Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/258094 
Erscheinungsjahr: 
2021
Quellenangabe: 
[Journal:] Risks [ISSN:] 2227-9091 [Volume:] 9 [Issue:] 1 [Article No.:] 4 [Publisher:] MDPI [Place:] Basel [Year:] 2021 [Pages:] 1-26
Verlag: 
MDPI, Basel
Zusammenfassung: 
In the past 25 years, computer scientists and statisticians developed machine learning algorithms capable of modeling highly nonlinear transformations and interactions of input features. While actuaries use GLMs frequently in practice, only in the past few years have they begun studying these newer algorithms to tackle insurance-related tasks. In this work, we aim to review the applications of machine learning to the actuarial science field and present the current state of the art in ratemaking and reserving. We first give an overview of neural networks, then briefly outline applications of machine learning algorithms in actuarial science tasks. Finally, we summarize the future trends of machine learning for the insurance industry.
Schlagwörter: 
machine learning
neural networks
property and casualty insurance
ratemaking
reserving
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.