Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/257840 
Erscheinungsjahr: 
2019
Quellenangabe: 
[Journal:] Risks [ISSN:] 2227-9091 [Volume:] 7 [Issue:] 1 [Article No.:] 1 [Publisher:] MDPI [Place:] Basel [Year:] 2019 [Pages:] 1-19
Verlag: 
MDPI, Basel
Zusammenfassung: 
This paper explores the use of neural networks to reduce the computational cost of pricing and hedging variable annuity guarantees. Pricing these guarantees can take a considerable amount of time because of the large number of Monte Carlo simulations that are required for the fair value of these liabilities to converge. This computational requirement worsens when Greeks must be calculated to hedge the liabilities of these guarantees. A feedforward neural network is a universal function approximator that is proposed as a useful machine learning technique to interpolate between previously calculated values and avoid running a full simulation to obtain a value for the liabilities. We propose methodologies utilizing neural networks for both the tasks of pricing as well as hedging four different varieties of variable annuity guarantees. We demonstrated a significant efficiency gain using neural networks in this manner. We also experimented with different error functions in the training of the neural networks and examined the resulting changes in network performance.
Schlagwörter: 
variable annuities
GMxB
hedging
neural networks
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.