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1 Introduction

Economic evaluation of climate change is usually based on discounted utilitarianism,

where transformed wellbeing (utility) is discounted by a constant and positive per-

period rate and summed over all time periods. As a matter of principle, such utility

discounting means that generations are treated unequally (at least if the utility

discount rate exceeds the per-period probability of human extinction). Moreover,

as a matter of practical policy evaluation, this criterion is virtually insensitive to

the long-term effects of climate change, beyond year 2100 when the most serious

consequences are expected to occur.

Equal treatment of generations is often associated with undiscounted utilitari-

anism, where utility is summed without discounting. However, when modeling the

many potential future people by assuming that there are infinitely many genera-

tions, this criterion assigns zero relative weight to the present generation’s interests.

It leads to the unappealing prescription that the present generation should endure

heavy sacrifices even if it contributes to only a tiny gain for all future generations.

The criterion of maximizing the wellbeing of the worst-off generation (maximin)

also treats generations equally, but assigns zero relative weight to all generations

but the worst-off. It leads to the unappealing prescription that the present gener-

ation should not do an even negligible sacrifice for the benefit of better off future

generations.

This dilemma—that the ethically commendable requirement of equal treatment

seems to lead to extreme prescriptions when applied in actual criteria of intergen-

erational equity—is a main motivation for rank-discounted utilitarianism (RDU),

proposed and analyzed by Zuber and Asheim (2012). RDU discounts future utility

as long as the future is better than the present, thereby trading-off current sacrifice

and future gain. However, if the present generation is better off than all future

generations, then priority shifts to the future. In this case, zero relative weight is

assigned to present utility. The criterion of RDU can therefore capture the intuition

that we should be more willing to assist future generations if they are worse off than
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us, but not to save much for their benefit if they turn out to be better off. RDU is

compatible with equal treatment of generations as discounting is made according to

rank, not according to time.

Applying RDU to a distributional problem like climate change requires that the

criterion explicitly takes into account that population size depends endogenously on

the chosen policy and that there are uncertain future consequences of present policy.

Moreover, the issues of population and risk might be interrelated. In particular, there

might be a positive probability of human extinction.

In Asheim and Zuber (2013) we contribute to population ethics by proposing

and axiomatizing rank-discounted critical-level generalized utilitarianism (RDCLU).

Moreover, we establish how RDCLU avoids serious objections raised against other

variable population criteria. In particular, it escapes both

• the Repugnant Conclusion (Parfit, 1976, 1982, 1984) where, for any population

with excellent lives, there is a population with lives barely worth living that

is better, provided that the latter includes sufficiently many people

• the Very Sadistic Conclusion (Arrhenius, 2000, 2012) where, for any popula-

tion with terrible lives not worth living, there is a population with good lives

that is worse, provided that the latter includes sufficiently many people.

In the present paper we extend RDCLU to risky situations, including the case

with positive probability of human extinction, by proposing the probability adjusted

rank-discounted critical-level generalized utilitarian (PARDCLU) social welfare or-

der (Definition 1). We start out in Section 2 by presenting a framework where

each (potential) individual is characterized by a level of lifetime wellbeing and a

probability of existence. We illustrate how this set-up can be derived from a formu-

lation where information arrives in each of T time periods, with individuals living

for one period only and not being subjected to risk during their lifetime, reflecting

an intergenerational perspective.

We then, in Section 3, present an axiomatic foundation for PARDCLU through

Theorem 1, which is proven in the appendix. A key axiom, called Probability adjusted
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Suppes-Sen, combines the strict Pareto principle with anonymity. In conjunction

with the Continuity axiom, it implies invariance to permutations of individuals with

the same wellbeing and the same probability of existence. It also entails invariance

to the replacement of one individual with given wellbeing and probability with two

individuals having the same wellbeing and whose probability of existence sum up

the probability of original individual.

In the subsequent Section 4 we illustrate the usefulness of PARDCLU by showing

its consequences in various special cases. In the special case where the individual

probabilities of existence sum up to one, PARDCLU yields rank-dependent expected

utilitarianism, but with additional structure. This additional structure derives from

the axiom Existence independence of the worst-off, which plays the same role as

Koopmans’ (1960) stationarity postulate. We also show how PARDCLU handles

human extinction. In Sections 5–7 we discuss some issues faced by the PARDCLU

approach, in particular how it can be practically implemented by dealing with the

planning horizon, how it may achieve time consistency, and how it relates to the ex

ante vs. ex post debate in social choice theory. In the final Section 8 we provide

concluding remarks.

2 Framework

Let N denote the natural numbers, let R denote the real numbers, let R+ (resp.

R++) denote the non-negative (resp. positive) real numbers, and let Q++ denote

the positive rational numbers.

Individuals are described by two numbers: their lifetime wellbeing and their

probability of existence. An allocation x ∈ (R× (0, 1])n determines the finite popu-

lation size, n(x) = n, and the distribution of wellbeing and probability,

x =
(
x1, . . . , xn(x)

)
=
(

(xw1 , x
p
1), . . . , (xwn(x), x

p
n(x))

)
,

among the n(x) individuals that make up the population. For each i ∈ {1, . . . , n(x)},

xwi is the individual’s wellbeing and xpi is her probability of existence. We denote
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by ν(x) =
∑n(x)

i=1 xpi the probability adjusted population size of x and by

X = ∪n∈N(R× (0, 1])n

the set of possible finite allocations.

The concept of an allocation, as defined above, can be derived from a formulation

where information arrives in each of T time periods. To see this, let S be the finite

set of potential signals in each t = 1, . . . , T , let Ω = ST denote the set of states of

the world, and let p ∈ ∆(Ω) be an objective probability distribution over this set.

For any ω = (s1, . . . , sT ) ∈ Ω and t = 1, . . . , T , let ωt = (s1, . . . , st) ∈ St

be the history of signals up to time t, with pt(ωt) denoting the probability of ωt

derived from p. For each t = 1, . . . , T , let the function nt : St → N ∪ {0} determine

the number of individuals living at time t, and let the function wt : {ωt ∈ St :

nt(ωt) > 0} → ∪n∈NRn determine the distribution of wellbeing after histories at

time t with positive population size. For each t = 1, . . . , T and ωt ∈ St with

nt(ωt) > 0, individual j’s pair of wellbeing and probability of existence, where j ∈

{1, . . . , nt(ωt)}, is given by (wtj(ω
t), pt(ωt)). Hence and allocation x correspond to a

probability distribution p, where x = (((wtj(ω
t), pt(ωt))j∈{1,··· ,nt(ωt)})ωt∈St)t∈{1,··· ,T}.

The functions nt and wt are permitted to vary so that we can retrieve the whole set

X from this dynamic setting although the set of signals is finite.

This formulation implies that individuals live for one period only, and are not

subjected to risk during their lifetime. Rather, there is social risk associated with

the lifetime wellbeing of future individuals. Our focus on intergenerational issues

motivates this abstraction from lifetime fluctuations and individual risk.

Following the usual convention in population ethics, lifetime wellbeing equal

to 0 represents neutrality. Hence, lifetime wellbeing is normalized so that above

neutrality, a life, as a whole, is worth living; below neutrality, it is not.

