Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/52065 
Year of Publication: 
2011
Series/Report no.: 
IZA Discussion Papers No. 5638
Publisher: 
Institute for the Study of Labor (IZA), Bonn
Abstract: 
In recent years there has been increasing concern about the identification of parameters in dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models it may be difficult to determine whether a parameter is identified. For the researcher using Bayesian methods, a lack of identification may not be evident since the posterior of a parameter of interest may differ from its prior even if the parameter is unidentified. We show that this can be the case even if the priors assumed on the structural parameters are independent. We suggest two Bayesian identification indicators that do not suffer from this difficulty and are relatively easy to compute. The first applies to DSGE models where the parameters can be partitioned into those that are known to be identified and the rest where it is not known whether they are identified. In such cases the marginal posterior of an unidentified parameter will equal the posterior expectation of the prior for that parameter conditional on the identified parameters. The second indicator is more generally applicable and considers the rate at which the posterior precision gets updated as the sample size (T) is increased. For identified parameters the posterior precision rises with T, whilst for an unidentified parameter its posterior precision may be updated but its rate of update will be slower than T. This result assumes that the identified parameters are √T-consistent, but similar differential rates of updates for identified and unidentified parameters can be established in the case of super consistent estimators. These results are illustrated by means of simple DSGE models.
Subjects: 
Bayesian identification
DSGE models
posterior updating
New Keynesian Phillips Curve
JEL: 
C11
C15
E17
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:
File
Size
316.25 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.