Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/244006 
Year of Publication: 
2020
Citation: 
[Journal:] Energy Reports [ISSN:] 2352-4847 [Volume:] 6 [Issue:] 4 [Publisher:] Elsevier [Place:] Amsterdam [Year:] 2020 [Pages:] 46-62
Publisher: 
Elsevier, Amsterdam
Abstract: 
Metal oxide semiconductors-based gas sensors have been extensively explored due to their high sensing response, cost-effectivity, long-term stability, and simple fabrication. However, their utilization at low operating temperature is still challenging. Thus, reduction in power consumption is highly essential for long-term usage of gas sensors. ZnO nanostructures-based gas sensors are one of the most eligible candidates where a real-time detection of explosive and toxic gases is needed. On this subject, numerous efforts have been made to improve the sensing response at reduced working temperature with the assistance of various methods. In this report, several techniques related to the synthesis of ZnO nanostructures and their efficient performance in sensing are reviewed. The report primarily focuses on different means of improving the sensing properties, such as functionalization of noble metal nanoparticles, doping of metals, inclusion of carbonaceous nanomaterials, using nanocomposites of different MO, UV activation, and post-treatment method of high-energy irradiation on ZnO nanostructures, with their possible sensing mechanisms. This study will therefore shed light on future proposals of ZnO-based gas sensors showing high sensitivity even at low operating temperature.
Subjects: 
ZnO nanostructures
Gas sensors
Gas sensing mechanism
Nanocomposites
Carbonaceous nanomaterials
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.