Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/209390 
Erscheinungsjahr: 
2019
Quellenangabe: 
[Editor:] Jahn, Carlos [Editor:] Kersten, Wolfgang [Editor:] Ringle, Christian M. [Title:] Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 28 [ISBN:] 978-3-7502-4949-3 [Publisher:] epubli GmbH [Place:] Berlin [Year:] 2019 [Pages:] 112-135
Verlag: 
epubli GmbH, Berlin
Zusammenfassung: 
Purpose: While simulation-based optimization has been discussed in theory and practically employed at container terminals, the different publications in this field have not yet been presented and compared in a structured manner. This paper gathers the latest developments and examine the similarities and differences of the provided approaches. Furthermore, research gaps are identified. Methodology: The recent literature of simulation-based optimization on container terminals is examined using a mapping review approach. Emphasis is laid on the covered problems, chosen meta-heuristics, and the shapes of the solution space. Findings: In the applied literature of container terminals genetic algorithms prevail, both for scheduling problems and for the determination of discrete and/or continuous parameters. Because of the no-free-lunch-theorem for optimization, it is open whether the chosen optimization approach serves the purpose best. Originality: To the best of our knowledge, the existing literature regarding simulation- based optimization at container terminals has never been addressed in a detailed overview. The elaborated comparison of the different publications leads to further research directions.
Schlagwörter: 
Simulation-based optimization
Simulation-based optimisation
Container terminal
Maritime logistics
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-sa Logo
Dokumentart: 
Conference Paper

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.