A social welfare relation (SWR) on the set X is a binary relation %, where for

all x, y ∈ X, x % y implies that the allocation x is deemed socially at least as good

as y. Let ∼ and � denote the symmetric and asymmetric parts of %.
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For each x ∈ X, let π : {1, . . . , n(x)} → {1, . . . , n(x)} be a bijection that reorders

individuals in increasing wellbeing order:

xwπ(r) ≤ x
w
π(r+1) for all r ∈ {1, . . . , n(x)− 1} .

Let ρ0 = 0 and define the probability adjusted rank ρr inductively as follows:

ρr = xpπ(r) + ρr−1

for r ∈ {1, . . . , n(x)}. Define the rank-ordered allocation x[ ] : (0, ν(x)]→ R by

x[ρ] = xwπ(r) for ρr−1 < ρ ≤ ρr and 1 < r ≤ n(x)

and write x[0] := limρ↓0 x[ρ]. Note that the permutation π need not be unique (if,

for instance, xwi = xwi′ for some i 6= i′), but the resulting rank-ordered allocation x[ ]

is unique. Note also that the definitions imply that ρn(x) = ν(x).

For every ν ∈ R, write Xν = {x ∈ X : ν(x) = ν} for the set of finite allocations

with probability adjusted population size equal to ν. For x, y ∈ Xν , write x[ ] > y[ ]

if x[ρ] ≥ y[ρ] for all ρ ∈ (0, ν] and x[ρ′] > y[ρ′] for some ρ′ ∈ (0, ν]; note that, by the

definitions of the step functions x[ ] and y[ ], x[ρ′] > y[ρ′] implies that x[ρ] > y[ρ] for

all ρ in a subset of (0, ν] that includes a non-empty proper interval.

For z ∈ R, p ∈ (0, 1] and n ∈ N, let x ∈ (R× (0, 1])n with (xwi , x
p
i ) = (z, p) for all

i ∈ {1, . . . , n} be denoted by (z)ν , where ν = np. For x ∈ X, z ∈ R, p ∈ (0, 1] and

n ∈ N, let y ∈ (R×(0, 1])n(x)+n such that (ywi , y
p
i ) = (xwi , x

p
i ) for all i ∈ {0, . . . , n(x)}

and (ywi , y
p
i ) = (z, p) for all i ∈ {n(x) + 1, . . . , n(x) + n} be denoted by

(
x, (z)np

)
.

3 Axioms and representation result

Probability adjusted rank-discounted critical-level utilitarianism can be character-

ized by the following seven axioms.

The first three axioms are sufficient to ensure numerical representation of the

SWR for any fixed probability adjusted population size. They also entail that indi-

viduals are treated anonymously and with sensitivity for their well-being.
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Axiom 1 (Order) The relation % is complete, reflexive and transitive on X.

An SWR satisfying Axiom 1 is called a social welfare order (SWO).

Axiom 2 (Continuity) For all ν ∈ R++ and x ∈ Xν , the sets
{
y ∈ Xν : y % x

}
and

{
y ∈ X : x % y

}
are closed for the topology induced by the supnorm applied to

rank-ordered allocations.1

Axiom 3 (Probability adjusted Suppes-Sen) For all ν ∈ R++ and x, y ∈ Xν ,

if x[ ] > y[ ], then x � y.

Jointly with axiom 2, axiom 3 implies anonymity wrt. different individuals with the

same probability of existence. Hence, permuting the wellbeing levels of individuals

with the same probability of existence leads to an equally good allocation.

In line with the Asheim and Zuber’s (2013) axiomatization of rank-discounted

critical-level utilitarianism we impose independence to adding an individual only if

the added individual is best-off (relative to two allocations with the same probability

adjusted population size) or worst-off.

Axiom 4 (Existence independence of the best-off) For all ν ∈ R++, x, y ∈

Xν , p ∈ (0, 1], and z ∈ R satisfying z ≥ max{x[ν],y[ν]}, (x, (z)p) % (y, (z)p) if and

only if x % y.

Axiom 5 (Existence independence of the worst-off) For all x, y ∈ X, p ∈

(0, 1], and z ∈ R satisfying z ≤ min{x[0],y[0]}, (x, (z)p) % (y, (z)p) if and only if

x % y.

Moreover, we introduce a critical wellbeing level c ∈ R+, which if experienced by

an added individual without changing the utilities of the existing population, leads

1This means that we use the metric d(x, y) = supr∈[0,ν]|x[r] − y[r]|. In functional spaces, the

topology induced by the sup metric is strong, so that the associated notion of continuity is weak (in

the sense that if continuity would hold for a weaker topology, it would be satisfied for the stronger

topology proposed here). This is an advantage of our definition.
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to an alternative which is as good as the original if x[ν(x)] ≤ c. Since c ≥ 0, c is at

least as large as the neutral wellbeing level.

Axiom 6 (Existence of a critical level) There exist c ∈ R+ and ν ∈ R++ such

that for all p ∈ (0, 1] and x ∈ Xν satisfying x[ν] ≤ c, (x, (c)p) ∼ x.

In the case with no risk (i.e., for the subset of allocations with xpi = 1 for all

i ∈ {1, . . . , n(x)}), all axioms above are satisfied also by ordinary critical-level utili-

tarianism. However, as discussed by Arrhenius (2012, Sect. 5.1), critical-level utili-

tarianism has the properties that adding sufficiently many individuals with wellbeing

just above c makes the allocation better than any fixed alternative (thus leading to

the Repugnant Conclusion if c = 0) and adding sufficiently many individuals with

wellbeing just below c makes the allocation worse than any fixed alternative (thus

leading to the Very Sadistic Conclusion if c > 0). The following axiom ensures that

adding individuals at a given level of lifetime wellbeing has bounded importance,

thereby avoiding the Repugnant and Very Sadistic Conclusions.

Axiom 7 (Existence of egalitarian equivalence) For all x, y ∈ X and p ∈

(0, 1], if x � y, then there exists z ∈ R such that, for all N ∈ N, x � (z)np � y for

some n ≥ N .

We will now state our main result, namely that these seven axioms characterize

the probability-adjusted rank-discounted critical-level generalized utilitarian SWOs.

Definition 1 An SWR % on X is a probability adjusted rank-discounted critical-

level generalized utilitarian (PARDCLU) SWO if there exist c ∈ R+, δ ∈ R++, and

a continuous and increasing function u : R→ R such that, for all x, y ∈ X,

x % y ⇔
∫ ν(x)

0
e−δρ

(
u(x[ρ])− u(c)

)
dρ ≥

∫ ν(y)

0
e−δρ

(
u(y[ρ])− u(c)

)
dρ .

Parameter δ is the rank utility discount rate.

Theorem 1 The following two statements are equivalent.
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(1) The SWR % satisfies axioms 1–7.

(2) The SWR % is a PARDCLU SWO.

It follows from the PARDCLU SWO that c is the wellbeing level which, if ex-

perienced by an added individual without changing the utilities of the existing pop-

ulation, leads to an alternative which is as good as the original only if x[ν(x)] ≤ c.

If x[ν(x)] > c, then there is a context-dependent critical level in the open interval

(c,x[ν(x)]) which depends on the wellbeing levels that exceed c (as well as the proba-

bility p with which the added individual exists). This follows from Definition 1, since

adding an individual at wellbeing level x[ν(x)] increases welfare, while adding an in-

dividual at wellbeing level c lowers the weights assigned to individuals at wellbeing

levels that exceed c and thereby reduces welfare.

