050) (0,053) (0,037)

4 0,388 0,336 0,284 0,223
(0,055) (0,053) (0,050) (0,035)

5 0,386 0,347 0,272 0,220
(0,052) (0,053) (0,051) (0,026)

Average Productivity

1 0,347 0,306 0,254 0,205
(0,048) (0,049) (0,045) (0,027)

2 0,352 0,318 0,259 0,210
(0,052) (0,048) (0,043) (0,024)

3 0,351 0,293 0,242 0,202
(0,049) (0,044) (0,043) (0,027)

4 0,349 0,301 0,252 0,201
(0,051) (0,048) (0,043) (0,025)

5 0,346 0,306 0,242 0,199
(0,048) (0,045) (0,043) 0,019)

Ratio Average
Productivity:
Imitators/Innovators

1 0,618 0,722 0,815 0,978
(0,189) (0,196) (0,157) (0,080)

2 0,699 0,796 0,901 1,008
(0,233) (0,196) (0,134) (0,071)

3 0,579 0,708 0,845 0,961
(0,180) (0,161) (0,142) (0,107)

4 0,619 0,721 0,853 0,960
(0,211) (0,191) (0,145) (0,90)

5 0,629 0,703 0,867 0,977
(0,179) (0,171) (0,132) (0,077)

Industry Total Innovations
N#

1 31,78 28,46 21,73 14,15
(6,04) (7,41) (7,20) (5,02)

2 30,39 27,95 19,82 12,54
(6,32) (6,63) (6,05) (4,23)

3 31,73 27,23 21,18 13,92
(5,92) (6,60) (6,88) (4,97)

4 31,95 28,26 21,19 13,49
(6,68) (6,51) (6,75) (4,02)

5 31,10 29,07 19,83 13,17
(6,14) (6,46) (6,90) (4,47)
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Table 4: Continued

Max N# Innovation by a
single firm

1 19,77 14,32 8,87 4,14
(3,78) (3,80) (3,97) (2,79)

2 18,77 13,70 8,07 3,27
(3,66) 3,42) (3,72) (1,57)

3 19,90 14,35 8,64 4,30
(3,52) (3,84) (4,12) (2,58)

4 19,59 14,02 9,25 4,23
(3,65) (3,68) (3,94) (3,02)

5 19,10 14,70 8,42 3,90
(3,27) (3,78) (3,72) (2,21)

Imitators’ Capital Share

1 0,167 0,230 0,398 0,760
(0,156) (0,177) (0,223) (0,174)

2 0,230 0,284 0,498 0,823
(0,179) (0,172) (0,209) (0,145)

3 0,144 0,227 0,428 0,742
(0,146) (0,156) (0,204) (0,191)

4 0,162 0,224 0,434 0,745
(0,164) (0,159) (0,194) (0,170)

5 0,174 0,223 0,469 0,783
(0,158) (0,159) (0,194) (0,153)

Imitators’ Market Share

1 0,134 0,201 0,366 0,753
(0,153) (0,186) (0,239) (0,189)

2 0,204 0,261 0,479 0,822
(0,184) (0,183) (0,224) (0,154)

3 0,111 0,191 0,398 0,732
(0,142) (0,157) (0,220) (0,210)

4 0,135 0,194 0,406 0,732
(0,170) (0,166) (0,209) (0,188)

5 0,141 0,188 0,442 0,775
(0,154) (0,162) (0,209) (0,169)

Herfindahl Number
Equivalents

1 2,225 2,883 4,281 7,069
(0,353) (0,686) (1,516) (2,365)

2 2,356 3,127 4,831 7,556
(0,421) (0,734) (1,546) (1,797)

3 2,153 2,770 4,550 7,013
(0,291) (0,563) (1,594) (2,498)

4 2,205 2,911 4,230 7,316
(0,315) (0,672) (1,519) (2,551)

5 2,263 2,843 4,632 7,486
(0,342) (0,629) (1,696) (2,263)

Herfindahl % Decrease

1 44,4 64,0 73,2 77,9
2 41,1 60,9 69,8 76,4
3 46,2 65,4 71,6 78,1
4 44,9 63,6 73,6 77,1
5 43,4 64,5 71,0 76,6
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