Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/270738 
Autor:innen: 
Erscheinungsjahr: 
2023
Schriftenreihe/Nr.: 
GLO Discussion Paper No. 1260
Verlag: 
Global Labor Organization (GLO), Essen
Zusammenfassung: 
Poverty prediction models are used by economists to address missing data issues in a variety of contexts such as poverty profiling, targeting with proxy-means tests, cross-survey imputations such as poverty mapping, or vulnerability analyses. Based on the models used by this literature, this paper conducts an experiment by artificially corrupting data with different patterns and shares of missing incomes. It then compares the capacity of classic econometric and machine learning models to predict poverty under these different scenarios. It finds that the quality of predictions and the choice of the optimal prediction model are dependent on the distribution of observed and unobserved incomes, the poverty line, the choice of objective function and policy preferences, and various other modeling choices. Logistic and random forest models are found to be more robust than other models to variations in these features, but no model invariably outperforms all others. The paper concludes with some reflections on the use of these models for predicting poverty.
Schlagwörter: 
income modeling
Income Distributions
Poverty Predictions
Imputations
JEL: 
D31
D63
E64
O15
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
525.04 kB





Publikationen in EconStor sind urheberrechtlich geschützt.