4 Special cases

Cases with no risk correspond to situations where only allocations

x =
(

(xw1 , x
p
1), . . . , (xwn(x), x

p
n(x))

)
with xpi = 1 for all i = 1, . . . n(x) are considered. In the formulation presented in

Section 2, where information arrives in each of T time periods, these correspond to

cases where S and, thus, Ω are singleton sets.

The implications of rank-discounted utilitarianism in such settings are discussed

in Zuber and Asheim (2012) and Asheim and Zuber (2013). With no risk the

modeling here translates exactly to the variable population framework of Asheim

and Zuber (2013), while it specializes the fixed population framework of Zuber and

Asheim (2012) to a situation with an unbounded but finite number of generations.

Here we highlight special cases with risk. First, we show how PARDCLU reduces

to rank-dependent expected utilitarianism in the special case where the probability

adjusted population size is equal to 1. Second, we discuss to what extent PARDCLU

provides a foundation for discounting according to the probability of human extinc-

tion, as applied in, e.g., the Stern Review (2007, Ch. 2).
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Rank-dependent expected utilitarianism. In the special fixed population case

where only allocations x with probability adjusted population size ν(x) =
∑n(x)

i=1 xpi

equal to 1 is considered, the result of Theorem 1 leads to rank-dependent expected

utility maximization—where the decision maker substitutes ‘decision weights’ for

probability—but with additional structure. Quiggin (1982) was the first to axioma-

tize such a theory for decisions under risk, even though the substitution of ‘decision

weights’ for probability had been argued by earlier writers to explain behavior in-

consistent with the vNM theory.

In the formulation presented in Section 2, where information arrives in each of

T time periods, this corresponds to the case where T = 1, so that Ω = S, and where

n1(s) = 1 for all s ∈ S, so that one individual lives independently of how the risk is

resolved. Even though we thereby depart from our basic setting without individual

risk, we may interpret this as one person being subject to a lottery where the prizes

(w1
1(s1), . . . , w1

1(s|S|)) are won with probabilities (p1(s1), . . . , p1(s|S|)).

Let s[ ] = (s[1], . . . , s[|S|]) denote a reordering of s that turns (w1
1(s1), . . . , w1

1(s|S|))

into a non-decreasing profile: w1
1(s[r]) ≤ w1

1(s[r+1]) for all ranks r = 1, . . . , |S| − 1.

Then PARDCLU implies preferences for lotteries that are represented by:∑|S|

r=1
hr(p)u(w1

1(s[r])) ,

where the probability weighting functions hr : ∆(S)→ [0, 1] are defined by

hr(p) = f
(∑r

r′=1
p1(s[r′])

)
− f

(∑r−1

r′=1
p1(s[r′])

)
,

with f : [0, 1]→ [0, 1] given by f(ρ) = (1− e−δρ)/(1− e−δ) and using the convention∑0
r′=1p

1(s[r′]) = 0.2 Note that the function f is concave; the plausibility of this

property is discussed by Quiggin (1987). In addition, our axioms (in particular,

Axiom 5) lead to the special exponential structure implied by the function f . As

can be easily checked by applying l’Hôpital’s rule, f approaches the identify function

2This follows from Definition 1 by integrating the utility weights e−δρ, leading to the follow-

ing cumulative utility weights:
∫ ρ
0
e−δρ

′
dρ′ = −

(
e−δρ − 1

)
/δ. The function f is determined by

multiplying these cumulative weights by δ/
(
1− e−δ

)
so that f(0) = 0 and f(1) = 1.
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as δ ↓ 0. Thus, if the probability adjusted population size equals 1, then PARDCLU

approaches ordinary expected utility maximization as rank-discounting vanishes.

Human extinction. By appealing to Harsanyi’s (1953) original position and us-

ing Harsanyi’s (1955) theorem, Dasgupta and Heal (1979, pp. 269–275) justified the

use of discounted utilitarianism where the utility discount rate is the probability of

human extinction. Also the Stern Review (2007, Ch. 2) argued that this probabil-

ity is the primary justification for utility discounting (other contributions include

Bommier and Zuber, 2008, and Roemer, 2011). Blackorby, Bossert and Donaldson

(2007) supported this justification within a variable population framework. To what

extent is PARDCLU consistent with this position?

The variable population case where population remains constant up to the time

of human extinction can be captured in the formulation presented in Section 2,

where information arrives in each of T time periods, by having T > 1, letting the

set of potential signals, S, equal {sc, se}, where sc signals continued existence and

se signals extinction, and assuming that population is constant (and normalized to

1) up to the first time t at which the signal at t, st, equals se:

nt(s1, . . . , st) =


1 if sτ = sc for all τ = 1, . . . , t ,

0 otherwise.

Normalizing population to 1 amounts to assuming no intragenerational inequality.

Assume that st is i.i.d. where sc is observed with probability π and se is observed

with probability 1−π, implying that the probability of continued existence in period t

is πt: pt(sc, . . . , sc) = πt. If well-being is correlated with time so that wt1(sc, . . . , sc) ≤

wt+1
1 (sc, . . . , sc) for all times t = 1, . . . , T − 1, then PARDCLU implies preferences

over streams that are represented by:∑T

t=1

[
f
(
π(1−πt)

1−π

)
− f

(
π(1−πt−1)

1−π

)]
u(wt1(sc, . . . , sc)) ,

where, as above, f : R+ → R+ is given by f(ρ) = (1− e−δρ)/(1− e−δ), but with an

extended domain. This follows from Definition 1 and the argument of footnote 2 by

noting that π + · · ·+ πt = π(1− πt)/(1− π).
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Note that as δ ↓ 0, f approaches the identity function:

f
(
π(1−πt)

1−π

)
− f

(
π(1−πt−1)

1−π

)
→ π

1−π
(
πt−1 − πt

)
= πt .

Therefore, as rank-discounting vanishes, PARDCLU approaches the principle of dis-

counting utility according to the probability of human extinction, as applied by the

Stern Review (2007, Ch. 2). However, for δ > 0, PARDCLU implies that utility

is discounted according to both rank and the probability of human extinction. If

well-being is correlated with time—which is the case considered above—discounting

according to rank and the probability of human extinction reinforce each other,

while they might pull in opposite directions otherwise. In all cases, wellbeing is

also discounted according to the absolute wellbeing level if the function u is strictly

concave, so that wellbeing is transformed into utility at a decreasing rate.

5 The length of the planning horizon

Despite the normative appeal of the PARDCLU approach, as expressed by the ax-

ioms characterizing it, it raises several issues that need to be discussed. We do so

in this and the two subsequent sections.

One important feature of evaluation based on PARDCLU is its dependence on the

planning horizon and the risk of the planning horizon. It is important to note that,

according to PARDCLU, it is the total population, rather than the planning horizon,

that matters. In particular, social evaluation based on PARDCLU is completely

indifferent between having 10 billion people alive for 100 years and 1 billion people

alive for 1000 years if all have the same wellbeing and live for sure, as total population

is the same in both alternatives. One may object to this conclusion on the basis

that people might prefer to live in a society with more people (so as to have richer

scope for social interactions), or on the contrary to have more descendants.

Two responses can be made to this objection. First, one can argue that if

these sentiments are valid components of welfare, they should be included in the

xwi numbers, so that the equality of these numbers in the two situations means
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that these phenomena are appropriately taken into account. Second, one might

argue that such interpersonal welfare effects are not part of a well-defined theory of

wellbeing so that a theory of justice should not take them into account.

