Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/288812 
Erscheinungsjahr: 
2020
Quellenangabe: 
[Journal:] HMD Praxis der Wirtschaftsinformatik [ISSN:] 2198-2775 [Volume:] 58 [Issue:] 2 [Publisher:] Springer Fachmedien Wiesbaden [Place:] Wiesbaden [Year:] 2020 [Pages:] 321-342
Verlag: 
Springer Fachmedien Wiesbaden, Wiesbaden
Zusammenfassung: 
Die Qualitätssicherung bei der Produktion von Solarzellen ist ein entscheidender Faktor, um langfristige Leistungsgarantien auf Solarpanels gewähren zu können. Die vorliegende Arbeit leistet hierzu einen Beitrag zur automatisierten Fehlererkennung auf Wafern, indem Elektrolumineszenz-Bilder eines realen Herstellungsszenarios mithilfe von verschiedenen Computer-Vision-Modellen klassifiziert werden. Die Herausforderung besteht hierbei nicht nur darin, defekte Wafer von funktionsfähigen zu separieren, sondern gleichzeitig auch zwischen spezifischen Fehlerarten zu unterscheiden, während geringe Inferenzzeiten sicherzustellen sind. Zu diesem Zweck werden neben einfachen statistischen Modellen verschiedene Deep-Learning-Architekturen auf Basis von Convolutional Neural Networks (CNNs) verprobt und miteinander vergleichen. Ziel der Arbeit ist es, verschiedene Klassifizierungsansätze unterschiedlicher Komplexität zu testen und auf ihre praktische Einsatzfähigkeit unter realen Bedingungen zu untersuchen. Die Fallstudie zeigt, dass je nach Situation unterschiedliche Modelle ihre Existenzberechtigung haben und in Kombination sehr gute Ergebnisse erzielen. So lassen sich bereits mit statistischen Modellen und einfachen CNN-Varianten zuverlässige Aussagen mit Genauigkeiten von über 99 % bei Fehlertypen einfacher bis mittlerer Erkennbarkeit realisieren. Werden die Fehlerbilder demgegenüber diffuser und soll die Nachvollziehbarkeit der Ergebnisse durch positionsgenaue Lokalisierung von Fehlerobjekten gewährleistet werden, sind fortgeschrittenere Ansätze auf Basis sogenannter Region-Proposal-Netzwerke erforderlich, die allerdings auch mit einem erhöhten Labeling-Aufwand beim Annotieren der Fehlerobjekte einhergehen. Da die Umsetzung sämtlicher Modelle ausschließlich auf Open Source Tools wie zum Beispiel TensorFlow, Keras und OpenCV basiert, demonstriert die Fallstudie zudem, welche Möglichkeiten durch frei verfügbare Lösungen im Bereich von Computer Vision geboten werden.
Schlagwörter: 
Deep Learning
Industrie
Maschinelle Bildverarbeitung
Objekterkennung
Photovoltaik
Qualitätssicherung
Deep learning
Industry
Computer vision
Object detection
Photovoltaic
Quality assurance
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.