Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/284139 
Erscheinungsjahr: 
2023
Schriftenreihe/Nr.: 
cemmap working paper No. CWP15/23
Verlag: 
Centre for Microdata Methods and Practice (cemmap), London
Zusammenfassung: 
This paper introduces a simulation algorithm for evaluating the log-likelihood function of a large supermodular binary-action game. Covered examples include (certain types of) peer effect, technology adoption, strategic network formation, and multi-market entry games. More generally, the algorithm facilitates simulated maximum likelihood (SML) estimation of games with large numbers of players, T, and/or many binary actions per player, M (e.g., games with tens of thousands of strategic actions, TM = O(10 4)). In such cases the likelihood of the observed pure strategy combination is typically (i) very small and (ii) a TM-fold integral who region of integration has a complicated geometry. Direct numerical integration, as well as accept-reject Monte Carlo integration, are computationally impractical in such settings. In contrast, we introduce a novel importance sampling algorithm which allows for accurate likelihood simulation with modest numbers of simulation draws.
Schlagwörter: 
Games
Supermodular
Importance Sampling
Simulated Maximum Likelihood (SML)
Technology Adoption
Peer Effects
Strategic Network Formation
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
915.78 kB





Publikationen in EconStor sind urheberrechtlich geschützt.