It must be noted that this feature actually extends to the case where population

size is risky. If wellbeing is perfectly equal, then only expected total population

size matters, so that society is completely risk neutral with respect to the risk of

population size. Evaluation based on PARDCLU is indifferent whether n people

exist for sure, or n1 people exist with probability p and n2 people with probability

1 − p, provided that pn1 + (1 − p)n2 = n. This is in stark contrast with criteria

exhibiting catastrophe avoidance in the sense of Bommier and Zuber (2008).

A more practical problem has to do with the possible discrepancy between the

actual length of society and the planning horizon considered in applied models. It

is a common practice in applied model, for instance in integrated climate-economy

assessment models, to assume that the economy reaches a steady state at a certain

point (the planning horizon), and to either neglect what happens next, or use a

simple recursive formula to value the future. In particular, the actual length of the

society is not taken into account. However, it is not possible to neglect the far future

in such a way in the PARDCLU approach.

In the following we present a method for dealing with this issue. Assume a

dynastic model with n dynasties, where there is risk about the wellbeing of the

dynasties. All dynasties reach a steady state wellbeing level simultaneously, with

the steady state distribution of welfare and probability of existence being given by

x̄ = ((x̄w1 , x̄
p
1), · · · , (x̄wn , x̄

p
n)). Let y the distribution of wellbeing and probability

before attaining the limiting distribution.

Assume that the duration of all dynasties is subject to the same risk. Con-

ditional on dynasty i existing when we reach the steady state (which occurs with

probability x̄pi ) the dynasty will last for exactly T more generations with probability

πT . Hence, conditional on dynasty i existing, generation T of the dynasty will exist

with probability qT =
∑

t≥T πt (where generation 0 is the label for the generation

12



existing when the steady state is reached). The expected number of generations

after reaching the steady state is N =
∑

t≥0 πtt =
∑

t≥0 qt (assumed to be finite).

In such a framework the actual allocation we should consider is

x =
(
y, (x̄w1 , x̄

p
1), . . . , (x̄w1 , qtx̄

p
1), . . . , . . . , (x̄wn , x̄

p
n), . . . , (x̄wn , qtx̄

p
n), . . .

)
.

In the steady state, all individuals of dynasty i have the same welfare level x̄wi and

they have probabilities of existence x̄pi , q1x̄
p
i , . . . , qtx̄

p
i , . . . . Hence the probability-

adjusted number of people at welfare level x̄wi is
∑

t qtx̄
p
i = Nx̄pi . Hence, using

Axiom 3, we can rewrite x as follows: x =
(
y, (x̄w1 , Nx̄

p
1), . . . , (x̄wn , Nx̄

p
n)
)
.

If we had neglected the generations in the far future, we would instead have

considered the allocation z =
(
y, (x̄w1 , x̄

p
1), . . . , (x̄wn , x̄

p
n)
)
. Obviously, by using such a

naive approach where the far future is neglected, the welfare weights on the (trans-

formed) utilities in the PARDCLU formula are changed. More precisely, assuming

that x̄wi < x̄wi+1, the weight in the näıve approach on the transformed utility u(xwk )

of people with welfare xwk between x̄wi and x̄wi+1 must be multiplied by a factor

e−δ(N−1)
∑
j≤i x̄

p
j (< 1) to arrive at the weights in the actual PARDCLU formula.

In the limit where N → +∞, the weights on the transformed utility of people

with welfare higher than x̄w1 = mini∈{1,··· ,n} x̄
w
i would be negligible. If function u is

bounded, this might mean that anything that happens to people with welfare higher

than the lowest welfare of the limiting distribution is unimportant from the social

choice point of view. This gives a clear indication where we should provide welfare

improvements.

Although we have argued that neglecting the future when there is a limiting

distribution can be quite misleading, the above discussion also provides a fix that

can be used in practical applications of the class of PARDCLU criteria. If we

know the expected number of future generations N , then we can easily construct

the allocation x using the information on the limiting distribution x̄, by simply

changing the probability of the existence of last generations from xpi to Nxpi .

13



6 Time consistency

The decision maker will be time inconsistent when decisions in later periods do not

coincide with the plan that was made in earlier periods. Hammond (1983) suggested

that if social decision-making is consequentialist (that is, if social situations in each

state of the world are assessed only on basis of their consequences in this state of

the world), time consistency is ensured only by using an expected utility criterion.

The PARDCLU is not an expected utility. Hence, if decision making is conse-

quentialist, PARDCLU are bound to yield time inconsistencies. Note that the issue

also arises when there is no risk, as discussed in Asheim and Zuber (2013). Indeed,

rank discount factors may depend on the relative position of past generations so

that, when the PARDCLU is used at later periods ignoring the past, it may chose

a different plan than decided earlier, because the relative weight on the wellbeing

of future generations has changed.3 The problem of time consistency when there

is risk is more severe because not only the past, but also unrealized states of the

world matter. This dependence on unrealized states of the world is not specific to

the PARDCLU approach, for it also arises for criteria such as those suggested by

Diamond (1967), Epstein and Segal (1992) and Grant at al. (2010).

Given the result by Hammond (1983), two options are possible: reject consequen-

tialism or time consistency. If one wants to avoid the time inconsistency problem,

one has to abandon the hypothesis of time invariant and consequentialist decision

making. This involves defining social preferences that are conditional on the past

and on unrealized events. Consider again the dynamic framework introduced in

Section 2, where the allocations x and y are derived from probability distributions

p and q, for fixed functions nt and wt determining the numbers of individuals and

the distribution of wellbeing at every time t. Also assume that there is a history of

3However, as shown by Zuber and Asheim (2012, Section 6) in the setting of the Ramsey and

Dasgupta-Heal-Solow models of optimal growth, it might happen that no time inconsistency arise at

the optimal plan for a rank-discounted utilitarian criterion. This property is not be true in general

and depends on the precise economic model which is considered.
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signal ωt = {s1, · · · , st} such that

(1) pτ (ω̃τ ) = qτ (ω̃τ ) for all ω̃ ∈ Ω and τ < t, and

(2) pτ (ω̃τ ) = qτ (ω̃τ ) for all τ ≥ t and all ω̃ = (s̃1, · · · , s̃t, s̃t+1, · · · , s̃T ) ∈ Ω such

that (s̃1, · · · , s̃t) 6= (s1, · · · , st).

This means that x and y are allocations where people in the past and unrealized

states of the world have the same welfare and probability of existence. We can define

xωt and yωt as the allocations for people in future generations and still possible

states of the world.4 Then we can simply formulate the social preference ordering

conditional on the history ωt, denoted �ωt in the following way:

xωt �ωt yωt ⇐⇒ x � y.

Such a construction would trivially imply time consistency.

Such a construction is actually the solution proposed by Epstein and Segal (1992)

when they develop a formula to update the weights on individuals’ utilities ex post

to obtain consistent planning. What the updating rule does is to aggregate the

information needed on unrealized alternatives, so that ex post decision making does

depend on unrealized alternatives in a proper way. The issue is rather that the

updating rule for social preferences may be rather complex. This solution may be

possible for some problems when the amount of information required is not too

important. But for most dynamic decision problems involving many unrealized

alternatives this may be difficult to implement.

The second option would be to accept the possibility of time inconsistencies in

social decision making. There are still situations where time consistency problem

does not arise for PARDCLU, even if we stick to consequentialist decision making.

