Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/244150 
Year of Publication: 
2020
Citation: 
[Journal:] Energy Reports [ISSN:] 2352-4847 [Volume:] 6 [Publisher:] Elsevier [Place:] Amsterdam [Year:] 2020 [Pages:] 1619-1632
Publisher: 
Elsevier, Amsterdam
Abstract: 
Solar panels have non-linear voltage-current features with only one distinctive point where maximum power is obtained. This optimal power point alters with oscillations in temperature and radiation intensity. Various techniques have been proposed for online, offline and hybrid maximum power point tracking. In this paper a new hybrid method based on fuzzy logic for maximum power point tracking of photovoltaic systems has been proposed. At first, this algorithm presents a comparison of two components, including work point calculation and accurate adjustment. Then, work point calculation estimates the maximum power point. Finally, accurate adjustment follows the accurate value of maximum power based on Fuzzy Logic (FL) method. The method proposed in this study is simulated in MATLAB/SIMULINK work space. The proposed method is able to improve the dynamic response and steady-state response of the PV systems and a comparison is made between the results of simulation and the existing techniques and the efficacy of the proposed method has been discussed.
Subjects: 
Fuzzy Logic (FL)
Maximum power point tracking (MPPT)
Photovoltaic system
Short Circuit Current (SCC)
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.