Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/239451 
Year of Publication: 
2021
Citation: 
[Journal:] Journal of Risk and Financial Management [ISSN:] 1911-8074 [Volume:] 14 [Issue:] 1 [Publisher:] MDPI [Place:] Basel [Year:] 2021 [Pages:] 1-13
Publisher: 
MDPI, Basel
Abstract: 
We present a novel technique for cardinality-constrained index-tracking, a common task in the financial industry. Our approach is based on market graph models. We model our reference indices as market graphs and express the index-tracking problem as a quadratic K-medoids clustering problem. We take advantage of a purpose-built hardware architecture to circumvent the NP-hard nature of the problem and solve our formulation efficiently. The main contributions of this article are bridging three separate areas of the literature, market graph models, K-medoid clustering and quadratic binary optimization modeling, to formulate the index-tracking problem as a binary quadratic K-medoid graph-clustering problem. Our initial results show we accurately replicate the returns of various market indices, using only a small subset of their constituent assets. Moreover, our binary quadratic formulation allows us to take advantage of recent hardware advances to overcome the NP-hard nature of the problem and obtain solutions faster than with traditional architectures and solvers.
Subjects: 
graph clustering
K-medoids
market graph
combinatorial optimization
QUBO
portfolioconstruction
index-tracking
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.