Axioms 4 and 5 precisely describe situations where the information on the past or

4The definition of xωt would be

xωt = (((wτj (ωτ ), pτ (ωτ ))j∈{1,··· ,nτ (ωt)})ωτ∈{s1}×···×{st}×Sτ−t)τ∈{t,··· ,T} ,

and similarly for yωt by substituting qτ (ωτ ) by pτ (ωτ ).
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unrealized alternatives is not needed to evaluate allocations. It should be clear that

only very specific problems would permit to use the independence Axioms 4 and 5:

as soon as someone in the past (or in unrealized states of the world) has a welfare

level in between the welfare levels of two future (potential) individuals he will matter

for decision making.

Then, if one anticipates that the decision process will be time invariant and

consequentialist, the only way to mitigate the time inconsistency problem is to devise

a sophisticated planning strategy (see Pollak, 1968; Blackorby et al., 1973, for early

references). The main idea is that we can anticipate today that the time consistency

problem will arise tomorrow, and therefore chose a policy that will induce the next

generations to do the best choices according to the use of an PARDCLU criterion

today. Typically, the sophisticated planning solution does not yield a solution which

is as good as the optimal plan if we could commit to a policy at any future decision

node. But it may improve upon a naive solution which does not anticipate the

problem, and it yields consistent planning. The exact form of the sophisticated

planning solution, and how far it can go in reducing the suboptimality will depend

on the specific economic problem under consideration. But it seems to be a promising

route when one use criteria such as PARDCLU that do not satisfy strong enough

separability and time invariance properties.

7 Ex ante vs ex post approaches

A seminal result in the literature on social choice in risky situations is Harsanyi’s

theorem (Harsanyi, 1955). Harsanyi proved that, in the context of risk, social ra-

tionality (embodied in the expected utility assumption) and the Pareto principle

impose severe constraints on the form of the social welfare function. Specifically,

the social criterion should be a linear combination of individuals’ expected utility,

ruling out preference for (utility) redistribution both ex ante and ex post.

Since then, the literature has hesitated between an ex ante approach that relaxes

rationality (Diamond, 1967; Epstein and Segal, 1992; Grant at al., 2010) to allow for
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ex ante fairness, and an ex post approach that fails the Pareto principle (Broome,

1991; Hammond, 1983; Fleurbaey, 2010) to allow for ex post fairness.

How does the PARDCLU approach fit in this debate? This is not clear, because

we interpret individuals in different states of the world as essentially different indi-

viduals. The key issue in the ex ante versus ex post debate is whether we should

respect individuals’ ex ante preference, which is not possible to formulate in our

framework because we do not assume that individuals face risk: only the society

faces some risk on the identity of individuals and welfare distribution. One possi-

bility though would be to interpret the utility numbers xwi as incorporating the risk

actual individuals face during their lifetime. In that case, and if the welfare index

is concordant with individuals’ ex ante preferences, one could consider the PARD-

CLU apporach as an ex ante approach in the sense that it respects individuals’ risk

preferences. It would therefore be related to criteria suggested by Diamond (1967),

Epstein and Segal (1992) and Grant at al. (2010). As we discussed in Section 6,

PARDCLU criteria actually face the same difficulty in terms of time inconsistency

as these ex ante criteria.

This time inconsistency is related to the fact that the PARDCLU are not ex post

criteria, in a sense somewhat different from the one discussed in the ex ante versus

ex post debate. Following Fleurbaey (2010), one could define an ex post approach as

one first assessing social welfare in each state of the world, and then performing and

aggregation of these ex post welfare judgements to assess a risky situation. There

is clear tension between such an approach and our axiom 3 (probability-adjusted

Suppes-Sen). Assume like Fleurbaey (2010) that the social criterion is the expected

value of an equally-distributed equivalent function. There are two equiprobable

states of the world and two individuals in each state of the world. Consider the

following allocations: in allocation x the distribution of welfare is (z, z̄) in each

state of the world; in allocation y, the distribution of welfare is (z, z) in one state

of the world and (z̄, z̄) in the other state of the world. The probability-adjusted

Suppes-Sen axiom imply that x and y should be deemed equivalent. However, if

17



social welfare is inequality-averse (with respect to the distribution of welfare), the

equally-distributed equivalent in each state of the world in x should be less than

(z + z̄)/2 which is the expected social welfare in y. Inequality averse expected

equally-distributed equivalent criteria would therefore prefer y to x, contradicting

the probability-adjusted Suppes-Sen axiom.

The ex post approach relies on a consequentialist assumption that the welfare

assessment of situations in each state of the world should only depend on the con-

sequences in this particular state of world. One might want to question this con-

sequentialist assumption. For instance, should the ex ante relative priority of two

individuals located in the same state of the world be independent of what occurs in

different states of the world? Or should the situation of people in other states of

the world modify the way we view redistribution in a particular state of the world.

In particular, we may well accept more inequality in good states when there is some

catastrophic state, because the real priority is to raise the welfare of people in that

state, which is something we would not do otherwise. This is the kind of intuition

that may justify our PARDCLU approach.

If one does not accept the non-consequentialist intuition, a possibility could be

to follow the expected equally-distributed equivalent approach à la Fleurbaey (2010)

and take the expected value of a RDCLU social welfare function. This is a direction

we do not investigate in the present paper.

8 Concluding remarks

In conjunction with our companion paper, Asheim and Zuber (2013), the present

paper contributes to the fields of population ethics and social evaluation in risky

situations by proposing and axiomatizing the probability adjusted rank-discounted

critical-level generalized utilitarian (PARDCLU) SWO. By doing so we have taken

an important step towards preparing the rank-discounted utilitarian (RDU) criterion

(see Zuber and Asheim, 2012) for practical use, e.g. for evaluation of climate policies

and other policy issues with long-run consequences.
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We have shown how the PARDCLU SWO reduces to rank-dependent expected

utility maximization with additional structure in the special case where the prob-

ability adjusted population size equals 1, and can be used to handle the situation

where there is a positive probability of human extinction.

When evaluating consequences that stretch centuries into the future, it seems

less important to consider the fluctuations in wellbeing and individual risk that

people face during their own lifetimes. Rather, the important issues are interpersonal

inequality and the social risk associated with what level of wellbeing future people

will experience in the world they will be born into.

Consequently, we have presented a framework where individuals live for one

period only and are not subject to individual risk. In this framework one cannot

differentiate between inequality aversion, fluctuation aversion, and risk aversion—a

distinction that is sometimes highlighted in literature on climate change evaluation—

only inequality aversion matters in the present context.

In Zuber and Asheim (2012, Section 6), where it is imposed through the structure

that there are infinitely many time periods, we show how RDU leads to sustainable

outcomes in models of economic growth. This basic support for sustainability does

not extend to the present criterion with endogenous population size and probability

of existence, where the main concern is to avoid lives with low wellbeing. A stark

conclusion is that it might be social preferable to increase the per-period probability

of extinction if per capita wellbeing is decreasing over time, as this increases the

utility weight on the better-off earlier generations.

