Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/243931 
Year of Publication: 
2020
Citation: 
[Journal:] Energy Reports [ISSN:] 2352-4847 [Volume:] 6 [Issue:] 2 [Publisher:] Elsevier [Place:] Amsterdam [Year:] 2020 [Pages:] 550-557
Publisher: 
Elsevier, Amsterdam
Abstract: 
High performance and cost-effective ferry boats are of capital interest for customers and marine industry companies. On the other hand, the traditional ferry boats, operated by diesel generators, spatter the atmosphere with CO2 emissions and detrimental particles. Hence, electric propulsion in marine applications, especially in ferry vessel systems, has gained a lot of attention during the last decade as a promising technology to decrease fuel consumption and emissions. However, one of the main issues in the electric ferries (E-Ferry) is to keep the voltage and frequency within an acceptable range according to the large dynamic load fluctuations. In order to solve this issue, this paper presents a model predictive energy management based on a modified black hole algorithm (BHA) for the hybrid E-Ferry systems. Finally, to study the efficiency of our proposal, we run a real-time simulation using the d-Space simulator and compare the effect of the prediction horizon on the system performance.
Subjects: 
Black hole algorithm (BHA)
Electric ferry-system
Fuel cell technology
Marine power system
Model predictive control (MPC)
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.