Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/244121 
Year of Publication: 
2020
Citation: 
[Journal:] Energy Reports [ISSN:] 2352-4847 [Volume:] 6 [Publisher:] Elsevier [Place:] Amsterdam [Year:] 2020 [Pages:] 1297-1303
Publisher: 
Elsevier, Amsterdam
Abstract: 
Perovskite solar cell is one of the most promising candidates for future photovoltaic market because of its high power conversion efficiency (>25%). However, most metal top electrodes are typically fabricated by a vacuum deposition method, which makes the fabrication expensive and unsuitable for commercial applications. In this paper, we present devices in which every layer was prepared using a solution process, with a laminated silver nanoparticle film serving as the top electrode. The silver nanoparticle film was produced by spin-coating the nanoparticle silver ink onto a poly(ethylene terephthalate) (PET) substrate followed by post-annealing at 150 °C for 5 min. Introduction of a thin layer of Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/D-sorbitol, plays an important role in improving the adherence of devices and electrical contact during lamination. Thereby, laminated perovskite solar cells with average power conversion efficiency (PCE) of 10.03% were achieved, almost of 90% of the PCE obtained for conventional devices (11.19%) with evaporated silver contact. The electrical and morphological properties of thermally annealed silver nanoparticle film were also investigated.
Subjects: 
Lamination process
Perovskite solar cells
Silver nanoparticle film
Solution process
Spin-coating
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.