In general, there might be an argument in favor of distinguishing the conception

of justice from the forces (like altruism) that are instrumental in attaining it, e.g.,

if impartiality follows from considering an original position where individuals do

not have extensive times of natural sentiments (Rawls, 1971, p. 129). However,

considering the social context in which people live seems essential when applying

the PARDCLU SWO in a setting where population size and probability of existence

are endogenous. In particular, a more pro-natal implication would follow if we
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assume that the wellbeing of individuals depends also on their reproductive choices,

so that wellbeing of one generation increases with the size and living conditions of

the next.
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A Proof of Theorem 1

To prove the Theorem 1, we need to introduce subsets of X. For any k ∈ N, denote by

X1/k =
{
x ∈ X : xpi = 1/k, ∀i ∈ {1, . . . , n(x)}

}
the set of allocations where all individuals

have the same rational probability 1/k of existing. Denote by XQ++ =
{
x ∈ X : xpi ∈

Q++, ∀i ∈ {1, . . . , n(x)}
}

the set of allocations where all individuals have probabilities of

existing which are positive rational numbers.

It is straightforward to show that (2) implies (1) in Theorem 1. We show that (1) implies

(2) by proving the four following lemmas.

We start with Lemmas 1 and 2 which establish how the representation result of Asheim

and Zuber (2013) can be extended to the present case as long as the probabilities of existence

are given by rational numbers.

Lemma 1 If Axioms 1–7 hold, then there exists c ∈ R+, δ ∈ R++ and a continuous and

increasing function u : R→ R such that for any k ∈ N for any x,y ∈ X1/k,

x % y⇐⇒
∫ ν(x)

0

e−δρ
(
u(x[ρ])− u(c)

)
dρ ≥

∫ ν(y)

0

e−δρ
(
u(y[ρ])− u(c)

)
dρ

Proof. For any k ∈ N, Axioms 1–7 above restricted to X1/k collapse to Axioms 1–7 of

Asheim and Zuber (2013), provided we take p = 1/k in Axioms 4-7. Hence, by Theorem 1

of Asheim and Zuber (2013) there exist β1/k ∈ (0, 1) and a continuous increasing function

u1/k : R→ R such that, for all x, y ∈ X1/k, x % y if and only if

(1− β1/k)
∑n(x)

r=1
βr−11/k

(
u1/k

(
xwπ(r)

)
− u1/k(c)

)
≥ (1− β1/k)

∑n(y)

r=1
βr−11/k

(
u1/k

(
ywπ(r)

)
− u1/k(c)

)
,

(A1)

where the critical level parameter c is determined by Axiom 6 and is therefore independent

of k, and where the factor 1 − β1/k ensures that utility weights sum up to 1 − βn(x)1/k and

1− βn(y)1/k respectively.

Consider any x,y ∈ X1 such that n(x) = n(y) = n. For any k ∈ N, construct x̂, ŷ ∈

X1/k such that n(x̂) = n(ŷ) = nk and, for any i ∈ {1, . . . , n}, x̂wki−j = xwi and ŷwki−j = ywi

for all j ∈ {0, . . . , k − 1}. By construction, ν(x) = ν(y) = ν(x̂) = ν(ŷ) = n, x[ ] = x̂[ ] and

y[ ] = ŷ[ ]. By Axioms 1, 2 and 3, we have x % y⇐⇒ x̂ % ŷ, and therefore, using the above

representation:

(1− β1)
∑n

r=1
βr−11 u1

(
x(π(r)

)
≥ (1− β1)

∑n

r=1
βr−11 u1

(
y(π(r))

)
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⇐⇒ (1− β1/k)
∑nk

r′=1
βr
′−1

1/k u1/k
(
x̂(π(r′)

)
≥ (1− β1/k)

∑nk

r′=1
βr
′−1

1/k u1/k
(
ŷ(π(r′))

)
⇐⇒ (1− βk1/k)

∑n

r=1
(βk1/k)r−1u1/k

(
x(π(r)

)
≥ (1− βk1/k)

∑nk

r′=1
(βk1/k)r−1u1/k

(
y(π(r))

)
since (1 − β1/k)

∑k
r′=1β

r′−1
1/k = 1 − βk1/k. Because additive representations are unique up

to an affine transformation, the above equivalence implies βk1/k = β1 and that we can set

u1/k = u1, using the normalization u1/k(0) = u1(0) = 0.

Denoting p = 1/k and δ = − lnβ1, this implies that β1/k = (β1)1/k = e−δp. Moreover,

since

(1− βp)βr−1p =
(
1− e−δp

)
e−δp(r−1) = e−δp(r−1) − e−δpr = δ

∫ pr

p(r−1)
e−δρdρ ,

and by denoting u = u1 we can rewrite inequality (A1) as:

δ

∫ ν(x)

0

e−δρ
(
u(x[ρ])− u(c)

)
dρ ≥ δ

∫ ν(y)

0

e−δρ
(
u(y[ρ])− u(c)

)
dρ ,

where ν(x) = n(x)/k and ν(y) = n(y)/k. This establishes Lemma 1.

Lemmas 2 is concerned only with the same-number case, as a separate argument has to

be used anyway for the case where the difference between the probability-adjusted population

size of two different allocations is irrational.

Lemma 2 If Axioms 1–7 hold, then there exists c ∈ R+, δ ∈ R++ and a continuous and

increasing function u : R → R such that for any ν ∈ Q++, for any x,y ∈ XQ++
such that

ν(x) = ν(y) = ν,

x % y⇐⇒
∫ ν

0

e−δρu(x[ρ])dρ ≥
∫ ν

0

e−δρu(y[ρ])dρ

Proof. For any x,y ∈ XQ++
such that ν(x) = ν(y) = ν, let k be the least common

denominator of all the probabilities in the two allocations. This means that for all i ∈

{1, . . . , n(x}} there exists a positive integer `xi such that xpi = `xi /k. Similarly, for all

i ∈ {1, . . . , n(y}}, there exists a positive integer `yi such that ypi = `yj /k.

We can construct x̂, ŷ ∈ X1/k in the following way:5

(a) For any i ∈ {1, . . . , n(x)}, x̂w
`+

∑i−1
j=1 `

x
j

= xwi , for all ` ∈ {1, . . . , `xi };

(b) For any i ∈ {1, . . . , n(y)}, ŷw
`+

∑i−1
j=1 `

y
j

= ywi , for all ` ∈ {1, . . . , `yi }.

5Using the convention
∑0
j=1 `

x
j =

∑0
j=1 `

y
j = 0.
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By construction, ν(x) = ν(y) = ν(x̂) = ν(ŷ) = n, x[ ] = x̂[ ] and y[ ] = ŷ[ ], and

x % y ⇐⇒ x̂ % ŷ

⇐⇒
∫ ν

0

e−δρu(x[ρ])dρ ≥
∫ ν

0

e−δρu(y[ρ])dρ

by Axioms 1, 2, 3, and Lemma 1.

Lemma 3 shows how the representation of Lemma 2 in the same-number case (where

the compared allocations have the same probability-adjusted population size) can be applied

also when probabilities of existence are allowed to irrational, using the property that the

rational numbers are dense in the real numbers.

Lemma 3 If Axioms 1–7 hold, then there exist c ∈ R+, δ ∈ R++ and a continuous and

increasing function u : R→ R such that for any ν ∈ R++, for any x, y ∈ Xν ,

x % y⇐⇒
∫ ν

0

e−δρu(x[ρ])dρ ≥
∫ ν

0

e−δρu(y[ρ])dρ (A2)

Proof. Consider any ν ∈ R++, and any x, y ∈ Xν . If x, y ∈ Q++ (so that ν ∈ Q++), then

Lemma 2 yields the result. Assume therefore that x, y /∈ Q++ and more specifically that

xpi ∈ Q++ for all i ∈ {1, . . . , n(x) − 1}, ypi ∈ Q++ for all j ∈ {1, . . . , n(y) − 1}, and xn(x),

yn(y) /∈ Q++. Assuming that the last individual is the one with an irrational probability

of existing is made without loss of generality because of Axiom 3. Extension of the proof

to more than one individual with an irrational probability of existing is similar to the one

developed below. Because of Axiom 1, equivalence (A2) holds if and only if the following

equivalence holds:

x � y⇐⇒
∫ ν

0

e−δρu(x[ρ])dρ >

∫ ν

0

e−δρu(y[ρ])dρ . (A3)

Step 1: x � y =⇒
∫ ν
0
e−δρu(x[ρ])dρ >

∫ ν
0
e−δρu(y[ρ])dρ.

