Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/289614 
Erscheinungsjahr: 
2024
Schriftenreihe/Nr.: 
BERG Working Paper Series No. 191
Verlag: 
Bamberg University, Bamberg Economic Research Group (BERG), Bamberg
Zusammenfassung: 
In a finite two player game consider the matrix of one player's payoff difference between any two consecutive pure strategies. Define the half space induced by a column vector of this matrix as the set of vectors that form an obtuse angle with this column vector. We use Farkas' lemma to show that this player can be made indifferent between all pure strategies if and only if the union of all these half spaces covers the whole vector space. This result leads to a necessary (and almost sufficient) condition for a game to have a completely mixed Nash equilibrium. We demonstrate its usefulness by providing the class of all symmetric two player three strategy games that have a unique and completely mixed symmetric Nash equilibrium.
Schlagwörter: 
completely mixed strategies
mixed Nash equilibria
Farkas&#x2019
lemma
JEL: 
C72
ISBN: 
978-3-949224-12-6
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
449.45 kB





Publikationen in EconStor sind urheberrechtlich geschützt.