Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/264995 
Year of Publication: 
2022
Citation: 
[Journal:] Production and Operations Management [ISSN:] 1937-5956 [Volume:] 31 [Issue:] 9 [Publisher:] Wiley [Place:] Hoboken, NJ [Year:] 2022 [Pages:] 3419-3434
Publisher: 
Wiley, Hoboken, NJ
Abstract: 
Although algorithmic decision support is omnipresent in many managerial tasks, a lack of algorithm transparency is often stated as a barrier to successful human–machine collaboration. In this paper, we analyze the effects of algorithm transparency on the use of advice from algorithms with different degrees of complexity. We conduct a set of laboratory experiments in which participants receive identical advice from algorithms with different levels of transparency and complexity. Our results indicate that not the algorithm itself, but the individually perceived appropriateness of algorithmic complexity moderates the effects of transparency on the use of advice. We summarize this effect as a plateau curve: While perceiving an algorithm as too simple severely harms the use of its advice, the perception of an algorithm as being too complex has no significant effect. Our insights suggest that managers do not have to be concerned about revealing algorithms that are perceived to be appropriately complex or too complex to decision‐makers, even if the decision‐makers do not fully comprehend them. However, providing transparency on algorithms that are perceived to be simpler than appropriate could disappoint people's expectations and thereby reduce the use of their advice.
Subjects: 
algorithm transparency
algorithm complexity
decision‐making
decision support
use of advice
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article
Document Version: 
Published Version

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.