Assume that x � y. By Axiom 2, there exists x̃ ∈ Xν such that x̃[ ] < x[ ] and

x̃ � y. It is sufficient to show
∫ ν
0
e−δρu(x̃[ρ])dρ ≥

∫ ν
0
e−δρu(y[ρ])dρ since then it follows by

the definitions of the step functions x[ ] and x̃[ ] that x[ ] > x̃[ ] implies
∫ ν
0
e−δρu(x[ρ])dρ >∫ ν

0
e−δρu(y[ρ])dρ.

Let ν̂ ∈ Q++ such that 0 < ν̂ − ν < 1, and denote p̂ = ν̂ − ν. Let px̃ ∈ Q++ be such

that 0 < px̃ < x̃pn(x̃) and denote εx̃ = x̃pn(x̃) − px̃. Likewise, let py ∈ Q++ be such that

xpn(y) < py < p̂ and denote εy = py − xpn(y).
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Let z = max{x̃[ν],y[ν]}. By Axiom 4,

x̃ � y =⇒ (x̃, zp̂) % (y, zp̂) .

Construct x̂, ŷ ∈ Xν̂ such that

(a) x̂i = x̃i for all i ∈ {1, . . . , n(x̃)− 1}; x̂n(x̃) = (x̃wn(x̃), px̃); x̂n(x̃)+1 = (z, p̂+ εx̃);

(b) ŷi = yi for all i ∈ {1, . . . , n(y)− 1}; ŷn(y) = (ywn(y), py); ŷn(y)+1 = (z, p̂− εy).

By construction, ν(x̂) = ν(ŷ) = ν(x̃, zp̂) = ν(y, zp̂) = ν̂, x̂[ ] > (x̃, zp̂)[ ] and ŷ[ ] < (y, zp̂)[ ].

By Axioms 1 and 3,

(x̃, zp̂) % (y, zp̂) =⇒ x̂ � ŷ .

Also, by construction, x̂, ŷ ∈ XQ++
.6 Hence, by Lemma 2, we know that

x̂ � ŷ⇐⇒
∫ ν′

0

e−δρu(x̂[ρ])dρ >

∫ ν′

0

e−δρu(ŷ[ρ])dρ

Let r̃ be the rank of xn(x̃) in x̃ and r be the rank of yn(y) in y. By definition of x̂[ ] and

ŷ[ ], we have:

∫ ν̂

0

e−δρu(x̂[ρ])dρ

=

∫ ρr̃−εx̃

0

e−δρu(x̃[ρ])dρ+ eδεx̃
∫ ν

ρr̃

e−δρu(x̃[ρr̃])dρ

+

∫ ν

ν−εx̃
e−δρu(z)dρ+

∫ ν̂

ν

e−δρu(z)dρ

=

∫ ν

0

e−δρu(x̃[ρ])dρ+ (eδεx̃ − 1)

∫ ν

ρr̃

e−δρu(x̃[ρr̃])dρ−
∫ ρr̃

ρr̃−εx̃
e−δρu(xwn(x̃))dρ

+

∫ ν

ν−εx̃
e−δρu(z)dρ+

∫ ν̂

ν

e−δρu(z)dρ

=

∫ ν

0

e−δρu(x̃[ρ])dρ+

∫ ν̂

ν

e−δρu(z)dρ

+ (eδεx̃ − 1)

(∫ ν

ρr̃

e−δρu(x̃[ρr̃])dρ+
e−δνu(z)−e−δρr̃u(x̃wn(x̃))

δ

)
and likewise ∫ ν̂

0

e−δρu(ŷ[ρ])dρ

6Indeed, ν − x̃pn(x̃) and ν − ypn(y) are rational number because all individuals but the last one

have rational probabilities of existing.
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=

∫ ρr+εy

0

e−δρu(y[ρ])dρ+ e−δεy
∫ ν

ρr

e−δρu(y[ρr])dρ

−
∫ ν+εy

ν

e−δρu(z)dρ+

∫ ν̂

ν

e−δρu(z)dρ

=

∫ ν

0

e−δρu(y[ρ])dρ+

∫ ν̂

ν

e−δρu(z)dρ

− (1− e−δεy )

(∫ ν

ρr

e−δρu(y[ρr])dρ+
e−δνu(z)−e−δρru(xwn(y))

δ

)
To sum up: x � y =⇒ x̃ � y =⇒ (x̃, (z)p̂) % (y, (z)p̂) =⇒ x̂ � ŷ =⇒∫ ν

0

e−δρu(x̃[ρ])dρ+ (eδεx̃ − 1)

(∫ ν

ρr̃

e−δρu(x̃[ρr̃])dρ+
e−δνu(z)−e−δρr̃u(x̃wn(x̃))

δ

)
>∫ ν

0

e−δρu(y[ρ])dρ− (1− e−δεy )

(∫ ν

ρr

e−δρu(y[ρr])dρ+
e−δνu(z)−e−δρru(xwn(y))

δ

)
.

This implication is true for any (εx̃, εy) ∈ R2
++ as defined above. Since rational number are

dense in the real number, it is possible to find a sequence of ((εx̃, εy)) ∈ (R2)N such that

each of εx̃ and εy tends to zero. Hence:

x � y =⇒
∫ ν

0

e−δρu(x̃[ρ])dρ ≥
∫ ν

0

e−δρu(y[ρ])dρ .

Figure 1 illustrates the construction of the different allocations involved in Step 1.

Step 2:
∫ ν
0
e−δρu(x[ρ])dρ >

∫ ν
0
e−δρu(y[ρ])dρ =⇒ x � y.

Assume that
∫ ν
0
e−δρu(x[ρ])dρ >

∫ ν
0
e−δρu(y[ρ])dρ. Since rational number are dense

in real numbers, it is possible to find (εx, εy) ∈ (0, 1)2 such that px = xpn(x) + εx and

py = ypn(y) − εy satisfy (px, py) ∈ Q2
++, and:

∫ ν
0
e−δρu(x[ρ])dρ− (1− e−δεx)

(∫ ν
ρr̃
e−δρu(x[ρr̃])dρ+

e−δνu(z)−e−δρr̃u(xwn(x))

δ

)
>

∫ ν
0
e−δρu(y[ρ])dρ+ (eδεy − 1)

(∫ ν
ρr
e−δρu(y[ρr])dρ+

e−δνu(z)−e−δρru(xwn(y))

δ

)
where r̃ is the rank of xn(x) in x, r is the rank of yn(y) in y, and z = max{x̃[ν],y[ν]}.

Let εx < p̂ < 1 be such that ν̂ = ν + p̂ satisfies ν̂ ∈ Q++. We can construct x̂, ŷ ∈ Xν̂

in the following way:

(a) x̂i = xi for all i ∈ {1, . . . , n(x)− 1}; x̂n(x) = (xwn(x), px); x̂n(x)+1 = (z, p̂− εx);

(b) ŷi = yi for all i ∈ {1, . . . , n(y)− 1}; ŷn(y) = (ywn(y), py); ŷn(y)+1 = (z, p̂+ εy);

so that x̂, ŷ ∈ XQ++
, ν(x̂) = ν(ŷ) = ν(x, (z)p̂) = ν(y, (z)p̂) = ν̂, x̂[ ] < (x, (z)p̂)[ ] and

ŷ[ ] > (y, (z)p̂)[ ] (see Figure 2).
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Probability-adjusted

population size

wellbeing

ν̂ν

z

εx̃εy

(x̃, (z)p̂)[ ] :

x̂[ ] :

(y, (z)p̂)[ ] :

ŷ[ ] :

Figure 1: Allocations involved in Step 1 of the proof

By Lemma 2 and by construction of x̂ and ŷ,∫ ν

0

e−δρu(x[ρ])dρ− (1− e−δεx)

(∫ ν

ρr

e−δρu(x[ρr])dρ+
e−δνu(z)−e−δρru(xwn(x))

δ

)
>∫ ν

0

e−δρu(y[ρ])dρ+ (eδεy − 1)

(∫ ν

ρr′

e−δρu(y[ρr′ ]
)dρ+

e−δνu(z)−e−δρr′ u(xwn(y))

δ

)
=⇒

∫ ν̂
0
e−δρu(x̂[ρ])dρ >

∫ ν̂
0
e−δρu(ŷ[ρ])dρ =⇒ x̂ � ŷ. And by Axioms 1, 3 and 4,

x̂ � ŷ =⇒ (x, (z)p̂) � (y, (z)p̂) =⇒ x � y.

Finally, we extend the representation to the entire domain X of all finite allocations

(thereby also considering allocations with different probability-adjusted population sizes)

by showing that any finite allocation x can be made as bad as an allocation where all

individuals are at the critical level c by adding sufficiently many people at a low wellbeing

level z, and thus indifferent to an egalitarian allocation where each individual’s wellbeing

equals x ≤ c. This allows us to apply Axiom 6, thereby completing the demonstration of

the result that statement (1) of Theorem 1 implies statement (2).
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Probability-adjusted

population size

wellbeing

ν̂ν

z

εxεy

(x, (z)p̂)[ ] :

x̂[ ] :

(y, (z)p̂)[ ] :

ŷ[ ] :

Figure 2: Allocations involved in Step 2 of the proof

Lemma 4 If Axioms 1-7 hold, then there exists c ∈ R+, δ ∈ R++ and a continuous and

increasing function u : R→ R such that for any x,y ∈ X,

x % y⇐⇒
∫ ν(x)

0

e−δρ
(
u(x[ρ])− u(c)

)
dρ ≥

∫ ν(y)

0

e−δρ
(
u(y[ρ])− u(c)

)
dρ . (A4)

Proof. Step 1: Representation when well-being does not exceed c.

Let c ∈ R+ be the critical level parameter defined in Axiom 6.

Assume that x, y ∈ X are such that x[ν(x)] ≤ c and y[ν(y)] ≤ c. If ν(x) = ν(y), then

equivalence (A4) follows from Lemma 3. Therefore, assume that ν(x) < ν(y) (the case

ν(x) > ν(y) can be treated similarly). Let k := minl∈N{` : (ν(y) − ν(x))/` ≤ 1} and

p = (ν(y) − ν(x))/k. Then, by k applications of Axiom 6, using Axiom 5 repeatedly to

ensure that the allocation is in Xν when Axiom 6 is applied, x ∼ (x, (c)kp). By Axiom 1

and Lemma 3:

x % y ⇐⇒ (x, (c)kp) % y

⇐⇒
∫ ν(x)

0

e−δρu
(
x[ρ]

)
dρ+

∫ ν(y)

ν(x)

e−δρu(c)dρ ≥
∫ ν(y)

0

e−δρu
(
y[ρ]

)
dρ

28



⇐⇒
∫ ν(x)

0

e−δρ
(
u
(
x[ρ]

)
− u(c)

)
dρ ≥

∫ ν(y)

0

e−δρ
(
u
(
y[ρ]

)
− u(c)

)
dρ .

Step 2: Equally distributed equivalent.

For any ν ∈ R++ and x ∈ Xν , let the ν–equally distributed equivalent of x, denoted

eν(x), be x ∈ R such that (x)ν ∼ x. Axioms 1–3 imply that eν : Xν → R is well-defined.

By Lemma 3, and since Axioms 1–7 hold, it is defined as follows:

eν(x) = u−1
(

δ
1−e−δν

∫ ν

0

e−δρu(x[ρ])dρ
)
.

Let x ∈ Xν and z < min{x[0], c}, leading to the following expression for k ∈ N:

eν+k
(
x, (z)k

)
= u−1

(
δ

1−e−δ(ν+k)

(∫ k

0

e−δρu(z)dρ+

∫ ν+k

k

e−δρu(x[ρ−k])dρ

))

= u−1
(

1−e−δk
1−e−δ(ν+k)u(z) + e−δk−e−δ(ν+k)

1−e−δ(ν+k) ·
δ

1−e−δν

∫ ν

0

e−δρu(x[ρ])dρ
)
.

Write a(k) :=
(
1− e−δk

)
/
(
1− e−δ(ν+k)

)
; note that a : N→ R is an increasing function

of k converging to 1. Since z < x[0] ≤ eν(x) and

eν+k
(
x, (z)k

)
= u−1

(
a(k)u(z) + (1− a(k))u

(
eν(x)

))
,

it follows that eν+k
(
x, (z)k

)
is a decreasing function of k converging to z as k approaches

infinity. As z < c, we deduce that, for any x ∈ X, there exists K(x) ∈ N such that, for all

k ≥ K(x), eν(x)+k
(
x, (z)k

)
≤ c.

Step 3: Conclusion. For any x, y ∈ X, choose z such that z < min{x[0],y[0], z}.

Let ` = max{K(x),K(y)}, x = eν(x)+`
(
x, (z)`

)
and y = eν(y)+`

(
y, (z)`

)
. By definition,

(x, (z)`) ∼ (x)ν(x)+`, (y, (z)`) ∼ (y)ν(y)+`, x ≤ c and y ≤ c. Hence, by repeated applications

of Axioms 1 and 5, and by Step 1:

x % y ⇐⇒ (x, (z)`) % (y, (z)`)

⇐⇒ (x)ν(x)+` % (y)ν(y)+`

⇐⇒
∫ ν(x)+`

0

e−δρ (u(x)− u(c)) dρ ≥
∫ ν(y)+`

0

e−δρ (u(y)− u(c)) dρ .

However, by the definition of equally distributed equivalents,∫ ν(x)+`

0

e−δρu(x)dρ =

∫ `

0

e−δρu(z)dρ+ e−δ`
∫ ν(x)

0

e−δρu(x[ρ])dρ ,∫ ν(y)+`

0

e−δρu(x)dρ =

∫ `

0

e−δρu(z)dρ+ e−δ`
∫ ν(y)

0

e−δρu(y[ρ])dρ ,

Thereby we obtain equivalence (A4).

29


	CESifo Working Paper No. 4728
	Category 2: Public Choice
	March 2014
	Abstract

